reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
//=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a pass that removes irreducible control flow.
/// Irreducible control flow means multiple-entry loops, which this pass
/// transforms to have a single entry.
///
/// Note that LLVM has a generic pass that lowers irreducible control flow, but
/// it linearizes control flow, turning diamonds into two triangles, which is
/// both unnecessary and undesirable for WebAssembly.
///
/// The big picture: We recursively process each "region", defined as a group
/// of blocks with a single entry and no branches back to that entry. A region
/// may be the entire function body, or the inner part of a loop, i.e., the
/// loop's body without branches back to the loop entry. In each region we fix
/// up multi-entry loops by adding a new block that can dispatch to each of the
/// loop entries, based on the value of a label "helper" variable, and we
/// replace direct branches to the entries with assignments to the label
/// variable and a branch to the dispatch block. Then the dispatch block is the
/// single entry in the loop containing the previous multiple entries. After
/// ensuring all the loops in a region are reducible, we recurse into them. The
/// total time complexity of this pass is:
///
///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
///     NumLoops * NumLoops)
///
/// This pass is similar to what the Relooper [1] does. Both identify looping
/// code that requires multiple entries, and resolve it in a similar way (in
/// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
/// also that like the Relooper, we implement a "minimal" intervention: we only
/// use the "label" helper for the blocks we absolutely must and no others. We
/// also prioritize code size and do not duplicate code in order to resolve
/// irreducibility. The graph algorithms for finding loops and entries and so
/// forth are also similar to the Relooper. The main differences between this
/// pass and the Relooper are:
///
///  * We just care about irreducibility, so we just look at loops.
///  * The Relooper emits structured control flow (with ifs etc.), while we
///    emit a CFG.
///
/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
/// Proceedings of the ACM international conference companion on Object oriented
/// programming systems languages and applications companion (SPLASH '11). ACM,
/// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
/// http://doi.acm.org/10.1145/2048147.2048224
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssembly.h"
#include "WebAssemblySubtarget.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-fix-irreducible-control-flow"

namespace {

using BlockVector = SmallVector<MachineBasicBlock *, 4>;
using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;

// Calculates reachability in a region. Ignores branches to blocks outside of
// the region, and ignores branches to the region entry (for the case where
// the region is the inner part of a loop).
class ReachabilityGraph {
public:
  ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
      : Entry(Entry), Blocks(Blocks) {
#ifndef NDEBUG
    // The region must have a single entry.
    for (auto *MBB : Blocks) {
      if (MBB != Entry) {
        for (auto *Pred : MBB->predecessors()) {
          assert(inRegion(Pred));
        }
      }
    }
#endif
    calculate();
  }

  bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
    assert(inRegion(From) && inRegion(To));
    auto I = Reachable.find(From);
    if (I == Reachable.end())
      return false;
    return I->second.count(To);
  }

  // "Loopers" are blocks that are in a loop. We detect these by finding blocks
  // that can reach themselves.
  const BlockSet &getLoopers() const { return Loopers; }

  // Get all blocks that are loop entries.
  const BlockSet &getLoopEntries() const { return LoopEntries; }

  // Get all blocks that enter a particular loop from outside.
  const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
    assert(inRegion(LoopEntry));
    auto I = LoopEnterers.find(LoopEntry);
    assert(I != LoopEnterers.end());
    return I->second;
  }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Blocks;

  BlockSet Loopers, LoopEntries;
  DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;

  bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }

  // Maps a block to all the other blocks it can reach.
  DenseMap<MachineBasicBlock *, BlockSet> Reachable;

  void calculate() {
    // Reachability computation work list. Contains pairs of recent additions
    // (A, B) where we just added a link A => B.
    using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
    SmallVector<BlockPair, 4> WorkList;

    // Add all relevant direct branches.
    for (auto *MBB : Blocks) {
      for (auto *Succ : MBB->successors()) {
        if (Succ != Entry && inRegion(Succ)) {
          Reachable[MBB].insert(Succ);
          WorkList.emplace_back(MBB, Succ);
        }
      }
    }

    while (!WorkList.empty()) {
      MachineBasicBlock *MBB, *Succ;
      std::tie(MBB, Succ) = WorkList.pop_back_val();
      assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
      if (MBB != Entry) {
        // We recently added MBB => Succ, and that means we may have enabled
        // Pred => MBB => Succ.
        for (auto *Pred : MBB->predecessors()) {
          if (Reachable[Pred].insert(Succ).second) {
            WorkList.emplace_back(Pred, Succ);
          }
        }
      }
    }

    // Blocks that can return to themselves are in a loop.
    for (auto *MBB : Blocks) {
      if (canReach(MBB, MBB)) {
        Loopers.insert(MBB);
      }
    }
    assert(!Loopers.count(Entry));

