reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that performs some optimizations with LEA
// instructions in order to improve performance and code size.
// Currently, it does two things:
// 1) If there are two LEA instructions calculating addresses which only differ
//    by displacement inside a basic block, one of them is removed.
// 2) Address calculations in load and store instructions are replaced by
//    existing LEA def registers where possible.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "x86-optimize-LEAs"

static cl::opt<bool>
    DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
                     cl::desc("X86: Disable LEA optimizations."),
                     cl::init(false));

STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");

/// Returns true if two machine operands are identical and they are not
/// physical registers.
static inline bool isIdenticalOp(const MachineOperand &MO1,
                                 const MachineOperand &MO2);

/// Returns true if two address displacement operands are of the same
/// type and use the same symbol/index/address regardless of the offset.
static bool isSimilarDispOp(const MachineOperand &MO1,
                            const MachineOperand &MO2);

/// Returns true if the instruction is LEA.
static inline bool isLEA(const MachineInstr &MI);

namespace {

/// A key based on instruction's memory operands.
class MemOpKey {
public:
  MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
           const MachineOperand *Index, const MachineOperand *Segment,
           const MachineOperand *Disp)
      : Disp(Disp) {
    Operands[0] = Base;
    Operands[1] = Scale;
    Operands[2] = Index;
    Operands[3] = Segment;
  }

  bool operator==(const MemOpKey &Other) const {
    // Addresses' bases, scales, indices and segments must be identical.
    for (int i = 0; i < 4; ++i)
      if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
        return false;

    // Addresses' displacements don't have to be exactly the same. It only
    // matters that they use the same symbol/index/address. Immediates' or
    // offsets' differences will be taken care of during instruction
    // substitution.
    return isSimilarDispOp(*Disp, *Other.Disp);
  }

  // Address' base, scale, index and segment operands.
  const MachineOperand *Operands[4];

  // Address' displacement operand.
  const MachineOperand *Disp;
};

} // end anonymous namespace

/// Provide DenseMapInfo for MemOpKey.
namespace llvm {

template <> struct DenseMapInfo<MemOpKey> {
  using PtrInfo = DenseMapInfo<const MachineOperand *>;

  static inline MemOpKey getEmptyKey() {
    return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
                    PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
                    PtrInfo::getEmptyKey());
  }

  static inline MemOpKey getTombstoneKey() {
    return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
                    PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
                    PtrInfo::getTombstoneKey());
  }

  static unsigned getHashValue(const MemOpKey &Val) {
    // Checking any field of MemOpKey is enough to determine if the key is
    // empty or tombstone.
    assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
    assert(Val.Disp != PtrInfo::getTombstoneKey() &&
           "Cannot hash the tombstone key");

    hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
                                  *Val.Operands[2], *Val.Operands[3]);

    // If the address displacement is an immediate, it should not affect the
    // hash so that memory operands which differ only be immediate displacement
    // would have the same hash. If the address displacement is something else,
    // we should reflect symbol/index/address in the hash.
    switch (Val.Disp->getType()) {
    case MachineOperand::MO_Immediate:
      break;
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      Hash = hash_combine(Hash, Val.Disp->getIndex());
      break;
    case MachineOperand::MO_ExternalSymbol:
      Hash = hash_combine(Hash, Val.Disp->getSymbolName());
      break;
    case MachineOperand::MO_GlobalAddress:
      Hash = hash_combine(Hash, Val.Disp->getGlobal());
      break;
    case MachineOperand::MO_BlockAddress:
      Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
      break;
    case MachineOperand::MO_MCSymbol:
      Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      Hash = hash_combine(Hash, Val.Disp->getMBB());
      break;
    default:
      llvm_unreachable("Invalid address displacement operand");
    }

    return (unsigned)Hash;
  }

  static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
    // Checking any field of MemOpKey is enough to determine if the key is
    // empty or tombstone.
    if (RHS.Disp == PtrInfo::getEmptyKey())
      return LHS.Disp == PtrInfo::getEmptyKey();
    if (RHS.Disp == PtrInfo::getTombstoneKey())
      return LHS.Disp == PtrInfo::getTombstoneKey();
    return LHS == RHS;
  }
};

