reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "mcexpr"

namespace {
namespace stats {

STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");

} // end namespace stats
} // end anonymous namespace

void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
  switch (getKind()) {
  case MCExpr::Target:
    return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
  case MCExpr::Constant: {
    auto Value = cast<MCConstantExpr>(*this).getValue();
    auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
    if (PrintInHex)
      OS << "0x" << Twine::utohexstr(Value);
    else
      OS << Value;
    return;
  }
  case MCExpr::SymbolRef: {
    const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
    const MCSymbol &Sym = SRE.getSymbol();
    // Parenthesize names that start with $ so that they don't look like
    // absolute names.
    bool UseParens =
        !InParens && !Sym.getName().empty() && Sym.getName()[0] == '$';
    if (UseParens) {
      OS << '(';
      Sym.print(OS, MAI);
      OS << ')';
    } else
      Sym.print(OS, MAI);

    if (SRE.getKind() != MCSymbolRefExpr::VK_None)
      SRE.printVariantKind(OS);

    return;
  }

  case MCExpr::Unary: {
    const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
    switch (UE.getOpcode()) {
    case MCUnaryExpr::LNot:  OS << '!'; break;
    case MCUnaryExpr::Minus: OS << '-'; break;
    case MCUnaryExpr::Not:   OS << '~'; break;
    case MCUnaryExpr::Plus:  OS << '+'; break;
    }
    bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
    if (Binary) OS << "(";
    UE.getSubExpr()->print(OS, MAI);
    if (Binary) OS << ")";
    return;
  }

  case MCExpr::Binary: {
    const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
      BE.getLHS()->print(OS, MAI);
    } else {
      OS << '(';
      BE.getLHS()->print(OS, MAI);
      OS << ')';
    }

    switch (BE.getOpcode()) {
    case MCBinaryExpr::Add:
      // Print "X-42" instead of "X+-42".
      if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
        if (RHSC->getValue() < 0) {
          OS << RHSC->getValue();
          return;
        }
      }

      OS <<  '+';
      break;
    case MCBinaryExpr::AShr: OS << ">>"; break;
    case MCBinaryExpr::And:  OS <<  '&'; break;
    case MCBinaryExpr::Div:  OS <<  '/'; break;
    case MCBinaryExpr::EQ:   OS << "=="; break;
    case MCBinaryExpr::GT:   OS <<  '>'; break;
    case MCBinaryExpr::GTE:  OS << ">="; break;
    case MCBinaryExpr::LAnd: OS << "&&"; break;
    case MCBinaryExpr::LOr:  OS << "||"; break;
    case MCBinaryExpr::LShr: OS << ">>"; break;
    case MCBinaryExpr::LT:   OS <<  '<'; break;
    case MCBinaryExpr::LTE:  OS << "<="; break;
    case MCBinaryExpr::Mod:  OS <<  '%'; break;
    case MCBinaryExpr::Mul:  OS <<  '*'; break;
    case MCBinaryExpr::NE:   OS << "!="; break;
    case MCBinaryExpr::Or:   OS <<  '|'; break;
    case MCBinaryExpr::Shl:  OS << "<<"; break;
    case MCBinaryExpr::Sub:  OS <<  '-'; break;
    case MCBinaryExpr::Xor:  OS <<  '^'; break;
    }

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
      BE.getRHS()->print(OS, MAI);
    } else {
      OS << '(';
      BE.getRHS()->print(OS, MAI);
      OS << ')';
    }
    return;
  }
  }

  llvm_unreachable("Invalid expression kind!");
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCExpr::dump() const {
  dbgs() << *this;
  dbgs() << '\n';
}
#endif

/* *** */

const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
                                         const MCExpr *RHS, MCContext &Ctx,
                                         SMLoc Loc) {
  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
}

const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
                                       MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
}

const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
                                             bool PrintInHex) {
  return new (Ctx) MCConstantExpr(Value, PrintInHex);
}