    // Find the loop entries - loopers reachable from blocks not in that loop -
    // and those outside blocks that reach them, the "loop enterers".
    for (auto *Looper : Loopers) {
      for (auto *Pred : Looper->predecessors()) {
        // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
        // otherwise, it is a block that enters into the loop.
        if (!canReach(Looper, Pred)) {
          LoopEntries.insert(Looper);
          LoopEnterers[Looper].insert(Pred);
        }
      }
    }
  }
};

// Finds the blocks in a single-entry loop, given the loop entry and the
// list of blocks that enter the loop.
class LoopBlocks {
public:
  LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
      : Entry(Entry), Enterers(Enterers) {
    calculate();
  }

  BlockSet &getBlocks() { return Blocks; }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Enterers;

  BlockSet Blocks;

  void calculate() {
    // Going backwards from the loop entry, if we ignore the blocks entering
    // from outside, we will traverse all the blocks in the loop.
    BlockVector WorkList;
    BlockSet AddedToWorkList;
    Blocks.insert(Entry);
    for (auto *Pred : Entry->predecessors()) {
      if (!Enterers.count(Pred)) {
        WorkList.push_back(Pred);
        AddedToWorkList.insert(Pred);
      }
    }

    while (!WorkList.empty()) {
      auto *MBB = WorkList.pop_back_val();
      assert(!Enterers.count(MBB));
      if (Blocks.insert(MBB).second) {
        for (auto *Pred : MBB->predecessors()) {
          if (!AddedToWorkList.count(Pred)) {
            WorkList.push_back(Pred);
            AddedToWorkList.insert(Pred);
          }
        }
      }
    }
  }
};

class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
  StringRef getPassName() const override {
    return "WebAssembly Fix Irreducible Control Flow";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
                     MachineFunction &MF);

  void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
                           MachineFunction &MF, const ReachabilityGraph &Graph);

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
};

bool WebAssemblyFixIrreducibleControlFlow::processRegion(
    MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
  bool Changed = false;

  // Remove irreducibility before processing child loops, which may take
  // multiple iterations.
  while (true) {
    ReachabilityGraph Graph(Entry, Blocks);

    bool FoundIrreducibility = false;

    for (auto *LoopEntry : Graph.getLoopEntries()) {
      // Find mutual entries - all entries which can reach this one, and
      // are reached by it (that always includes LoopEntry itself). All mutual
      // entries must be in the same loop, so if we have more than one, then we
      // have irreducible control flow.
      //
      // Note that irreducibility may involve inner loops, e.g. imagine A
      // starts one loop, and it has B inside it which starts an inner loop.
      // If we add a branch from all the way on the outside to B, then in a
      // sense B is no longer an "inner" loop, semantically speaking. We will
      // fix that irreducibility by adding a block that dispatches to either
      // either A or B, so B will no longer be an inner loop in our output.
      // (A fancier approach might try to keep it as such.)
      //
      // Note that we still need to recurse into inner loops later, to handle
      // the case where the irreducibility is entirely nested - we would not
      // be able to identify that at this point, since the enclosing loop is
      // a group of blocks all of whom can reach each other. (We'll see the
      // irreducibility after removing branches to the top of that enclosing
      // loop.)
      BlockSet MutualLoopEntries;
      MutualLoopEntries.insert(LoopEntry);
      for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
        if (OtherLoopEntry != LoopEntry &&
            Graph.canReach(LoopEntry, OtherLoopEntry) &&
            Graph.canReach(OtherLoopEntry, LoopEntry)) {
          MutualLoopEntries.insert(OtherLoopEntry);
        }
      }

      if (MutualLoopEntries.size() > 1) {
        makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
        FoundIrreducibility = true;
        Changed = true;
        break;
      }
    }
    // Only go on to actually process the inner loops when we are done
    // removing irreducible control flow and changing the graph. Modifying
    // the graph as we go is possible, and that might let us avoid looking at
    // the already-fixed loops again if we are careful, but all that is
    // complex and bug-prone. Since irreducible loops are rare, just starting
    // another iteration is best.
    if (FoundIrreducibility) {
      continue;
    }

    for (auto *LoopEntry : Graph.getLoopEntries()) {
      LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
      // Each of these calls to processRegion may change the graph, but are
      // guaranteed not to interfere with each other. The only changes we make
      // to the graph are to add blocks on the way to a loop entry. As the
      // loops are disjoint, that means we may only alter branches that exit
      // another loop, which are ignored when recursing into that other loop
      // anyhow.
      if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
        Changed = true;
      }
    }

    return Changed;
  }
}

// Given a set of entries to a single loop, create a single entry for that
// loop by creating a dispatch block for them, routing control flow using
// a helper variable. Also updates Blocks with any new blocks created, so
// that we properly track all the blocks in the region. But this does not update
// ReachabilityGraph; this will be updated in the caller of this function as
// needed.
void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
    BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
    const ReachabilityGraph &Graph) {
  assert(Entries.size() >= 2);