} // end namespace llvm

/// Returns a hash table key based on memory operands of \p MI. The
/// number of the first memory operand of \p MI is specified through \p N.
static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
  assert((isLEA(MI) || MI.mayLoadOrStore()) &&
         "The instruction must be a LEA, a load or a store");
  return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
                  &MI.getOperand(N + X86::AddrScaleAmt),
                  &MI.getOperand(N + X86::AddrIndexReg),
                  &MI.getOperand(N + X86::AddrSegmentReg),
                  &MI.getOperand(N + X86::AddrDisp));
}

static inline bool isIdenticalOp(const MachineOperand &MO1,
                                 const MachineOperand &MO2) {
  return MO1.isIdenticalTo(MO2) &&
         (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
}

#ifndef NDEBUG
static bool isValidDispOp(const MachineOperand &MO) {
  return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
         MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
}
#endif

static bool isSimilarDispOp(const MachineOperand &MO1,
                            const MachineOperand &MO2) {
  assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
         "Address displacement operand is not valid");
  return (MO1.isImm() && MO2.isImm()) ||
         (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
         (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
         (MO1.isSymbol() && MO2.isSymbol() &&
          MO1.getSymbolName() == MO2.getSymbolName()) ||
         (MO1.isGlobal() && MO2.isGlobal() &&
          MO1.getGlobal() == MO2.getGlobal()) ||
         (MO1.isBlockAddress() && MO2.isBlockAddress() &&
          MO1.getBlockAddress() == MO2.getBlockAddress()) ||
         (MO1.isMCSymbol() && MO2.isMCSymbol() &&
          MO1.getMCSymbol() == MO2.getMCSymbol()) ||
         (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
}

static inline bool isLEA(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
         Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}

namespace {

class X86OptimizeLEAPass : public MachineFunctionPass {
public:
  X86OptimizeLEAPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "X86 LEA Optimize"; }

  /// Loop over all of the basic blocks, replacing address
  /// calculations in load and store instructions, if it's already
  /// been calculated by LEA. Also, remove redundant LEAs.
  bool runOnMachineFunction(MachineFunction &MF) override;

  static char ID;

private:
  using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;

  /// Returns a distance between two instructions inside one basic block.
  /// Negative result means, that instructions occur in reverse order.
  int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);

  /// Choose the best \p LEA instruction from the \p List to replace
  /// address calculation in \p MI instruction. Return the address displacement
  /// and the distance between \p MI and the chosen \p BestLEA in
  /// \p AddrDispShift and \p Dist.
  bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
                     const MachineInstr &MI, MachineInstr *&BestLEA,
                     int64_t &AddrDispShift, int &Dist);

  /// Returns the difference between addresses' displacements of \p MI1
  /// and \p MI2. The numbers of the first memory operands for the instructions
  /// are specified through \p N1 and \p N2.
  int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
                           const MachineInstr &MI2, unsigned N2) const;

  /// Returns true if the \p Last LEA instruction can be replaced by the
  /// \p First. The difference between displacements of the addresses calculated
  /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
  /// replacement of the \p Last LEA's uses with the \p First's def register.
  bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
                     int64_t &AddrDispShift) const;

  /// Find all LEA instructions in the basic block. Also, assign position
  /// numbers to all instructions in the basic block to speed up calculation of
  /// distance between them.
  void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);

  /// Removes redundant address calculations.
  bool removeRedundantAddrCalc(MemOpMap &LEAs);

  /// Replace debug value MI with a new debug value instruction using register
  /// VReg with an appropriate offset and DIExpression to incorporate the
  /// address displacement AddrDispShift. Return new debug value instruction.
  MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
                                  int64_t AddrDispShift);

  /// Removes LEAs which calculate similar addresses.
  bool removeRedundantLEAs(MemOpMap &LEAs);

  DenseMap<const MachineInstr *, unsigned> InstrPos;

  MachineRegisterInfo *MRI;
  const X86InstrInfo *TII;
  const X86RegisterInfo *TRI;
};

} // end anonymous namespace

char X86OptimizeLEAPass::ID = 0;

FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
                false)

int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
                                      const MachineInstr &Last) {
  // Both instructions must be in the same basic block and they must be
  // presented in InstrPos.
  assert(Last.getParent() == First.getParent() &&
         "Instructions are in different basic blocks");
  assert(InstrPos.find(&First) != InstrPos.end() &&
         InstrPos.find(&Last) != InstrPos.end() &&
         "Instructions' positions are undefined");

  return InstrPos[&Last] - InstrPos[&First];
}

// Find the best LEA instruction in the List to replace address recalculation in
// MI. Such LEA must meet these requirements:
// 1) The address calculated by the LEA differs only by the displacement from
//    the address used in MI.
// 2) The register class of the definition of the LEA is compatible with the
//    register class of the address base register of MI.
// 3) Displacement of the new memory operand should fit in 1 byte if possible.
// 4) The LEA should be as close to MI as possible, and prior to it if
//    possible.
bool X86OptimizeLEAPass::chooseBestLEA(
    const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
    MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
  const MachineFunction *MF = MI.getParent()->getParent();
  const MCInstrDesc &Desc = MI.getDesc();
  int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
                X86II::getOperandBias(Desc);

  BestLEA = nullptr;

  // Loop over all LEA instructions.
  for (auto DefMI : List) {
    // Get new address displacement.
    int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);

    // Make sure address displacement fits 4 bytes.
    if (!isInt<32>(AddrDispShiftTemp))
      continue;

    // Check that LEA def register can be used as MI address base. Some
    // instructions can use a limited set of registers as address base, for
    // example MOV8mr_NOREX. We could constrain the register class of the LEA
    // def to suit MI, however since this case is very rare and hard to
    // reproduce in a test it's just more reliable to skip the LEA.
    if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
        MRI->getRegClass(DefMI->getOperand(0).getReg()))
      continue;

    // Choose the closest LEA instruction from the list, prior to MI if
    // possible. Note that we took into account resulting address displacement
    // as well. Also note that the list is sorted by the order in which the LEAs
    // occur, so the break condition is pretty simple.
    int DistTemp = calcInstrDist(*DefMI, MI);
    assert(DistTemp != 0 &&
           "The distance between two different instructions cannot be zero");
    if (DistTemp > 0 || BestLEA == nullptr) {
      // Do not update return LEA, if the current one provides a displacement
      // which fits in 1 byte, while the new candidate does not.
      if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
          isInt<8>(AddrDispShift))
        continue;

      BestLEA = DefMI;
      AddrDispShift = AddrDispShiftTemp;
      Dist = DistTemp;
    }

    // FIXME: Maybe we should not always stop at the first LEA after MI.
    if (DistTemp < 0)
      break;
  }

  return BestLEA != nullptr;
}

// Get the difference between the addresses' displacements of the two
// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
// passed through \p N1 and \p N2.
int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
                                             unsigned N1,
                                             const MachineInstr &MI2,
                                             unsigned N2) const {
  const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
  const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);

  assert(isSimilarDispOp(Op1, Op2) &&
         "Address displacement operands are not compatible");

  // After the assert above we can be sure that both operands are of the same
  // valid type and use the same symbol/index/address, thus displacement shift
  // calculation is rather simple.
  if (Op1.isJTI())
    return 0;
  return Op1.isImm() ? Op1.getImm() - Op2.getImm()
                     : Op1.getOffset() - Op2.getOffset();
}

// Check that the Last LEA can be replaced by the First LEA. To be so,
// these requirements must be met:
// 1) Addresses calculated by LEAs differ only by displacement.
// 2) Def registers of LEAs belong to the same class.
// 3) All uses of the Last LEA def register are replaceable, thus the
//    register is used only as address base.
bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
                                       const MachineInstr &Last,
                                       int64_t &AddrDispShift) const {
  assert(isLEA(First) && isLEA(Last) &&
         "The function works only with LEA instructions");

  // Make sure that LEA def registers belong to the same class. There may be
  // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
  // be used as their operands, so we must be sure that replacing one LEA
  // with another won't lead to putting a wrong register in the instruction.
  if (MRI->getRegClass(First.getOperand(0).getReg()) !=
      MRI->getRegClass(Last.getOperand(0).getReg()))
    return false;

  // Get new address displacement.
  AddrDispShift = getAddrDispShift(Last, 1, First, 1);

  // Loop over all uses of the Last LEA to check that its def register is
  // used only as address base for memory accesses. If so, it can be
  // replaced, otherwise - no.
  for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
    MachineInstr &MI = *MO.getParent();

    // Get the number of the first memory operand.
    const MCInstrDesc &Desc = MI.getDesc();
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);

    // If the use instruction has no memory operand - the LEA is not
    // replaceable.
    if (MemOpNo < 0)
      return false;

    MemOpNo += X86II::getOperandBias(Desc);

