reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Interface for the implementations of runtime dynamic linker facilities.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/SwapByteOrder.h"
#include <map>
#include <system_error>
#include <unordered_map>

using namespace llvm;
using namespace llvm::object;

namespace llvm {

class Twine;

#define UNIMPLEMENTED_RELOC(RelType) \
  case RelType: \
    return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)

/// SectionEntry - represents a section emitted into memory by the dynamic
/// linker.
class SectionEntry {
  /// Name - section name.
  std::string Name;

  /// Address - address in the linker's memory where the section resides.
  uint8_t *Address;

  /// Size - section size. Doesn't include the stubs.
  size_t Size;

  /// LoadAddress - the address of the section in the target process's memory.
  /// Used for situations in which JIT-ed code is being executed in the address
  /// space of a separate process.  If the code executes in the same address
  /// space where it was JIT-ed, this just equals Address.
  uint64_t LoadAddress;

  /// StubOffset - used for architectures with stub functions for far
  /// relocations (like ARM).
  uintptr_t StubOffset;

  /// The total amount of space allocated for this section.  This includes the
  /// section size and the maximum amount of space that the stubs can occupy.
  size_t AllocationSize;

  /// ObjAddress - address of the section in the in-memory object file.  Used
  /// for calculating relocations in some object formats (like MachO).
  uintptr_t ObjAddress;

public:
  SectionEntry(StringRef name, uint8_t *address, size_t size,
               size_t allocationSize, uintptr_t objAddress)
      : Name(name), Address(address), Size(size),
        LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
        AllocationSize(allocationSize), ObjAddress(objAddress) {
    // AllocationSize is used only in asserts, prevent an "unused private field"
    // warning:
    (void)AllocationSize;
  }

  StringRef getName() const { return Name; }

  uint8_t *getAddress() const { return Address; }

  /// Return the address of this section with an offset.
  uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
    assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
    return Address + OffsetBytes;
  }

  size_t getSize() const { return Size; }

  uint64_t getLoadAddress() const { return LoadAddress; }
  void setLoadAddress(uint64_t LA) { LoadAddress = LA; }

  /// Return the load address of this section with an offset.
  uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
    assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
    return LoadAddress + OffsetBytes;
  }

  uintptr_t getStubOffset() const { return StubOffset; }

  void advanceStubOffset(unsigned StubSize) {
    StubOffset += StubSize;
    assert(StubOffset <= AllocationSize && "Not enough space allocated!");
  }

  uintptr_t getObjAddress() const { return ObjAddress; }
};

/// RelocationEntry - used to represent relocations internally in the dynamic
/// linker.
class RelocationEntry {
public:
  /// SectionID - the section this relocation points to.
  unsigned SectionID;

  /// Offset - offset into the section.
  uint64_t Offset;

  /// RelType - relocation type.
  uint32_t RelType;

  /// Addend - the relocation addend encoded in the instruction itself.  Also
  /// used to make a relocation section relative instead of symbol relative.
  int64_t Addend;

  struct SectionPair {
      uint32_t SectionA;
      uint32_t SectionB;
  };

  /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
  /// lookup).
  union {
    uint64_t SymOffset;
    SectionPair Sections;
  };

  /// True if this is a PCRel relocation (MachO specific).
  bool IsPCRel;

  /// The size of this relocation (MachO specific).
  unsigned Size;

  // ARM (MachO and COFF) specific.
  bool IsTargetThumbFunc = false;

  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
        SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {}

  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
                  uint64_t symoffset)
      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
        SymOffset(symoffset), IsPCRel(false), Size(0),
        IsTargetThumbFunc(false) {}

  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
                  bool IsPCRel, unsigned Size)
      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
        SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {}

  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
                  unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
                  uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
      : SectionID(id), Offset(offset), RelType(type),
        Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
        Size(Size), IsTargetThumbFunc(false) {
    Sections.SectionA = SectionA;
    Sections.SectionB = SectionB;
  }

