1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
| //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and hacks on it until only
/// value types the target machine can handle are left. This involves promoting
/// small sizes to large sizes or splitting up large values into small values.
///
class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
const TargetLowering &TLI;
SelectionDAG &DAG;
public:
/// This pass uses the NodeId on the SDNodes to hold information about the
/// state of the node. The enum has all the values.
enum NodeIdFlags {
/// All operands have been processed, so this node is ready to be handled.
ReadyToProcess = 0,
/// This is a new node, not before seen, that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// This node's ID needs to be set to the number of its unprocessed
/// operands.
Unanalyzed = -2,
/// This is a node that has already been processed.
Processed = -3
// 1+ - This is a node which has this many unprocessed operands.
};
private:
/// This is a bitvector that contains two bits for each simple value type,
/// where the two bits correspond to the LegalizeAction enum from
/// TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// Return how we should legalize values of this type.
TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT);
}
/// Return true if this type is legal on this target.
bool isTypeLegal(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
}
/// Return true if this is a simple legal type.
bool isSimpleLegalType(EVT VT) const {
return VT.isSimple() && TLI.isTypeLegal(VT);
}
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
/// Pretend all of this node's results are legal.
bool IgnoreNodeResults(SDNode *N) const {
return N->getOpcode() == ISD::TargetConstant ||
N->getOpcode() == ISD::Register;
}
// Bijection from SDValue to unique id. As each created node gets a
// new id we do not need to worry about reuse expunging. Should we
// run out of ids, we can do a one time expensive compactifcation.
typedef unsigned TableId;
TableId NextValueId = 1;
SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
/// For integer nodes that are below legal width, this map indicates what
/// promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
/// For integer nodes that need to be expanded this map indicates which
/// operands are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
/// For floating-point nodes converted to integers of the same size, this map
/// indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
/// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates what promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedFloats;
/// For float nodes that need to be expanded this map indicates which operands
/// are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
/// For nodes that are <1 x ty>, this map indicates the scalar value of type
/// 'ty' to use.
SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
/// For nodes that need to be split this map indicates which operands are the
/// expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
/// For vector nodes that need to be widened, indicates the widened value to
/// use.
SmallDenseMap<TableId, TableId, 8> WidenedVectors;
/// For values that have been replaced with another, indicates the replacement
/// value to use.
SmallDenseMap<TableId, TableId, 8> ReplacedValues;
/// This defines a worklist of nodes to process. In order to be pushed onto
/// this worklist, all operands of a node must have already been processed.
SmallVector<SDNode*, 128> Worklist;
TableId getTableId(SDValue V) {
assert(V.getNode() && "Getting TableId on SDValue()");
auto I = ValueToIdMap.find(V);
if (I != ValueToIdMap.end()) {
// replace if there's been a shift.
RemapId(I->second);
assert(I->second && "All Ids should be nonzero");
return I->second;
}
// Add if it's not there.
ValueToIdMap.insert(std::make_pair(V, NextValueId));
IdToValueMap.insert(std::make_pair(NextValueId, V));
++NextValueId;
assert(NextValueId != 0 &&
"Ran out of Ids. Increase id type size or add compactification");
return NextValueId - 1;
}
const SDValue &getSDValue(TableId &Id) {
RemapId(Id);
assert(Id && "TableId should be non-zero");
return IdToValueMap[Id];
}
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
"Too many value types for ValueTypeActions to hold!");
}
/// This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes. Returns
/// "true" if it made any changes.
bool run();
void NoteDeletion(SDNode *Old, SDNode *New) {
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
TableId NewId = getTableId(SDValue(New, i));
TableId OldId = getTableId(SDValue(Old, i));
if (OldId != NewId)
ReplacedValues[OldId] = NewId;
// Delete Node from tables.