/* *** */

MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
                                 const MCAsmInfo *MAI, SMLoc Loc)
    : MCExpr(MCExpr::SymbolRef, Loc), Kind(Kind),
      UseParensForSymbolVariant(MAI->useParensForSymbolVariant()),
      HasSubsectionsViaSymbols(MAI->hasSubsectionsViaSymbols()),
      Symbol(Symbol) {
  assert(Symbol);
}

const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
                                               VariantKind Kind,
                                               MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
}

const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
                                               MCContext &Ctx) {
  return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
}

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
  switch (Kind) {
  case VK_Invalid: return "<<invalid>>";
  case VK_None: return "<<none>>";

  case VK_DTPOFF: return "DTPOFF";
  case VK_DTPREL: return "DTPREL";
  case VK_GOT: return "GOT";
  case VK_GOTOFF: return "GOTOFF";
  case VK_GOTREL: return "GOTREL";
  case VK_GOTPCREL: return "GOTPCREL";
  case VK_GOTTPOFF: return "GOTTPOFF";
  case VK_INDNTPOFF: return "INDNTPOFF";
  case VK_NTPOFF: return "NTPOFF";
  case VK_GOTNTPOFF: return "GOTNTPOFF";
  case VK_PLT: return "PLT";
  case VK_TLSGD: return "TLSGD";
  case VK_TLSLD: return "TLSLD";
  case VK_TLSLDM: return "TLSLDM";
  case VK_TPOFF: return "TPOFF";
  case VK_TPREL: return "TPREL";
  case VK_TLSCALL: return "tlscall";
  case VK_TLSDESC: return "tlsdesc";
  case VK_TLVP: return "TLVP";
  case VK_TLVPPAGE: return "TLVPPAGE";
  case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
  case VK_PAGE: return "PAGE";
  case VK_PAGEOFF: return "PAGEOFF";
  case VK_GOTPAGE: return "GOTPAGE";
  case VK_GOTPAGEOFF: return "GOTPAGEOFF";
  case VK_SECREL: return "SECREL32";
  case VK_SIZE: return "SIZE";
  case VK_WEAKREF: return "WEAKREF";
  case VK_X86_ABS8: return "ABS8";
  case VK_ARM_NONE: return "none";
  case VK_ARM_GOT_PREL: return "GOT_PREL";
  case VK_ARM_TARGET1: return "target1";
  case VK_ARM_TARGET2: return "target2";
  case VK_ARM_PREL31: return "prel31";
  case VK_ARM_SBREL: return "sbrel";
  case VK_ARM_TLSLDO: return "tlsldo";
  case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
  case VK_AVR_NONE: return "none";
  case VK_AVR_LO8: return "lo8";
  case VK_AVR_HI8: return "hi8";
  case VK_AVR_HLO8: return "hlo8";
  case VK_AVR_DIFF8: return "diff8";
  case VK_AVR_DIFF16: return "diff16";
  case VK_AVR_DIFF32: return "diff32";
  case VK_PPC_LO: return "l";
  case VK_PPC_HI: return "h";
  case VK_PPC_HA: return "ha";
  case VK_PPC_HIGH: return "high";
  case VK_PPC_HIGHA: return "higha";
  case VK_PPC_HIGHER: return "higher";
  case VK_PPC_HIGHERA: return "highera";
  case VK_PPC_HIGHEST: return "highest";
  case VK_PPC_HIGHESTA: return "highesta";
  case VK_PPC_GOT_LO: return "got@l";
  case VK_PPC_GOT_HI: return "got@h";
  case VK_PPC_GOT_HA: return "got@ha";
  case VK_PPC_TOCBASE: return "tocbase";
  case VK_PPC_TOC: return "toc";
  case VK_PPC_TOC_LO: return "toc@l";
