1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
| //===-- SpeculateAnalyses.cpp --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/SpeculateAnalyses.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
namespace {
using namespace llvm;
SmallVector<const BasicBlock *, 8> findBBwithCalls(const Function &F,
bool IndirectCall = false) {
SmallVector<const BasicBlock *, 8> BBs;
auto findCallInst = [&IndirectCall](const Instruction &I) {
if (auto Call = dyn_cast<CallBase>(&I))
return Call->isIndirectCall() ? IndirectCall : true;
else
return false;
};
for (auto &BB : F)
if (findCallInst(*BB.getTerminator()) ||
llvm::any_of(BB.instructionsWithoutDebug(), findCallInst))
BBs.emplace_back(&BB);
return BBs;
}
} // namespace
// Implementations of Queries shouldn't need to lock the resources
// such as LLVMContext, each argument (function) has a non-shared LLVMContext
// Plus, if Queries contain states necessary locking scheme should be provided.
namespace llvm {
namespace orc {
// Collect direct calls only
void SpeculateQuery::findCalles(const BasicBlock *BB,
DenseSet<StringRef> &CallesNames) {
assert(BB != nullptr && "Traversing Null BB to find calls?");
auto getCalledFunction = [&CallesNames](const CallBase *Call) {
auto CalledValue = Call->getCalledOperand()->stripPointerCasts();
if (auto DirectCall = dyn_cast<Function>(CalledValue))
CallesNames.insert(DirectCall->getName());
};
for (auto &I : BB->instructionsWithoutDebug())
if (auto CI = dyn_cast<CallInst>(&I))
getCalledFunction(CI);
if (auto II = dyn_cast<InvokeInst>(BB->getTerminator()))
getCalledFunction(II);
}
bool SpeculateQuery::isStraightLine(const Function &F) {
return llvm::all_of(F.getBasicBlockList(), [](const BasicBlock &BB) {
return BB.getSingleSuccessor() != nullptr;
});
}
// BlockFreqQuery Implementations
size_t BlockFreqQuery::numBBToGet(size_t numBB) {
// small CFG
if (numBB < 4)
return numBB;
// mid-size CFG
else if (numBB < 20)
return (numBB / 2);
else
return (numBB / 2) + (numBB / 4);
}
BlockFreqQuery::ResultTy BlockFreqQuery::operator()(Function &F) {
DenseMap<StringRef, DenseSet<StringRef>> CallerAndCalles;
DenseSet<StringRef> Calles;
SmallVector<std::pair<const BasicBlock *, uint64_t>, 8> BBFreqs;
PassBuilder PB;
FunctionAnalysisManager FAM;
PB.registerFunctionAnalyses(FAM);
auto IBBs = findBBwithCalls(F);
if (IBBs.empty())
return None;
auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
for (const auto I : IBBs)
BBFreqs.push_back({I, BFI.getBlockFreq(I).getFrequency()});
assert(IBBs.size() == BBFreqs.size() && "BB Count Mismatch");
llvm::sort(BBFreqs.begin(), BBFreqs.end(),
[](decltype(BBFreqs)::const_reference BBF,
decltype(BBFreqs)::const_reference BBS) {
return BBF.second > BBS.second ? true : false;
});
// ignoring number of direct calls in a BB
auto Topk = numBBToGet(BBFreqs.size());
for (size_t i = 0; i < Topk; i++)
findCalles(BBFreqs[i].first, Calles);
assert(!Calles.empty() && "Running Analysis on Function with no calls?");
CallerAndCalles.insert({F.getName(), std::move(Calles)});
return CallerAndCalles;
}
// SequenceBBQuery Implementation
std::size_t SequenceBBQuery::getHottestBlocks(std::size_t TotalBlocks) {
if (TotalBlocks == 1)
return TotalBlocks;
return TotalBlocks / 2;
}
// FIXME : find good implementation.
SequenceBBQuery::BlockListTy
SequenceBBQuery::rearrangeBB(const Function &F, const BlockListTy &BBList) {
BlockListTy RearrangedBBSet;
for (auto &Block : F.getBasicBlockList())
if (llvm::is_contained(BBList, &Block))
RearrangedBBSet.push_back(&Block);
assert(RearrangedBBSet.size() == BBList.size() &&
"BasicBlock missing while rearranging?");
return RearrangedBBSet;
}
void SequenceBBQuery::traverseToEntryBlock(const BasicBlock *AtBB,
const BlockListTy &CallerBlocks,
const BackEdgesInfoTy &BackEdgesInfo,
const BranchProbabilityInfo *BPI,
VisitedBlocksInfoTy &VisitedBlocks) {
auto Itr = VisitedBlocks.find(AtBB);
if (Itr != VisitedBlocks.end()) { // already visited.
if (!Itr->second.Upward)
return;
Itr->second.Upward = false;
} else {
// Create hint for newly discoverd blocks.