ValueToIdMap.erase(SDValue(Old, i));
IdToValueMap.erase(OldId);
PromotedIntegers.erase(OldId);
ExpandedIntegers.erase(OldId);
SoftenedFloats.erase(OldId);
PromotedFloats.erase(OldId);
ExpandedFloats.erase(OldId);
ScalarizedVectors.erase(OldId);
SplitVectors.erase(OldId);
WidenedVectors.erase(OldId);
}
}
SelectionDAG &getDAG() const { return DAG; }
private:
SDNode *AnalyzeNewNode(SDNode *N);
void AnalyzeNewValue(SDValue &Val);
void PerformExpensiveChecks();
void RemapId(TableId &Id);
void RemapValue(SDValue &V);
// Common routines.
SDValue BitConvertToInteger(SDValue Op);
SDValue BitConvertVectorToIntegerVector(SDValue Op);
SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
bool CustomWidenLowerNode(SDNode *N, EVT VT);
/// Replace each result of the given MERGE_VALUES node with the corresponding
/// input operand, except for the result 'ResNo', for which the corresponding
/// input operand is returned.
SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
SDNode *Node, bool isSigned);
std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
void ReplaceValueWith(SDValue From, SDValue To);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi);
void AddToWorklist(SDNode *N) {
N->setNodeId(ReadyToProcess);
Worklist.push_back(N);
}
//===--------------------------------------------------------------------===//
// Integer Promotion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was promoted to a larger integer type,
/// this returns the promoted value. The low bits of the promoted value
/// corresponding to the original type are exactly equal to Op.
/// The extra bits contain rubbish, so the promoted value may need to be zero-
/// or sign-extended from the original type before it is usable (the helpers
/// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
/// For example, if Op is an i16 and was promoted to an i32, then this method
/// returns an i32, the lower 16 bits of which coincide with Op, and the upper
/// 16 bits of which contain rubbish.
SDValue GetPromotedInteger(SDValue Op) {
TableId &PromotedId = PromotedIntegers[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedInteger(SDValue Op, SDValue Result);
/// Get a promoted operand and sign extend it to the final size.
SDValue SExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
DAG.getValueType(OldVT));
}
/// Get a promoted operand and zero extend it to the final size.
SDValue ZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
}
// Get a promoted operand and sign or zero extend it to the final size
// (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
// subtarget and type, the choice of sign or zero-extension will be
// consistent.
SDValue SExtOrZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
Op = GetPromotedInteger(Op);
if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
DAG.getValueType(OldVT));
return DAG.getZeroExtendInReg(Op, DL, OldVT.getScalarType());
}
// Integer Result Promotion.
void PromoteIntegerResult(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_AssertSext(SDNode *N);
SDValue PromoteIntRes_AssertZext(SDNode *N);
SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N);
SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntRes_BITCAST(SDNode *N);
SDValue PromoteIntRes_BSWAP(SDNode *N);
SDValue PromoteIntRes_BITREVERSE(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
SDValue PromoteIntRes_Overflow(SDNode *N);
SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_SELECT(SDNode *N);
SDValue PromoteIntRes_VSELECT(SDNode *N);
SDValue PromoteIntRes_SELECT_CC(SDNode *N);
SDValue PromoteIntRes_SETCC(SDNode *N);
SDValue PromoteIntRes_SHL(SDNode *N);
SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
SDValue PromoteIntRes_SRA(SDNode *N);
SDValue PromoteIntRes_SRL(SDNode *N);
SDValue PromoteIntRes_TRUNCATE(SDNode *N);
SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_UNDEF(SDNode *N);
SDValue PromoteIntRes_VAARG(SDNode *N);
SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_ADDSUBSAT(SDNode *N);
SDValue PromoteIntRes_MULFIX(SDNode *N);
SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
SDValue PromoteIntRes_VECREDUCE(SDNode *N);
SDValue PromoteIntRes_ABS(SDNode *N);
// Integer Operand Promotion.
bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
SDValue PromoteIntOp_BITCAST(SDNode *N);
SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N);
SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_Shift(SDNode *N);
SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MULFIX(SDNode *N);
SDValue PromoteIntOp_FPOWI(SDNode *N);
SDValue PromoteIntOp_VECREDUCE(SDNode *N);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Integer Expansion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two integers of half
/// the size, this returns the two halves. The low bits of Op are exactly
/// equal to the bits of Lo; the high bits exactly equal Hi.