  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
                  unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
                  uint64_t SectionBOffset, bool IsPCRel, unsigned Size,
                  bool IsTargetThumbFunc)
      : SectionID(id), Offset(offset), RelType(type),
        Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
        Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) {
    Sections.SectionA = SectionA;
    Sections.SectionB = SectionB;
  }
};

class RelocationValueRef {
public:
  unsigned SectionID;
  uint64_t Offset;
  int64_t Addend;
  const char *SymbolName;
  bool IsStubThumb = false;
  RelocationValueRef() : SectionID(0), Offset(0), Addend(0),
                         SymbolName(nullptr) {}

  inline bool operator==(const RelocationValueRef &Other) const {
    return SectionID == Other.SectionID && Offset == Other.Offset &&
           Addend == Other.Addend && SymbolName == Other.SymbolName &&
           IsStubThumb == Other.IsStubThumb;
  }
  inline bool operator<(const RelocationValueRef &Other) const {
    if (SectionID != Other.SectionID)
      return SectionID < Other.SectionID;
    if (Offset != Other.Offset)
      return Offset < Other.Offset;
    if (Addend != Other.Addend)
      return Addend < Other.Addend;
    if (IsStubThumb != Other.IsStubThumb)
      return IsStubThumb < Other.IsStubThumb;
    return SymbolName < Other.SymbolName;
  }
};

/// Symbol info for RuntimeDyld.
class SymbolTableEntry {
public:
  SymbolTableEntry() = default;

  SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
      : Offset(Offset), SectionID(SectionID), Flags(Flags) {}

  unsigned getSectionID() const { return SectionID; }
  uint64_t getOffset() const { return Offset; }
  void setOffset(uint64_t NewOffset) { Offset = NewOffset; }

  JITSymbolFlags getFlags() const { return Flags; }

private:
  uint64_t Offset = 0;
  unsigned SectionID = 0;
  JITSymbolFlags Flags = JITSymbolFlags::None;
};

typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;

class RuntimeDyldImpl {
  friend class RuntimeDyld::LoadedObjectInfo;
protected:
  static const unsigned AbsoluteSymbolSection = ~0U;

  // The MemoryManager to load objects into.
  RuntimeDyld::MemoryManager &MemMgr;

  // The symbol resolver to use for external symbols.
  JITSymbolResolver &Resolver;

  // A list of all sections emitted by the dynamic linker.  These sections are
  // referenced in the code by means of their index in this list - SectionID.
  typedef SmallVector<SectionEntry, 64> SectionList;
  SectionList Sections;

  typedef unsigned SID; // Type for SectionIDs
#define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))

  // Keep a map of sections from object file to the SectionID which
  // references it.
  typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;

  // A global symbol table for symbols from all loaded modules.
  RTDyldSymbolTable GlobalSymbolTable;

  // Keep a map of common symbols to their info pairs
  typedef std::vector<SymbolRef> CommonSymbolList;

  // For each symbol, keep a list of relocations based on it. Anytime
  // its address is reassigned (the JIT re-compiled the function, e.g.),
  // the relocations get re-resolved.
  // The symbol (or section) the relocation is sourced from is the Key
  // in the relocation list where it's stored.
  typedef SmallVector<RelocationEntry, 64> RelocationList;
  // Relocations to sections already loaded. Indexed by SectionID which is the
  // source of the address. The target where the address will be written is
  // SectionID/Offset in the relocation itself.
  std::unordered_map<unsigned, RelocationList> Relocations;

  // Relocations to external symbols that are not yet resolved.  Symbols are
  // external when they aren't found in the global symbol table of all loaded
  // modules.  This map is indexed by symbol name.
  StringMap<RelocationList> ExternalSymbolRelocations;


  typedef std::map<RelocationValueRef, uintptr_t> StubMap;

  Triple::ArchType Arch;
  bool IsTargetLittleEndian;
  bool IsMipsO32ABI;
  bool IsMipsN32ABI;
  bool IsMipsN64ABI;

  // True if all sections should be passed to the memory manager, false if only
  // sections containing relocations should be. Defaults to 'false'.
  bool ProcessAllSections;

  // This mutex prevents simultaneously loading objects from two different
  // threads.  This keeps us from having to protect individual data structures
  // and guarantees that section allocation requests to the memory manager
  // won't be interleaved between modules.  It is also used in mapSectionAddress
  // and resolveRelocations to protect write access to internal data structures.
  //
  // loadObject may be called on the same thread during the handling of of
  // processRelocations, and that's OK.  The handling of the relocation lists
  // is written in such a way as to work correctly if new elements are added to
  // the end of the list while the list is being processed.
  sys::Mutex lock;

  using NotifyStubEmittedFunction =
    RuntimeDyld::NotifyStubEmittedFunction;
  NotifyStubEmittedFunction NotifyStubEmitted;

  virtual unsigned getMaxStubSize() const = 0;
  virtual unsigned getStubAlignment() = 0;

  bool HasError;
  std::string ErrorStr;