  case VK_PPC_TOC_HI: return "toc@h";
  case VK_PPC_TOC_HA: return "toc@ha";
  case VK_PPC_U: return "u";
  case VK_PPC_L: return "l";
  case VK_PPC_DTPMOD: return "dtpmod";
  case VK_PPC_TPREL_LO: return "tprel@l";
  case VK_PPC_TPREL_HI: return "tprel@h";
  case VK_PPC_TPREL_HA: return "tprel@ha";
  case VK_PPC_TPREL_HIGH: return "tprel@high";
  case VK_PPC_TPREL_HIGHA: return "tprel@higha";
  case VK_PPC_TPREL_HIGHER: return "tprel@higher";
  case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
  case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
  case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
  case VK_PPC_DTPREL_LO: return "dtprel@l";
  case VK_PPC_DTPREL_HI: return "dtprel@h";
  case VK_PPC_DTPREL_HA: return "dtprel@ha";
  case VK_PPC_DTPREL_HIGH: return "dtprel@high";
  case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
  case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
  case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
  case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
  case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
  case VK_PPC_GOT_TPREL: return "got@tprel";
  case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
  case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
  case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
  case VK_PPC_GOT_DTPREL: return "got@dtprel";
  case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
  case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
  case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
  case VK_PPC_TLS: return "tls";
  case VK_PPC_GOT_TLSGD: return "got@tlsgd";
  case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
  case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
  case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
  case VK_PPC_TLSGD: return "tlsgd";
  case VK_PPC_GOT_TLSLD: return "got@tlsld";
  case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
  case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
  case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
  case VK_PPC_TLSLD: return "tlsld";
  case VK_PPC_LOCAL: return "local";
  case VK_COFF_IMGREL32: return "IMGREL";
  case VK_Hexagon_PCREL: return "PCREL";
  case VK_Hexagon_LO16: return "LO16";
  case VK_Hexagon_HI16: return "HI16";
  case VK_Hexagon_GPREL: return "GPREL";
  case VK_Hexagon_GD_GOT: return "GDGOT";
  case VK_Hexagon_LD_GOT: return "LDGOT";
  case VK_Hexagon_GD_PLT: return "GDPLT";
  case VK_Hexagon_LD_PLT: return "LDPLT";
  case VK_Hexagon_IE: return "IE";
  case VK_Hexagon_IE_GOT: return "IEGOT";
  case VK_WASM_TYPEINDEX: return "TYPEINDEX";
  case VK_WASM_MBREL: return "MBREL";
  case VK_WASM_TBREL: return "TBREL";
  case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
  case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
  case VK_AMDGPU_REL32_LO: return "rel32@lo";
  case VK_AMDGPU_REL32_HI: return "rel32@hi";
  case VK_AMDGPU_REL64: return "rel64";
  case VK_AMDGPU_ABS32_LO: return "abs32@lo";
  case VK_AMDGPU_ABS32_HI: return "abs32@hi";
  }
  llvm_unreachable("Invalid variant kind");
}

MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
  return StringSwitch<VariantKind>(Name.lower())
    .Case("dtprel", VK_DTPREL)
    .Case("dtpoff", VK_DTPOFF)
    .Case("got", VK_GOT)
    .Case("gotoff", VK_GOTOFF)
    .Case("gotrel", VK_GOTREL)
    .Case("gotpcrel", VK_GOTPCREL)
    .Case("gottpoff", VK_GOTTPOFF)
    .Case("indntpoff", VK_INDNTPOFF)
    .Case("ntpoff", VK_NTPOFF)
    .Case("gotntpoff", VK_GOTNTPOFF)
    .Case("plt", VK_PLT)
    .Case("tlscall", VK_TLSCALL)
    .Case("tlsdesc", VK_TLSDESC)
    .Case("tlsgd", VK_TLSGD)
    .Case("tlsld", VK_TLSLD)
    .Case("tlsldm", VK_TLSLDM)
    .Case("tpoff", VK_TPOFF)
    .Case("tprel", VK_TPREL)
    .Case("tlvp", VK_TLVP)
    .Case("tlvppage", VK_TLVPPAGE)
    .Case("tlvppageoff", VK_TLVPPAGEOFF)
    .Case("page", VK_PAGE)
    .Case("pageoff", VK_PAGEOFF)
    .Case("gotpage", VK_GOTPAGE)
    .Case("gotpageoff", VK_GOTPAGEOFF)
    .Case("imgrel", VK_COFF_IMGREL32)
    .Case("secrel32", VK_SECREL)
    .Case("size", VK_SIZE)
    .Case("abs8", VK_X86_ABS8)
    .Case("l", VK_PPC_LO)
    .Case("h", VK_PPC_HI)
    .Case("ha", VK_PPC_HA)
    .Case("high", VK_PPC_HIGH)
    .Case("higha", VK_PPC_HIGHA)
    .Case("higher", VK_PPC_HIGHER)
    .Case("highera", VK_PPC_HIGHERA)
    .Case("highest", VK_PPC_HIGHEST)
    .Case("highesta", VK_PPC_HIGHESTA)
    .Case("got@l", VK_PPC_GOT_LO)
    .Case("got@h", VK_PPC_GOT_HI)
    .Case("got@ha", VK_PPC_GOT_HA)
    .Case("local", VK_PPC_LOCAL)
    .Case("tocbase", VK_PPC_TOCBASE)
    .Case("toc", VK_PPC_TOC)
    .Case("toc@l", VK_PPC_TOC_LO)
    .Case("toc@h", VK_PPC_TOC_HI)
    .Case("toc@ha", VK_PPC_TOC_HA)
    .Case("u", VK_PPC_U)
    .Case("l", VK_PPC_L)
    .Case("tls", VK_PPC_TLS)
    .Case("dtpmod", VK_PPC_DTPMOD)
    .Case("tprel@l", VK_PPC_TPREL_LO)
    .Case("tprel@h", VK_PPC_TPREL_HI)
    .Case("tprel@ha", VK_PPC_TPREL_HA)
    .Case("tprel@high", VK_PPC_TPREL_HIGH)
    .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
    .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
    .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
    .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
    .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
    .Case("dtprel@l", VK_PPC_DTPREL_LO)
    .Case("dtprel@h", VK_PPC_DTPREL_HI)
    .Case("dtprel@ha", VK_PPC_DTPREL_HA)
    .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
    .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
    .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
    .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
    .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
    .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
    .Case("got@tprel", VK_PPC_GOT_TPREL)
    .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
    .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
    .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
    .Case("got@dtprel", VK_PPC_GOT_DTPREL)
    .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
    .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
    .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
    .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
    .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
    .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
    .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
    .Case("got@tlsld", VK_PPC_GOT_TLSLD)
    .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
    .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
    .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
    .Case("gdgot", VK_Hexagon_GD_GOT)
    .Case("gdplt", VK_Hexagon_GD_PLT)
    .Case("iegot", VK_Hexagon_IE_GOT)
    .Case("ie", VK_Hexagon_IE)
    .Case("ldgot", VK_Hexagon_LD_GOT)
    .Case("ldplt", VK_Hexagon_LD_PLT)
    .Case("pcrel", VK_Hexagon_PCREL)
    .Case("none", VK_ARM_NONE)
    .Case("got_prel", VK_ARM_GOT_PREL)
    .Case("target1", VK_ARM_TARGET1)
    .Case("target2", VK_ARM_TARGET2)
    .Case("prel31", VK_ARM_PREL31)
    .Case("sbrel", VK_ARM_SBREL)
    .Case("tlsldo", VK_ARM_TLSLDO)
    .Case("lo8", VK_AVR_LO8)
    .Case("hi8", VK_AVR_HI8)
    .Case("hlo8", VK_AVR_HLO8)
    .Case("typeindex", VK_WASM_TYPEINDEX)
    .Case("tbrel", VK_WASM_TBREL)
    .Case("mbrel", VK_WASM_MBREL)
    .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
    .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
    .Case("rel32@lo", VK_AMDGPU_REL32_LO)
    .Case("rel32@hi", VK_AMDGPU_REL32_HI)
    .Case("rel64", VK_AMDGPU_REL64)
    .Case("abs32@lo", VK_AMDGPU_ABS32_LO)
    .Case("abs32@hi", VK_AMDGPU_ABS32_HI)
    .Default(VK_Invalid);
}

