reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
//===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the spill code placement analysis.
//
// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
// basic blocks are weighted by the block frequency and added to become the node
// bias.
//
// Transparent basic blocks have the variable live through, but don't care if it
// is spilled or in a register. These blocks become connections in the Hopfield
// network, again weighted by block frequency.
//
// The Hopfield network minimizes (possibly locally) its energy function:
//
//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
//
// The energy function represents the expected spill code execution frequency,
// or the cost of spilling. This is a Lyapunov function which never increases
// when a node is updated. It is guaranteed to converge to a local minimum.
//
//===----------------------------------------------------------------------===//

#include "SpillPlacement.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "spill-code-placement"

char SpillPlacement::ID = 0;

char &llvm::SpillPlacementID = SpillPlacement::ID;

INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE,
                      "Spill Code Placement Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE,
                    "Spill Code Placement Analysis", true, true)

void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MachineBlockFrequencyInfo>();
  AU.addRequiredTransitive<EdgeBundles>();
  AU.addRequiredTransitive<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// Node - Each edge bundle corresponds to a Hopfield node.
///
/// The node contains precomputed frequency data that only depends on the CFG,
/// but Bias and Links are computed each time placeSpills is called.
///
/// The node Value is positive when the variable should be in a register. The
/// value can change when linked nodes change, but convergence is very fast
/// because all weights are positive.
struct SpillPlacement::Node {
  /// BiasN - Sum of blocks that prefer a spill.
  BlockFrequency BiasN;

  /// BiasP - Sum of blocks that prefer a register.
  BlockFrequency BiasP;

  /// Value - Output value of this node computed from the Bias and links.
  /// This is always on of the values {-1, 0, 1}. A positive number means the
  /// variable should go in a register through this bundle.
  int Value;

  using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>;

  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
  /// bundles. The weights are all positive block frequencies.
  LinkVector Links;

  /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
  BlockFrequency SumLinkWeights;

  /// preferReg - Return true when this node prefers to be in a register.
  bool preferReg() const {
    // Undecided nodes (Value==0) go on the stack.
    return Value > 0;
  }

  /// mustSpill - Return True if this node is so biased that it must spill.
  bool mustSpill() const {
    // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
    // BiasN is saturated when MustSpill is set, make sure this still returns
    // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
    return BiasN >= BiasP + SumLinkWeights;
  }

  /// clear - Reset per-query data, but preserve frequencies that only depend on
  /// the CFG.
  void clear(const BlockFrequency &Threshold) {
    BiasN = BiasP = Value = 0;
    SumLinkWeights = Threshold;
    Links.clear();
  }

  /// addLink - Add a link to bundle b with weight w.
  void addLink(unsigned b, BlockFrequency w) {
    // Update cached sum.
    SumLinkWeights += w;

    // There can be multiple links to the same bundle, add them up.
    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
      if (I->second == b) {
        I->first += w;
        return;
      }
    // This must be the first link to b.
    Links.push_back(std::make_pair(w, b));
  }

  /// addBias - Bias this node.
  void addBias(BlockFrequency freq, BorderConstraint direction) {
    switch (direction) {
    default:
      break;
    case PrefReg:
      BiasP += freq;
      break;
    case PrefSpill:
      BiasN += freq;
      break;
    case MustSpill:
      BiasN = BlockFrequency::getMaxFrequency();
      break;
    }
  }

  /// update - Recompute Value from Bias and Links. Return true when node
  /// preference changes.
  bool update(const Node nodes[], const BlockFrequency &Threshold) {
    // Compute the weighted sum of inputs.
    BlockFrequency SumN = BiasN;
    BlockFrequency SumP = BiasP;
    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
      if (nodes[I->second].Value == -1)
        SumN += I->first;
      else if (nodes[I->second].Value == 1)
        SumP += I->first;
    }

    // Each weighted sum is going to be less than the total frequency of the
    // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
    // will add a dead zone around 0 for two reasons:
    //
    //  1. It avoids arbitrary bias when all links are 0 as is possible during
    //     initial iterations.
    //  2. It helps tame rounding errors when the links nominally sum to 0.
    //
    bool Before = preferReg();
    if (SumN >= SumP + Threshold)
      Value = -1;
    else if (SumP >= SumN + Threshold)
      Value = 1;
    else
      Value = 0;
    return Before != preferReg();
  }

  void getDissentingNeighbors(SparseSet<unsigned> &List,
                              const Node nodes[]) const {
    for (const auto &Elt : Links) {
      unsigned n = Elt.second;
      // Neighbors that already have the same value are not going to
      // change because of this node changing.
      if (Value != nodes[n].Value)
        List.insert(n);
    }
  }
};

bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;
  bundles = &getAnalysis<EdgeBundles>();
  loops = &getAnalysis<MachineLoopInfo>();

  assert(!nodes && "Leaking node array");
  nodes = new Node[bundles->getNumBundles()];
  TodoList.clear();
  TodoList.setUniverse(bundles->getNumBundles());

  // Compute total ingoing and outgoing block frequencies for all bundles.
  BlockFrequencies.resize(mf.getNumBlockIDs());
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
  setThreshold(MBFI->getEntryFreq());
  for (auto &I : mf) {
    unsigned Num = I.getNumber();
    BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
  }