WalkDirection BlockHint;
BlockHint.Upward = false;
// FIXME: Expensive Check
if (llvm::is_contained(CallerBlocks, AtBB))
BlockHint.CallerBlock = true;
VisitedBlocks.insert(std::make_pair(AtBB, BlockHint));
}
const_pred_iterator PIt = pred_begin(AtBB), EIt = pred_end(AtBB);
// Move this check to top, when we have code setup to launch speculative
// compiles for function in entry BB, this triggers the speculative compiles
// before running the program.
if (PIt == EIt) // No Preds.
return;
DenseSet<const BasicBlock *> PredSkipNodes;
// Since we are checking for predecessor's backedges, this Block
// occurs in second position.
for (auto &I : BackEdgesInfo)
if (I.second == AtBB)
PredSkipNodes.insert(I.first);
// Skip predecessors which source of back-edges.
for (; PIt != EIt; ++PIt)
// checking EdgeHotness is cheaper
if (BPI->isEdgeHot(*PIt, AtBB) && !PredSkipNodes.count(*PIt))
traverseToEntryBlock(*PIt, CallerBlocks, BackEdgesInfo, BPI,
VisitedBlocks);
}
void SequenceBBQuery::traverseToExitBlock(const BasicBlock *AtBB,
const BlockListTy &CallerBlocks,
const BackEdgesInfoTy &BackEdgesInfo,
const BranchProbabilityInfo *BPI,
VisitedBlocksInfoTy &VisitedBlocks) {
auto Itr = VisitedBlocks.find(AtBB);
if (Itr != VisitedBlocks.end()) { // already visited.
if (!Itr->second.Downward)
return;
Itr->second.Downward = false;
} else {
// Create hint for newly discoverd blocks.
WalkDirection BlockHint;
BlockHint.Downward = false;
// FIXME: Expensive Check
if (llvm::is_contained(CallerBlocks, AtBB))
BlockHint.CallerBlock = true;
VisitedBlocks.insert(std::make_pair(AtBB, BlockHint));
}
succ_const_iterator PIt = succ_begin(AtBB), EIt = succ_end(AtBB);
if (PIt == EIt) // No succs.
return;
// If there are hot edges, then compute SuccSkipNodes.
DenseSet<const BasicBlock *> SuccSkipNodes;
// Since we are checking for successor's backedges, this Block
// occurs in first position.
for (auto &I : BackEdgesInfo)
if (I.first == AtBB)
SuccSkipNodes.insert(I.second);
for (; PIt != EIt; ++PIt)
if (BPI->isEdgeHot(AtBB, *PIt) && !SuccSkipNodes.count(*PIt))
traverseToExitBlock(*PIt, CallerBlocks, BackEdgesInfo, BPI,
VisitedBlocks);
}
// Get Block frequencies for blocks and take most frquently executed block,
// walk towards the entry block from those blocks and discover the basic blocks
// with call.
SequenceBBQuery::BlockListTy
SequenceBBQuery::queryCFG(Function &F, const BlockListTy &CallerBlocks) {
BlockFreqInfoTy BBFreqs;
VisitedBlocksInfoTy VisitedBlocks;
BackEdgesInfoTy BackEdgesInfo;
PassBuilder PB;
FunctionAnalysisManager FAM;
PB.registerFunctionAnalyses(FAM);
auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
llvm::FindFunctionBackedges(F, BackEdgesInfo);
for (const auto I : CallerBlocks)
BBFreqs.push_back({I, BFI.getBlockFreq(I).getFrequency()});
llvm::sort(BBFreqs, [](decltype(BBFreqs)::const_reference Bbf,
decltype(BBFreqs)::const_reference Bbs) {
return Bbf.second > Bbs.second;
});
ArrayRef<std::pair<const BasicBlock *, uint64_t>> HotBlocksRef(BBFreqs);
HotBlocksRef =
HotBlocksRef.drop_back(BBFreqs.size() - getHottestBlocks(BBFreqs.size()));
BranchProbabilityInfo *BPI =
FAM.getCachedResult<BranchProbabilityAnalysis>(F);
// visit NHotBlocks,
// traverse upwards to entry
// traverse downwards to end.
for (auto I : HotBlocksRef) {
traverseToEntryBlock(I.first, CallerBlocks, BackEdgesInfo, BPI,
VisitedBlocks);
traverseToExitBlock(I.first, CallerBlocks, BackEdgesInfo, BPI,
VisitedBlocks);
}
BlockListTy MinCallerBlocks;
for (auto &I : VisitedBlocks)
if (I.second.CallerBlock)
MinCallerBlocks.push_back(std::move(I.first));
return rearrangeBB(F, MinCallerBlocks);
}
SpeculateQuery::ResultTy SequenceBBQuery::operator()(Function &F) {
// reduce the number of lists!
DenseMap<StringRef, DenseSet<StringRef>> CallerAndCalles;
DenseSet<StringRef> Calles;
BlockListTy SequencedBlocks;
BlockListTy CallerBlocks;
CallerBlocks = findBBwithCalls(F);
if (CallerBlocks.empty())
return None;
if (isStraightLine(F))
SequencedBlocks = rearrangeBB(F, CallerBlocks);
else
SequencedBlocks = queryCFG(F, CallerBlocks);
for (auto BB : SequencedBlocks)
findCalles(BB, Calles);
CallerAndCalles.insert({F.getName(), std::move(Calles)});
return CallerAndCalles;
}
} // namespace orc
} // namespace llvm
|