1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
| //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/ResourcePriorityQueue.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <climits>
using namespace llvm;
#define DEBUG_TYPE "pre-RA-sched"
STATISTIC(NumNoops , "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
static RegisterScheduler
VLIWScheduler("vliw-td", "VLIW scheduler",
createVLIWDAGScheduler);
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
/// supports / top-down scheduling.
///
class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
///
SchedulingPriorityQueue *AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands become available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// AA - AAResults for making memory reference queries.
AAResults *AA;
public:
ScheduleDAGVLIW(MachineFunction &mf, AAResults *aa,
SchedulingPriorityQueue *availqueue)
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
const TargetSubtargetInfo &STI = mf.getSubtarget();
HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
}
~ScheduleDAGVLIW() override {
delete HazardRec;
delete AvailableQueue;
}
void Schedule() override;
private:
void releaseSucc(SUnit *SU, const SDep &D);
void releaseSuccessors(SUnit *SU);
void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void listScheduleTopDown();
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGVLIW::Schedule() {
LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
<< " '" << BB->getName() << "' **********\n");
// Build the scheduling graph.
BuildSchedGraph(AA);
AvailableQueue->initNodes(SUnits);
listScheduleTopDown();
AvailableQueue->releaseState();
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
SUnit *SuccSU = D.getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
dumpNode(*SuccSU);
dbgs() << " has been released too many times!\n";
llvm_unreachable(nullptr);
}
#endif
assert(!D.isWeak() && "unexpected artificial DAG edge");
--SuccSU->NumPredsLeft;
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
PendingQueue.push_back(SuccSU);
}
}
void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
// Top down: release successors.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
assert(!I->isAssignedRegDep() &&
"The list-td scheduler doesn't yet support physreg dependencies!");
releaseSucc(SU, *I);
}
}
/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
LLVM_DEBUG(dumpNode(*SU));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
releaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue->scheduledNode(SU);
}
/// listScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGVLIW::listScheduleTopDown() {
unsigned CurCycle = 0;
// Release any successors of the special Entry node.
releaseSuccessors(&EntrySU);
// All leaves to AvailableQueue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While AvailableQueue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() == CurCycle) {
AvailableQueue->push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
}
else {
assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
}
}
// If there are no instructions available, don't try to issue anything, and
// don't advance the hazard recognizer.
if (AvailableQueue->empty()) {
// Reset DFA state.
AvailableQueue->scheduledNode(nullptr);
++CurCycle;
continue;
}
SUnit *FoundSUnit = nullptr;
bool HasNoopHazards = false;
while (!AvailableQueue->empty()) {
SUnit *CurSUnit = AvailableQueue->pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
if (HT == ScheduleHazardRecognizer::NoHazard) {
FoundSUnit = CurSUnit;
break;
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue->push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule, do it now.
if (FoundSUnit) {
scheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
LLVM_DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
LLVM_DEBUG(dbgs() << "*** Emitting noop\n");
HazardRec->EmitNoop();
Sequence.push_back(nullptr); // NULL here means noop
++NumNoops;
++CurCycle;
}
}
#ifndef NDEBUG
VerifyScheduledSequence(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
/// createVLIWDAGScheduler - This creates a top-down list scheduler.
ScheduleDAGSDNodes *
llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
}
|