/// For example, if Op is an i64 which was expanded into two i32's, then this
/// method returns the two i32's, with Lo being equal to the lower 32 bits of
/// Op, and Hi being equal to the upper 32 bits.
void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
// Integer Result Expansion.
void ExpandIntegerResult(SDNode *N, unsigned ResNo);
void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LLROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LLRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
// Integer Operand Expansion.
bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
SDValue ExpandIntOp_BR_CC(SDNode *N);
SDValue ExpandIntOp_SELECT_CC(SDNode *N);
SDValue ExpandIntOp_SETCC(SDNode *N);
SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
SDValue ExpandIntOp_Shift(SDNode *N);
SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ExpandIntOp_TRUNCATE(SDNode *N);
SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_RETURNADDR(SDNode *N);
SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// GetSoftenedFloat - Given a processed operand Op which was converted to an
/// integer of the same size, this returns the integer. The integer contains
/// exactly the same bits as Op - only the type changed. For example, if Op
/// is an f32 which was softened to an i32, then this method returns an i32,
/// the bits of which coincide with those of Op
SDValue GetSoftenedFloat(SDValue Op) {
TableId Id = getTableId(Op);
auto Iter = SoftenedFloats.find(Id);
if (Iter == SoftenedFloats.end()) {
assert(isSimpleLegalType(Op.getValueType()) &&
"Operand wasn't converted to integer?");
return Op;
}
SDValue SoftenedOp = getSDValue(Iter->second);
assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
return SoftenedOp;
}
void SetSoftenedFloat(SDValue Op, SDValue Result);
// Convert Float Results to Integer.
void SoftenFloatResult(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_BITCAST(SDNode *N);
SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
SDValue SoftenFloatRes_ConstantFP(SDNode *N);
SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FABS(SDNode *N);
SDValue SoftenFloatRes_FMINNUM(SDNode *N);
SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCBRT(SDNode *N);
SDValue SoftenFloatRes_FCEIL(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
SDValue SoftenFloatRes_FCOS(SDNode *N);
SDValue SoftenFloatRes_FDIV(SDNode *N);
SDValue SoftenFloatRes_FEXP(SDNode *N);
SDValue SoftenFloatRes_FEXP2(SDNode *N);
SDValue SoftenFloatRes_FFLOOR(SDNode *N);
SDValue SoftenFloatRes_FLOG(SDNode *N);
SDValue SoftenFloatRes_FLOG2(SDNode *N);
SDValue SoftenFloatRes_FLOG10(SDNode *N);
SDValue SoftenFloatRes_FMA(SDNode *N);
SDValue SoftenFloatRes_FMUL(SDNode *N);
SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
SDValue SoftenFloatRes_FNEG(SDNode *N);
SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
SDValue SoftenFloatRes_FPOW(SDNode *N);
SDValue SoftenFloatRes_FPOWI(SDNode *N);
SDValue SoftenFloatRes_FREM(SDNode *N);
SDValue SoftenFloatRes_FRINT(SDNode *N);
SDValue SoftenFloatRes_FROUND(SDNode *N);
SDValue SoftenFloatRes_FSIN(SDNode *N);
SDValue SoftenFloatRes_FSQRT(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
SDValue SoftenFloatRes_FTRUNC(SDNode *N);
SDValue SoftenFloatRes_LOAD(SDNode *N);
SDValue SoftenFloatRes_SELECT(SDNode *N);
SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
SDValue SoftenFloatRes_UNDEF(SDNode *N);
SDValue SoftenFloatRes_VAARG(SDNode *N);
SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
// Convert Float Operand to Integer.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_BITCAST(SDNode *N);
SDValue SoftenFloatOp_BR_CC(SDNode *N);
SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
SDValue SoftenFloatOp_LROUND(SDNode *N);
SDValue SoftenFloatOp_LLROUND(SDNode *N);
SDValue SoftenFloatOp_LRINT(SDNode *N);
SDValue SoftenFloatOp_LLRINT(SDNode *N);
SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
SDValue SoftenFloatOp_SETCC(SDNode *N);
SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Float Expansion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two floating-point
/// values of half the size, this returns the two halves.
