reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
//===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZSelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//

#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"

using namespace llvm;

#define DEBUG_TYPE "systemz-selectiondag-info"

// Decide whether it is best to use a loop or straight-line code for
// a block operation of Size bytes with source address Src and destination
// address Dest.  Sequence is the opcode to use for straight-line code
// (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
// Return the chain for the completed operation.
static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence,
                          unsigned Loop, SDValue Chain, SDValue Dst,
                          SDValue Src, uint64_t Size) {
  EVT PtrVT = Src.getValueType();
  // The heuristic we use is to prefer loops for anything that would
  // require 7 or more MVCs.  With these kinds of sizes there isn't
  // much to choose between straight-line code and looping code,
  // since the time will be dominated by the MVCs themselves.
  // However, the loop has 4 or 5 instructions (depending on whether
  // the base addresses can be proved equal), so there doesn't seem
  // much point using a loop for 5 * 256 bytes or fewer.  Anything in
  // the range (5 * 256, 6 * 256) will need another instruction after
  // the loop, so it doesn't seem worth using a loop then either.
  // The next value up, 6 * 256, can be implemented in the same
  // number of straight-line MVCs as 6 * 256 - 1.
  if (Size > 6 * 256)
    return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
                       DAG.getConstant(Size, DL, PtrVT),
                       DAG.getConstant(Size / 256, DL, PtrVT));
  return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
                     DAG.getConstant(Size, DL, PtrVT));
}

SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src,
    SDValue Size, unsigned Align, bool IsVolatile, bool AlwaysInline,
    MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
  if (IsVolatile)
    return SDValue();

  if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
    return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
                      Chain, Dst, Src, CSize->getZExtValue());
  return SDValue();
}

// Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
// Chain, Dst, ByteVal and Size.  These cases are expected to use
// MVI, MVHHI, MVHI and MVGHI respectively.
static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
                           SDValue Dst, uint64_t ByteVal, uint64_t Size,
                           unsigned Align, MachinePointerInfo DstPtrInfo) {
  uint64_t StoreVal = ByteVal;
  for (unsigned I = 1; I < Size; ++I)
    StoreVal |= ByteVal << (I * 8);
  return DAG.getStore(
      Chain, DL, DAG.getConstant(StoreVal, DL, MVT::getIntegerVT(Size * 8)),
      Dst, DstPtrInfo, Align);
}

SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst,
    SDValue Byte, SDValue Size, unsigned Align, bool IsVolatile,
    MachinePointerInfo DstPtrInfo) const {
  EVT PtrVT = Dst.getValueType();

  if (IsVolatile)
    return SDValue();

  if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
    uint64_t Bytes = CSize->getZExtValue();
    if (Bytes == 0)
      return SDValue();
    if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
      // Handle cases that can be done using at most two of
      // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
      // used if ByteVal is all zeros or all ones; in other casees,
      // we can move at most 2 halfwords.
      uint64_t ByteVal = CByte->getZExtValue();
      if (ByteVal == 0 || ByteVal == 255 ?
          Bytes <= 16 && countPopulation(Bytes) <= 2 :
          Bytes <= 4) {
        unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
        unsigned Size2 = Bytes - Size1;
        SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
                                     Align, DstPtrInfo);
        if (Size2 == 0)
          return Chain1;
        Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
                          DAG.getConstant(Size1, DL, PtrVT));
        DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
        SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
                                     std::min(Align, Size1), DstPtrInfo);
        return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
      }
    } else {
      // Handle one and two bytes using STC.
      if (Bytes <= 2) {
        SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Align);
        if (Bytes == 1)
          return Chain1;
        SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
                                   DAG.getConstant(1, DL, PtrVT));
        SDValue Chain2 =
            DAG.getStore(Chain, DL, Byte, Dst2, DstPtrInfo.getWithOffset(1),
                         /* Alignment = */ 1);
        return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
      }
    }
    assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");

    // Handle the special case of a memset of 0, which can use XC.
    auto *CByte = dyn_cast<ConstantSDNode>(Byte);
    if (CByte && CByte->getZExtValue() == 0)
      return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
                        Chain, Dst, Dst, Bytes);

    // Copy the byte to the first location and then use MVC to copy
    // it to the rest.
    Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Align);
    SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
                                   DAG.getConstant(1, DL, PtrVT));
    return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
                      Chain, DstPlus1, Dst, Bytes - 1);
  }
  return SDValue();
}

// Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
// deciding whether to use a loop or straight-line code.
static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
                       SDValue Src1, SDValue Src2, uint64_t Size) {
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  EVT PtrVT = Src1.getValueType();
  // A two-CLC sequence is a clear win over a loop, not least because it
  // needs only one branch.  A three-CLC sequence needs the same number
  // of branches as a loop (i.e. 2), but is shorter.  That brings us to
  // lengths greater than 768 bytes.  It seems relatively likely that
  // a difference will be found within the first 768 bytes, so we just
  // optimize for the smallest number of branch instructions, in order
  // to avoid polluting the prediction buffer too much.  A loop only ever
  // needs 2 branches, whereas a straight-line sequence would need 3 or more.
  if (Size > 3 * 256)
    return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
                       DAG.getConstant(Size, DL, PtrVT),
                       DAG.getConstant(Size / 256, DL, PtrVT));
  return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
                     DAG.getConstant(Size, DL, PtrVT));
}

// Convert the current CC value into an integer that is 0 if CC == 0,
// greater than zero if CC == 1 and less than zero if CC >= 2.
// The sequence starts with IPM, which puts CC into bits 29 and 28
// of an integer and clears bits 30 and 31.
static SDValue addIPMSequence(const SDLoc &DL, SDValue CCReg,
                              SelectionDAG &DAG) {
  SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
  SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, IPM,
                            DAG.getConstant(30 - SystemZ::IPM_CC, DL, MVT::i32));
  SDValue SRA = DAG.getNode(ISD::SRA, DL, MVT::i32, SHL,
                            DAG.getConstant(30, DL, MVT::i32));
  return SRA;
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
    SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo,
    MachinePointerInfo Op2PtrInfo) const {
  if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
    uint64_t Bytes = CSize->getZExtValue();
    assert(Bytes > 0 && "Caller should have handled 0-size case");
    // Swap operands to invert CC == 1 vs. CC == 2 cases.
    SDValue CCReg = emitCLC(DAG, DL, Chain, Src2, Src1, Bytes);
    Chain = CCReg.getValue(1);
    return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain);
  }
  return std::make_pair(SDValue(), SDValue());
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const {
  // Use SRST to find the character.  End is its address on success.
  EVT PtrVT = Src.getValueType();
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other);
  Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
  Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
  Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
                     DAG.getConstant(255, DL, MVT::i32));
  SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
  SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
                            Limit, Src, Char);
  SDValue CCReg = End.getValue(1);
  Chain = End.getValue(2);

  // Now select between End and null, depending on whether the character
  // was found.
  SDValue Ops[] = {
      End, DAG.getConstant(0, DL, PtrVT),
      DAG.getTargetConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
      DAG.getTargetConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32), CCReg};
  End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, PtrVT, Ops);
  return std::make_pair(End, Chain);
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest,
    SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo,
    bool isStpcpy) const {
  SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
  SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
                                DAG.getConstant(0, DL, MVT::i32));
  return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
    SDValue Src2, MachinePointerInfo Op1PtrInfo,
    MachinePointerInfo Op2PtrInfo) const {
  SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::i32, MVT::Other);
  // Swap operands to invert CC == 1 vs. CC == 2 cases.
  SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src2, Src1,
                               DAG.getConstant(0, DL, MVT::i32));
  SDValue CCReg = Unused.getValue(1);
  Chain = Unused.getValue(2);
  return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain);
}

// Search from Src for a null character, stopping once Src reaches Limit.
// Return a pair of values, the first being the number of nonnull characters
// and the second being the out chain.
//
// This can be used for strlen by setting Limit to 0.
static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG,
                                                    const SDLoc &DL,
                                                    SDValue Chain, SDValue Src,
                                                    SDValue Limit) {
  EVT PtrVT = Src.getValueType();
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other);
  SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
                            Limit, Src, DAG.getConstant(0, DL, MVT::i32));
  Chain = End.getValue(2);
  SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
  return std::make_pair(Len, Chain);
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    MachinePointerInfo SrcPtrInfo) const {
  EVT PtrVT = Src.getValueType();
  return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
}

std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
    SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const {
  EVT PtrVT = Src.getValueType();
  MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
  SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
  return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
}