  // Sort the entries to ensure a deterministic build.
  BlockVector SortedEntries(Entries.begin(), Entries.end());
  llvm::sort(SortedEntries,
             [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
               auto ANum = A->getNumber();
               auto BNum = B->getNumber();
               return ANum < BNum;
             });

#ifndef NDEBUG
  for (auto Block : SortedEntries)
    assert(Block->getNumber() != -1);
  if (SortedEntries.size() > 1) {
    for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
         ++I) {
      auto ANum = (*I)->getNumber();
      auto BNum = (*(std::next(I)))->getNumber();
      assert(ANum != BNum);
    }
  }
#endif

  // Create a dispatch block which will contain a jump table to the entries.
  MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
  MF.insert(MF.end(), Dispatch);
  Blocks.insert(Dispatch);

  // Add the jump table.
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  MachineInstrBuilder MIB =
      BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));

  // Add the register which will be used to tell the jump table which block to
  // jump to.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  MIB.addReg(Reg);

  // Compute the indices in the superheader, one for each bad block, and
  // add them as successors.
  DenseMap<MachineBasicBlock *, unsigned> Indices;
  for (auto *Entry : SortedEntries) {
    auto Pair = Indices.insert(std::make_pair(Entry, 0));
    assert(Pair.second);

    unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
    Pair.first->second = Index;

    MIB.addMBB(Entry);
    Dispatch->addSuccessor(Entry);
  }

  // Rewrite the problematic successors for every block that wants to reach
  // the bad blocks. For simplicity, we just introduce a new block for every
  // edge we need to rewrite. (Fancier things are possible.)

  BlockVector AllPreds;
  for (auto *Entry : SortedEntries) {
    for (auto *Pred : Entry->predecessors()) {
      if (Pred != Dispatch) {
        AllPreds.push_back(Pred);
      }
    }
  }

  // This set stores predecessors within this loop.
  DenseSet<MachineBasicBlock *> InLoop;
  for (auto *Pred : AllPreds) {
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry))
        continue;
      if (Graph.canReach(Entry, Pred)) {
        InLoop.insert(Pred);
        break;
      }
    }
  }

  // Record if each entry has a layout predecessor. This map stores
  // <<Predecessor is within the loop?, loop entry>, layout predecessor>
  std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *>
      EntryToLayoutPred;
  for (auto *Pred : AllPreds)
    for (auto *Entry : Pred->successors())
      if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
        EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred;

  // We need to create at most two routing blocks per entry: one for
  // predecessors outside the loop and one for predecessors inside the loop.
  // This map stores
  // <<Predecessor is within the loop?, loop entry>, routing block>
  std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map;
  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry) ||
          Map.count(std::make_pair(InLoop.count(Pred), Entry)))
        continue;
      // If there exists a layout predecessor of this entry and this predecessor
      // is not that, we rather create a routing block after that layout
      // predecessor to save a branch.
      if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) &&
          EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred)
        continue;

      // This is a successor we need to rewrite.
      MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
      MF.insert(Pred->isLayoutSuccessor(Entry)
                    ? MachineFunction::iterator(Entry)
                    : MF.end(),
                Routing);
      Blocks.insert(Routing);

      // Set the jump table's register of the index of the block we wish to
      // jump to, and jump to the jump table.
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
          .addImm(Indices[Entry]);
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
      Routing->addSuccessor(Dispatch);
      Map[std::make_pair(PredInLoop, Entry)] = Routing;
    }
  }

  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    // Remap the terminator operands and the successor list.
    for (MachineInstr &Term : Pred->terminators())
      for (auto &Op : Term.explicit_uses())
        if (Op.isMBB() && Indices.count(Op.getMBB()))
          Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]);

    for (auto *Succ : Pred->successors()) {
      if (!Entries.count(Succ))
        continue;
      auto *Routing = Map[std::make_pair(PredInLoop, Succ)];
      Pred->replaceSuccessor(Succ, Routing);
    }
  }

  // Create a fake default label, because br_table requires one.
  MIB.addMBB(MIB.getInstr()
                 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
                 .getMBB());
}

} // end anonymous namespace

char WebAssemblyFixIrreducibleControlFlow::ID = 0;
INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
                "Removes irreducible control flow", false, false)

FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
  return new WebAssemblyFixIrreducibleControlFlow();
}

bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');

  // Start the recursive process on the entire function body.
  BlockSet AllBlocks;
  for (auto &MBB : MF) {
    AllBlocks.insert(&MBB);
  }

  if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
    // We rewrote part of the function; recompute relevant things.
    MF.getRegInfo().invalidateLiveness();
    MF.RenumberBlocks();
    return true;
  }

  return false;
}