void MCSymbolRefExpr::printVariantKind(raw_ostream &OS) const {
  if (UseParensForSymbolVariant)
    OS << '(' << MCSymbolRefExpr::getVariantKindName(getKind()) << ')';
  else
    OS << '@' << MCSymbolRefExpr::getVariantKindName(getKind());
}

/* *** */

void MCTargetExpr::anchor() {}

/* *** */

bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
  return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout) const {
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout,
                                const SectionAddrMap &Addrs) const {
  // Setting InSet causes us to absolutize differences across sections and that
  // is what the MachO writer uses Addrs for.
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs, true);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
  return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
  return evaluateAsAbsolute(Res, Asm, nullptr, nullptr, false);
}

bool MCExpr::evaluateKnownAbsolute(int64_t &Res,
                                   const MCAsmLayout &Layout) const {
  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
                            true);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
                                const MCAsmLayout *Layout,
                                const SectionAddrMap *Addrs, bool InSet) const {
  MCValue Value;

  // Fast path constants.
  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
    Res = CE->getValue();
    return true;
  }

  bool IsRelocatable =
      evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);

  // Record the current value.
  Res = Value.getConstant();

  return IsRelocatable && Value.isAbsolute();
}

/// Helper method for \see EvaluateSymbolAdd().
static void AttemptToFoldSymbolOffsetDifference(
    const MCAssembler *Asm, const MCAsmLayout *Layout,
    const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
    const MCSymbolRefExpr *&B, int64_t &Addend) {
  if (!A || !B)
    return;

  const MCSymbol &SA = A->getSymbol();
  const MCSymbol &SB = B->getSymbol();

  if (SA.isUndefined() || SB.isUndefined())
    return;

  if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
    return;

  if (SA.getFragment() == SB.getFragment() && !SA.isVariable() &&
      !SA.isUnset() && !SB.isVariable() && !SB.isUnset()) {
    Addend += (SA.getOffset() - SB.getOffset());

    // Pointers to Thumb symbols need to have their low-bit set to allow
    // for interworking.
    if (Asm->isThumbFunc(&SA))
      Addend |= 1;

    // If symbol is labeled as micromips, we set low-bit to ensure
    // correct offset in .gcc_except_table
    if (Asm->getBackend().isMicroMips(&SA))
      Addend |= 1;

    // Clear the symbol expr pointers to indicate we have folded these
    // operands.
    A = B = nullptr;
    return;
  }

  if (!Layout)
    return;

  const MCSection &SecA = *SA.getFragment()->getParent();
  const MCSection &SecB = *SB.getFragment()->getParent();

  if ((&SecA != &SecB) && !Addrs)
    return;

  // Eagerly evaluate.
  Addend += Layout->getSymbolOffset(A->getSymbol()) -
            Layout->getSymbolOffset(B->getSymbol());
  if (Addrs && (&SecA != &SecB))
    Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));

  // Pointers to Thumb symbols need to have their low-bit set to allow
  // for interworking.
  if (Asm->isThumbFunc(&SA))
    Addend |= 1;

  // If symbol is labeled as micromips, we set low-bit to ensure
  // correct offset in .gcc_except_table
  if (Asm->getBackend().isMicroMips(&SA))
    Addend |= 1;

  // Clear the symbol expr pointers to indicate we have folded these
  // operands.
  A = B = nullptr;
}

static bool canFold(const MCAssembler *Asm, const MCSymbolRefExpr *A,
                    const MCSymbolRefExpr *B, bool InSet) {
  if (InSet)
    return true;

  if (!Asm->getBackend().requiresDiffExpressionRelocations())
    return true;

  const MCSymbol &CheckSym = A ? A->getSymbol() : B->getSymbol();
  if (!CheckSym.isInSection())
    return true;

  if (!CheckSym.getSection().hasInstructions())
    return true;

  return false;
}

/// Evaluate the result of an add between (conceptually) two MCValues.
///
/// This routine conceptually attempts to construct an MCValue:
///   Result = (Result_A - Result_B + Result_Cst)
/// from two MCValue's LHS and RHS where
///   Result = LHS + RHS
/// and
///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
///
/// This routine attempts to aggresively fold the operands such that the result
/// is representable in an MCValue, but may not always succeed.
///
/// \returns True on success, false if the result is not representable in an
/// MCValue.