/// The low bits of Op are exactly equal to the bits of Lo; the high bits
/// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
/// into two f64's, then this method returns the two f64's, with Lo being
/// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
// Float Result Expansion.
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
SDValue ExpandFloatOp_LROUND(SDNode *N);
SDValue ExpandFloatOp_LLROUND(SDNode *N);
SDValue ExpandFloatOp_LRINT(SDNode *N);
SDValue ExpandFloatOp_LLRINT(SDNode *N);
SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
SDValue ExpandFloatOp_SETCC(SDNode *N);
SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl);
//===--------------------------------------------------------------------===//
// Float promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetPromotedFloat(SDValue Op) {
TableId &PromotedId = PromotedFloats[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedFloat(SDValue Op, SDValue Result);
void PromoteFloatResult(SDNode *N, unsigned ResNo);
SDValue PromoteFloatRes_BITCAST(SDNode *N);
SDValue PromoteFloatRes_BinOp(SDNode *N);
SDValue PromoteFloatRes_ConstantFP(SDNode *N);
SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
SDValue PromoteFloatRes_FMAD(SDNode *N);
SDValue PromoteFloatRes_FPOWI(SDNode *N);
SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
SDValue PromoteFloatRes_LOAD(SDNode *N);
SDValue PromoteFloatRes_SELECT(SDNode *N);
SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
SDValue PromoteFloatRes_UnaryOp(SDNode *N);
SDValue PromoteFloatRes_UNDEF(SDNode *N);
SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed one-element vector Op which was scalarized to its
/// element type, this returns the element. For example, if Op is a v1i32,
/// Op = < i32 val >, this method returns val, an i32.
SDValue GetScalarizedVector(SDValue Op) {
TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
SDValue ScalarizedOp = getSDValue(ScalarizedId);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp;
}
void SetScalarizedVector(SDValue Op, SDValue Result);
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_InregOp(SDNode *N);
SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
SDValue ScalarizeVecRes_BITCAST(SDNode *N);
SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_STRICT_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_FPOWI(SDNode *N);
SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_VSELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
SDValue ScalarizeVecRes_SETCC(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_MULFIX(SDNode *N);
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BITCAST(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_VSELECT(SDNode *N);
SDValue ScalarizeVecOp_VSETCC(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was split into vectors of half the size,
/// this method returns the halves. The first elements of Op coincide with the
/// elements of Lo; the remaining elements of Op coincide with the elements of
/// Hi: Op is what you would get by concatenating Lo and Hi.
/// For example, if Op is a v8i32 that was split into two v4i32's, then this
/// method returns the two v4i32's, with Lo corresponding to the first 4
/// elements of Op, and Hi to the last 4 elements.
void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
// Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitVectorResult(SDNode *N, unsigned ResNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitVecRes_MULFIX(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
SDValue &Hi);
void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_UnaryOp(SDNode *N);
SDValue SplitVecOp_TruncateHelper(SDNode *N);
SDValue SplitVecOp_BITCAST(SDNode *N);
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);
SDValue SplitVecOp_FP_ROUND(SDNode *N);
SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Widening Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was widened into a larger vector, this
/// method returns the larger vector. The elements of the returned vector
/// consist of the elements of Op followed by elements containing rubbish.