  void writeInt16BE(uint8_t *Addr, uint16_t Value) {
    if (IsTargetLittleEndian)
      sys::swapByteOrder(Value);
    *Addr       = (Value >> 8) & 0xFF;
    *(Addr + 1) = Value & 0xFF;
  }

  void writeInt32BE(uint8_t *Addr, uint32_t Value) {
    if (IsTargetLittleEndian)
      sys::swapByteOrder(Value);
    *Addr       = (Value >> 24) & 0xFF;
    *(Addr + 1) = (Value >> 16) & 0xFF;
    *(Addr + 2) = (Value >> 8) & 0xFF;
    *(Addr + 3) = Value & 0xFF;
  }

  void writeInt64BE(uint8_t *Addr, uint64_t Value) {
    if (IsTargetLittleEndian)
      sys::swapByteOrder(Value);
    *Addr       = (Value >> 56) & 0xFF;
    *(Addr + 1) = (Value >> 48) & 0xFF;
    *(Addr + 2) = (Value >> 40) & 0xFF;
    *(Addr + 3) = (Value >> 32) & 0xFF;
    *(Addr + 4) = (Value >> 24) & 0xFF;
    *(Addr + 5) = (Value >> 16) & 0xFF;
    *(Addr + 6) = (Value >> 8) & 0xFF;
    *(Addr + 7) = Value & 0xFF;
  }

  virtual void setMipsABI(const ObjectFile &Obj) {
    IsMipsO32ABI = false;
    IsMipsN32ABI = false;
    IsMipsN64ABI = false;
  }

  /// Endian-aware read Read the least significant Size bytes from Src.
  uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;

  /// Endian-aware write. Write the least significant Size bytes from Value to
  /// Dst.
  void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;

  /// Generate JITSymbolFlags from a libObject symbol.
  virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym);

  /// Modify the given target address based on the given symbol flags.
  /// This can be used by subclasses to tweak addresses based on symbol flags,
  /// For example: the MachO/ARM target uses it to set the low bit if the target
  /// is a thumb symbol.
  virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr,
                                             JITSymbolFlags Flags) const {
    return Addr;
  }

  /// Given the common symbols discovered in the object file, emit a
  /// new section for them and update the symbol mappings in the object and
  /// symbol table.
  Error emitCommonSymbols(const ObjectFile &Obj,
                          CommonSymbolList &CommonSymbols, uint64_t CommonSize,
                          uint32_t CommonAlign);

  /// Emits section data from the object file to the MemoryManager.
  /// \param IsCode if it's true then allocateCodeSection() will be
  ///        used for emits, else allocateDataSection() will be used.
  /// \return SectionID.
  Expected<unsigned> emitSection(const ObjectFile &Obj,
                                 const SectionRef &Section,
                                 bool IsCode);

  /// Find Section in LocalSections. If the secton is not found - emit
  ///        it and store in LocalSections.
  /// \param IsCode if it's true then allocateCodeSection() will be
  ///        used for emmits, else allocateDataSection() will be used.
  /// \return SectionID.
  Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
                                       const SectionRef &Section, bool IsCode,
                                       ObjSectionToIDMap &LocalSections);

  // Add a relocation entry that uses the given section.
  void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);

  // Add a relocation entry that uses the given symbol.  This symbol may
  // be found in the global symbol table, or it may be external.
  void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);

  /// Emits long jump instruction to Addr.
  /// \return Pointer to the memory area for emitting target address.
  uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);

  /// Resolves relocations from Relocs list with address from Value.
  void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);

  /// A object file specific relocation resolver
  /// \param RE The relocation to be resolved
  /// \param Value Target symbol address to apply the relocation action
  virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;

  /// Parses one or more object file relocations (some object files use
  ///        relocation pairs) and stores it to Relocations or SymbolRelocations
  ///        (this depends on the object file type).
  /// \return Iterator to the next relocation that needs to be parsed.
  virtual Expected<relocation_iterator>
  processRelocationRef(unsigned SectionID, relocation_iterator RelI,
                       const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
                       StubMap &Stubs) = 0;

  void applyExternalSymbolRelocations(
      const StringMap<JITEvaluatedSymbol> ExternalSymbolMap);

  /// Resolve relocations to external symbols.
  Error resolveExternalSymbols();

  // Compute an upper bound of the memory that is required to load all
  // sections
  Error computeTotalAllocSize(const ObjectFile &Obj,
                              uint64_t &CodeSize, uint32_t &CodeAlign,
                              uint64_t &RODataSize, uint32_t &RODataAlign,
                              uint64_t &RWDataSize, uint32_t &RWDataAlign);