/// NOTE: It is really important to have both the Asm and Layout arguments.
/// They might look redundant, but this function can be used before layout
/// is done (see the object streamer for example) and having the Asm argument
/// lets us avoid relaxations early.
static bool
EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout,
                    const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,
                    const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B,
                    int64_t RHS_Cst, MCValue &Res) {
  // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
  // about dealing with modifiers. This will ultimately bite us, one day.
  const MCSymbolRefExpr *LHS_A = LHS.getSymA();
  const MCSymbolRefExpr *LHS_B = LHS.getSymB();
  int64_t LHS_Cst = LHS.getConstant();

  // Fold the result constant immediately.
  int64_t Result_Cst = LHS_Cst + RHS_Cst;

  assert((!Layout || Asm) &&
         "Must have an assembler object if layout is given!");

  // If we have a layout, we can fold resolved differences. Do not do this if
  // the backend requires this to be emitted as individual relocations, unless
  // the InSet flag is set to get the current difference anyway (used for
  // example to calculate symbol sizes).
  if (Asm && canFold(Asm, LHS_A, LHS_B, InSet)) {
    // First, fold out any differences which are fully resolved. By
    // reassociating terms in
    //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
    // we have the four possible differences:
    //   (LHS_A - LHS_B),
    //   (LHS_A - RHS_B),
    //   (RHS_A - LHS_B),
    //   (RHS_A - RHS_B).
    // Since we are attempting to be as aggressive as possible about folding, we
    // attempt to evaluate each possible alternative.
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
                                        Result_Cst);
  }

  // We can't represent the addition or subtraction of two symbols.
  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
    return false;

  // At this point, we have at most one additive symbol and one subtractive
  // symbol -- find them.
  const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
  const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;

  Res = MCValue::get(A, B, Result_Cst);
  return true;
}

bool MCExpr::evaluateAsRelocatable(MCValue &Res,
                                   const MCAsmLayout *Layout,
                                   const MCFixup *Fixup) const {
  MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
  return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
                                   false);
}

bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
  MCAssembler *Assembler = &Layout.getAssembler();
  return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
                                   true);
}

static bool canExpand(const MCSymbol &Sym, bool InSet) {
  const MCExpr *Expr = Sym.getVariableValue();
  const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
  if (Inner) {
    if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
      return false;
  }

  if (InSet)
    return true;
  return !Sym.isInSection();
}

bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
                                       const MCAsmLayout *Layout,
                                       const MCFixup *Fixup,
                                       const SectionAddrMap *Addrs,
                                       bool InSet) const {
  ++stats::MCExprEvaluate;

  switch (getKind()) {
  case Target:
    return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
                                                               Fixup);

  case Constant:
    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
    return true;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();

    // Evaluate recursively if this is a variable.
    if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None &&
        canExpand(Sym, InSet)) {
      bool IsMachO = SRE->hasSubsectionsViaSymbols();
      if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
              Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
        if (!IsMachO)
          return true;

        const MCSymbolRefExpr *A = Res.getSymA();
        const MCSymbolRefExpr *B = Res.getSymB();
        // FIXME: This is small hack. Given
        // a = b + 4
        // .long a
        // the OS X assembler will completely drop the 4. We should probably
        // include it in the relocation or produce an error if that is not
        // possible.
        // Allow constant expressions.
        if (!A && !B)
          return true;
        // Allows aliases with zero offset.
        if (Res.getConstant() == 0 && (!A || !B))
          return true;
      }
    }

    Res = MCValue::get(SRE, nullptr, 0);
    return true;
  }

  case Unary: {
    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
    MCValue Value;

    if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
                                                      Addrs, InSet))
      return false;

    switch (AUE->getOpcode()) {
    case MCUnaryExpr::LNot:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(!Value.getConstant());
      break;
    case MCUnaryExpr::Minus:
      /// -(a - b + const) ==> (b - a - const)
      if (Value.getSymA() && !Value.getSymB())
        return false;