  // We never change the function.
  return false;
}

void SpillPlacement::releaseMemory() {
  delete[] nodes;
  nodes = nullptr;
  TodoList.clear();
}

/// activate - mark node n as active if it wasn't already.
void SpillPlacement::activate(unsigned n) {
  TodoList.insert(n);
  if (ActiveNodes->test(n))
    return;
  ActiveNodes->set(n);
  nodes[n].clear(Threshold);

  // Very large bundles usually come from big switches, indirect branches,
  // landing pads, or loops with many 'continue' statements. It is difficult to
  // allocate registers when so many different blocks are involved.
  //
  // Give a small negative bias to large bundles such that a substantial
  // fraction of the connected blocks need to be interested before we consider
  // expanding the region through the bundle. This helps compile time by
  // limiting the number of blocks visited and the number of links in the
  // Hopfield network.
  if (bundles->getBlocks(n).size() > 100) {
    nodes[n].BiasP = 0;
    nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
  }
}

/// Set the threshold for a given entry frequency.
///
/// Set the threshold relative to \c Entry.  Since the threshold is used as a
/// bound on the open interval (-Threshold;Threshold), 1 is the minimum
/// threshold.
void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
  // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
  // it.  Divide by 2^13, rounding as appropriate.
  uint64_t Freq = Entry.getFrequency();
  uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
  Threshold = std::max(UINT64_C(1), Scaled);
}

/// addConstraints - Compute node biases and weights from a set of constraints.
/// Set a bit in NodeMask for each active node.
void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
  for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
       E = LiveBlocks.end(); I != E; ++I) {
    BlockFrequency Freq = BlockFrequencies[I->Number];

    // Live-in to block?
    if (I->Entry != DontCare) {
      unsigned ib = bundles->getBundle(I->Number, false);
      activate(ib);
      nodes[ib].addBias(Freq, I->Entry);
    }

    // Live-out from block?
    if (I->Exit != DontCare) {
      unsigned ob = bundles->getBundle(I->Number, true);
      activate(ob);
      nodes[ob].addBias(Freq, I->Exit);
    }
  }
}

/// addPrefSpill - Same as addConstraints(PrefSpill)
void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
       I != E; ++I) {
    BlockFrequency Freq = BlockFrequencies[*I];
    if (Strong)
      Freq += Freq;
    unsigned ib = bundles->getBundle(*I, false);
    unsigned ob = bundles->getBundle(*I, true);
    activate(ib);
    activate(ob);
    nodes[ib].addBias(Freq, PrefSpill);
    nodes[ob].addBias(Freq, PrefSpill);
  }
}

void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
  for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
       ++I) {
    unsigned Number = *I;
    unsigned ib = bundles->getBundle(Number, false);
    unsigned ob = bundles->getBundle(Number, true);

    // Ignore self-loops.
    if (ib == ob)
      continue;
    activate(ib);
    activate(ob);
    BlockFrequency Freq = BlockFrequencies[Number];
    nodes[ib].addLink(ob, Freq);
    nodes[ob].addLink(ib, Freq);
  }
}

bool SpillPlacement::scanActiveBundles() {
  RecentPositive.clear();
  for (unsigned n : ActiveNodes->set_bits()) {
    update(n);
    // A node that must spill, or a node without any links is not going to
    // change its value ever again, so exclude it from iterations.
    if (nodes[n].mustSpill())
      continue;
    if (nodes[n].preferReg())
      RecentPositive.push_back(n);
  }
  return !RecentPositive.empty();
}

bool SpillPlacement::update(unsigned n) {
  if (!nodes[n].update(nodes, Threshold))
    return false;
  nodes[n].getDissentingNeighbors(TodoList, nodes);
  return true;
}

/// iterate - Repeatedly update the Hopfield nodes until stability or the
/// maximum number of iterations is reached.
void SpillPlacement::iterate() {
  // We do not need to push those node in the todolist.
  // They are already been proceeded as part of the previous iteration.
  RecentPositive.clear();

  // Since the last iteration, the todolist have been augmented by calls
  // to addConstraints, addLinks, and co.
  // Update the network energy starting at this new frontier.
  // The call to ::update will add the nodes that changed into the todolist.
  unsigned Limit = bundles->getNumBundles() * 10;
  while(Limit-- > 0 && !TodoList.empty()) {
    unsigned n = TodoList.pop_back_val();
    if (!update(n))
      continue;
    if (nodes[n].preferReg())
      RecentPositive.push_back(n);
  }
}

void SpillPlacement::prepare(BitVector &RegBundles) {
  RecentPositive.clear();
  TodoList.clear();
  // Reuse RegBundles as our ActiveNodes vector.
  ActiveNodes = &RegBundles;
  ActiveNodes->clear();
  ActiveNodes->resize(bundles->getNumBundles());
}

bool
SpillPlacement::finish() {
  assert(ActiveNodes && "Call prepare() first");

  // Write preferences back to ActiveNodes.
  bool Perfect = true;
  for (unsigned n : ActiveNodes->set_bits())
    if (!nodes[n].preferReg()) {
      ActiveNodes->reset(n);
      Perfect = false;
    }
  ActiveNodes = nullptr;
  return Perfect;
}