  // Compute GOT size
  unsigned computeGOTSize(const ObjectFile &Obj);

  // Compute the stub buffer size required for a section
  unsigned computeSectionStubBufSize(const ObjectFile &Obj,
                                     const SectionRef &Section);

  // Implementation of the generic part of the loadObject algorithm.
  Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);

  // Return size of Global Offset Table (GOT) entry
  virtual size_t getGOTEntrySize() { return 0; }

  // Return true if the relocation R may require allocating a GOT entry.
  virtual bool relocationNeedsGot(const RelocationRef &R) const {
    return false;
  }

  // Return true if the relocation R may require allocating a stub.
  virtual bool relocationNeedsStub(const RelocationRef &R) const {
    return true;    // Conservative answer
  }

public:
  RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
                  JITSymbolResolver &Resolver)
    : MemMgr(MemMgr), Resolver(Resolver),
      ProcessAllSections(false), HasError(false) {
  }

  virtual ~RuntimeDyldImpl();

  void setProcessAllSections(bool ProcessAllSections) {
    this->ProcessAllSections = ProcessAllSections;
  }

  virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
  loadObject(const object::ObjectFile &Obj) = 0;

  uint64_t getSectionLoadAddress(unsigned SectionID) const {
    return Sections[SectionID].getLoadAddress();
  }

  uint8_t *getSectionAddress(unsigned SectionID) const {
    return Sections[SectionID].getAddress();
  }

  StringRef getSectionContent(unsigned SectionID) const {
    return StringRef(reinterpret_cast<char *>(Sections[SectionID].getAddress()),
                     Sections[SectionID].getStubOffset() + getMaxStubSize());
  }

  uint8_t* getSymbolLocalAddress(StringRef Name) const {
    // FIXME: Just look up as a function for now. Overly simple of course.
    // Work in progress.
    RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
    if (pos == GlobalSymbolTable.end())
      return nullptr;
    const auto &SymInfo = pos->second;
    // Absolute symbols do not have a local address.
    if (SymInfo.getSectionID() == AbsoluteSymbolSection)
      return nullptr;
    return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
  }

  unsigned getSymbolSectionID(StringRef Name) const {
    auto GSTItr = GlobalSymbolTable.find(Name);
    if (GSTItr == GlobalSymbolTable.end())
      return ~0U;
    return GSTItr->second.getSectionID();
  }

  JITEvaluatedSymbol getSymbol(StringRef Name) const {
    // FIXME: Just look up as a function for now. Overly simple of course.
    // Work in progress.
    RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
    if (pos == GlobalSymbolTable.end())
      return nullptr;
    const auto &SymEntry = pos->second;
    uint64_t SectionAddr = 0;
    if (SymEntry.getSectionID() != AbsoluteSymbolSection)
      SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
    uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();

    // FIXME: Have getSymbol should return the actual address and the client
    //        modify it based on the flags. This will require clients to be
    //        aware of the target architecture, which we should build
    //        infrastructure for.
    TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags());
    return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags());
  }

  std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const {
    std::map<StringRef, JITEvaluatedSymbol> Result;

    for (auto &KV : GlobalSymbolTable) {
      auto SectionID = KV.second.getSectionID();
      uint64_t SectionAddr = 0;
      if (SectionID != AbsoluteSymbolSection)
        SectionAddr = getSectionLoadAddress(SectionID);
      Result[KV.first()] =
        JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags());
    }

    return Result;
  }

  void resolveRelocations();

  void resolveLocalRelocations();

  static void finalizeAsync(std::unique_ptr<RuntimeDyldImpl> This,
                            unique_function<void(Error)> OnEmitted,
                            std::unique_ptr<MemoryBuffer> UnderlyingBuffer);

  void reassignSectionAddress(unsigned SectionID, uint64_t Addr);

  void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);

  // Is the linker in an error state?
  bool hasError() { return HasError; }

  // Mark the error condition as handled and continue.
  void clearError() { HasError = false; }

  // Get the error message.
  StringRef getErrorString() { return ErrorStr; }

  virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;

  void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
    this->NotifyStubEmitted = std::move(NotifyStubEmitted);
  }

  virtual void registerEHFrames();

  void deregisterEHFrames();

  virtual Error finalizeLoad(const ObjectFile &ObjImg,
                             ObjSectionToIDMap &SectionMap) {
    return Error::success();
  }
};

} // end namespace llvm

#endif