      // The cast avoids undefined behavior if the constant is INT64_MIN.
      Res = MCValue::get(Value.getSymB(), Value.getSymA(),
                         -(uint64_t)Value.getConstant());
      break;
    case MCUnaryExpr::Not:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(~Value.getConstant());
      break;
    case MCUnaryExpr::Plus:
      Res = Value;
      break;
    }

    return true;
  }

  case Binary: {
    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
    MCValue LHSValue, RHSValue;

    if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
                                                  Addrs, InSet) ||
        !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
                                                  Addrs, InSet)) {
      // Check if both are Target Expressions, see if we can compare them.
      if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS()))
        if (const MCTargetExpr *R = cast<MCTargetExpr>(ABE->getRHS())) {
          switch (ABE->getOpcode()) {
          case MCBinaryExpr::EQ:
            Res = MCValue::get((L->isEqualTo(R)) ? -1 : 0);
            return true;
          case MCBinaryExpr::NE:
            Res = MCValue::get((R->isEqualTo(R)) ? 0 : -1);
            return true;
          default: break;
          }
        }
      return false;
    }

    // We only support a few operations on non-constant expressions, handle
    // those first.
    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
      switch (ABE->getOpcode()) {
      default:
        return false;
      case MCBinaryExpr::Sub:
        // Negate RHS and add.
        // The cast avoids undefined behavior if the constant is INT64_MIN.
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymB(), RHSValue.getSymA(),
                                   -(uint64_t)RHSValue.getConstant(), Res);

      case MCBinaryExpr::Add:
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymA(), RHSValue.getSymB(),
                                   RHSValue.getConstant(), Res);
      }
    }

    // FIXME: We need target hooks for the evaluation. It may be limited in
    // width, and gas defines the result of comparisons differently from
    // Apple as.
    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
    int64_t Result = 0;
    auto Op = ABE->getOpcode();
    switch (Op) {
    case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
    case MCBinaryExpr::And:  Result = LHS & RHS; break;
    case MCBinaryExpr::Div:
    case MCBinaryExpr::Mod:
      // Handle division by zero. gas just emits a warning and keeps going,
      // we try to be stricter.
      // FIXME: Currently the caller of this function has no way to understand
      // we're bailing out because of 'division by zero'. Therefore, it will
      // emit a 'expected relocatable expression' error. It would be nice to
      // change this code to emit a better diagnostic.
      if (RHS == 0)
        return false;
      if (ABE->getOpcode() == MCBinaryExpr::Div)
        Result = LHS / RHS;
      else
        Result = LHS % RHS;
      break;
    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
    case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
    case MCBinaryExpr::Shl:  Result = uint64_t(LHS) << uint64_t(RHS); break;
    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
    }

    switch (Op) {
    default:
      Res = MCValue::get(Result);
      break;
    case MCBinaryExpr::EQ:
    case MCBinaryExpr::GT:
    case MCBinaryExpr::GTE:
    case MCBinaryExpr::LT:
    case MCBinaryExpr::LTE:
    case MCBinaryExpr::NE:
      // A comparison operator returns a -1 if true and 0 if false.
      Res = MCValue::get(Result ? -1 : 0);
      break;
    }

    return true;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}

MCFragment *MCExpr::findAssociatedFragment() const {
  switch (getKind()) {
  case Target:
    // We never look through target specific expressions.
    return cast<MCTargetExpr>(this)->findAssociatedFragment();

  case Constant:
    return MCSymbol::AbsolutePseudoFragment;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();
    return Sym.getFragment();
  }

  case Unary:
    return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();

  case Binary: {
    const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
    MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
    MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();

    // If either is absolute, return the other.
    if (LHS_F == MCSymbol::AbsolutePseudoFragment)
      return RHS_F;
    if (RHS_F == MCSymbol::AbsolutePseudoFragment)
      return LHS_F;

    // Not always correct, but probably the best we can do without more context.
    if (BE->getOpcode() == MCBinaryExpr::Sub)
      return MCSymbol::AbsolutePseudoFragment;

    // Otherwise, return the first non-null fragment.
    return LHS_F ? LHS_F : RHS_F;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}