/// For example, if Op is a v2i32 that was widened to a v4i32, then this
/// method returns a v4i32 for which the first two elements are the same as
/// those of Op, while the last two elements contain rubbish.
SDValue GetWidenedVector(SDValue Op) {
TableId &WidenedId = WidenedVectors[getTableId(Op)];
SDValue WidenedOp = getSDValue(WidenedId);
assert(WidenedOp.getNode() && "Operand wasn't widened?");
return WidenedOp;
}
void SetWidenedVector(SDValue Op, SDValue Result);
// Widen Vector Result Promotion.
void WidenVectorResult(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
SDValue WidenVecRes_BITCAST(SDNode* N);
SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
SDValue WidenVecRes_LOAD(SDNode* N);
SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
SDValue WidenVecRes_SELECT(SDNode* N);
SDValue WidenVSELECTAndMask(SDNode *N);
SDValue WidenVecRes_SELECT_CC(SDNode* N);
SDValue WidenVecRes_SETCC(SDNode* N);
SDValue WidenVecRes_UNDEF(SDNode *N);
SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
SDValue WidenVecRes_Ternary(SDNode *N);
SDValue WidenVecRes_Binary(SDNode *N);
SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
SDValue WidenVecRes_StrictFP(SDNode *N);
SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
SDValue WidenVecRes_POWI(SDNode *N);
SDValue WidenVecRes_Shift(SDNode *N);
SDValue WidenVecRes_Unary(SDNode *N);
SDValue WidenVecRes_InregOp(SDNode *N);
// Widen Vector Operand.
bool WidenVectorOperand(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_BITCAST(SDNode *N);
SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
SDValue WidenVecOp_EXTEND(SDNode *N);
SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_STORE(SDNode* N);
SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_SETCC(SDNode* N);
SDValue WidenVecOp_VSELECT(SDNode *N);
SDValue WidenVecOp_Convert(SDNode *N);
SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
SDValue WidenVecOp_VECREDUCE(SDNode *N);
/// Helper function to generate a set of operations to perform
/// a vector operation for a wider type.
///
SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
//===--------------------------------------------------------------------===//
// Vector Widening Utilities Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Helper function to generate a set of loads to load a vector with a
/// resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD);
/// Helper function to generate a set of extension loads to load a vector with
/// a resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
/// ExtType: extension element type
SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD, ISD::LoadExtType ExtType);
/// Helper function to generate a set of stores to store a widen vector into
/// non-widen memory.
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
/// Helper function to generate a set of stores to store a truncate widen
/// vector into non-widen memory.
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
StoreSDNode *ST);
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
/// When FillWithZeroes is "on" the vector will be widened with zeroes.
/// By default, the vector will be widened with undefined values.
SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
/// Return a mask of vector type MaskVT to replace InMask. Also adjust
/// MaskVT to ToMaskVT if needed with vector extension or truncation.
SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
//===--------------------------------------------------------------------===//
// Generic Splitting: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// not necessarily identical types. As such they can be used for splitting
// vectors and expanding integers and floats.
void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isVector())
GetSplitVector(Op, Lo, Hi);
else if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
/// given value.
void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
// Generic Result Splitting.
void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVSETCC(const SDNode *N);
//===--------------------------------------------------------------------===//
// Generic Expansion: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// identical types of half the size, and that the Lo/Hi part is stored first
// in memory on little/big-endian machines, followed by the Hi/Lo part. As
// such they can be used for expanding integers and floats.
void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// This function will split the integer \p Op into \p NumElements
/// operations of type \p EltVT and store them in \p Ops.
void IntegerToVector(SDValue Op, unsigned NumElements,
SmallVectorImpl<SDValue> &Ops, EVT EltVT);
// Generic Result Expansion.
void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
// Generic Operand Expansion.
SDValue ExpandOp_BITCAST (SDNode *N);
SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
};
} // end namespace llvm.
#endif
|