    // If the address base of the use instruction is not the LEA def register -
    // the LEA is not replaceable.
    if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
      return false;

    // If the LEA def register is used as any other operand of the use
    // instruction - the LEA is not replaceable.
    for (unsigned i = 0; i < MI.getNumOperands(); i++)
      if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
          isIdenticalOp(MI.getOperand(i), MO))
        return false;

    // Check that the new address displacement will fit 4 bytes.
    if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
        !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
                   AddrDispShift))
      return false;
  }

  return true;
}

void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
                                  MemOpMap &LEAs) {
  unsigned Pos = 0;
  for (auto &MI : MBB) {
    // Assign the position number to the instruction. Note that we are going to
    // move some instructions during the optimization however there will never
    // be a need to move two instructions before any selected instruction. So to
    // avoid multiple positions' updates during moves we just increase position
    // counter by two leaving a free space for instructions which will be moved.
    InstrPos[&MI] = Pos += 2;

    if (isLEA(MI))
      LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
  }
}

// Try to find load and store instructions which recalculate addresses already
// calculated by some LEA and replace their memory operands with its def
// register.
bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
  bool Changed = false;

  assert(!LEAs.empty());
  MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();

  // Process all instructions in basic block.
  for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr &MI = *I++;

    // Instruction must be load or store.
    if (!MI.mayLoadOrStore())
      continue;

    // Get the number of the first memory operand.
    const MCInstrDesc &Desc = MI.getDesc();
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);

    // If instruction has no memory operand - skip it.
    if (MemOpNo < 0)
      continue;

    MemOpNo += X86II::getOperandBias(Desc);

    // Do not call chooseBestLEA if there was no matching LEA
    auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
    if (Insns == LEAs.end())
      continue;

    // Get the best LEA instruction to replace address calculation.
    MachineInstr *DefMI;
    int64_t AddrDispShift;
    int Dist;
    if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
      continue;

    // If LEA occurs before current instruction, we can freely replace
    // the instruction. If LEA occurs after, we can lift LEA above the
    // instruction and this way to be able to replace it. Since LEA and the
    // instruction have similar memory operands (thus, the same def
    // instructions for these operands), we can always do that, without
    // worries of using registers before their defs.
    if (Dist < 0) {
      DefMI->removeFromParent();
      MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
      InstrPos[DefMI] = InstrPos[&MI] - 1;

      // Make sure the instructions' position numbers are sane.
      assert(((InstrPos[DefMI] == 1 &&
               MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
              InstrPos[DefMI] >
                  InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
             "Instruction positioning is broken");
    }

    // Since we can possibly extend register lifetime, clear kill flags.
    MRI->clearKillFlags(DefMI->getOperand(0).getReg());

    ++NumSubstLEAs;
    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););

    // Change instruction operands.
    MI.getOperand(MemOpNo + X86::AddrBaseReg)
        .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
    MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
    MI.getOperand(MemOpNo + X86::AddrIndexReg)
        .ChangeToRegister(X86::NoRegister, false);
    MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
    MI.getOperand(MemOpNo + X86::AddrSegmentReg)
        .ChangeToRegister(X86::NoRegister, false);

    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););

    Changed = true;
  }

  return Changed;
}

MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
                                                    unsigned VReg,
                                                    int64_t AddrDispShift) {
  DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
  if (AddrDispShift != 0)
    Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);

  // Replace DBG_VALUE instruction with modified version.
  MachineBasicBlock *MBB = MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  bool IsIndirect = MI.isIndirectDebugValue();
  const MDNode *Var = MI.getDebugVariable();
  if (IsIndirect)
    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
  return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
                 IsIndirect, VReg, Var, Expr);
}

// Try to find similar LEAs in the list and replace one with another.
bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
  bool Changed = false;

  // Loop over all entries in the table.
  for (auto &E : LEAs) {
    auto &List = E.second;

    // Loop over all LEA pairs.
    auto I1 = List.begin();
    while (I1 != List.end()) {
      MachineInstr &First = **I1;
      auto I2 = std::next(I1);
      while (I2 != List.end()) {
        MachineInstr &Last = **I2;
        int64_t AddrDispShift;

        // LEAs should be in occurrence order in the list, so we can freely
        // replace later LEAs with earlier ones.
        assert(calcInstrDist(First, Last) > 0 &&
               "LEAs must be in occurrence order in the list");

        // Check that the Last LEA instruction can be replaced by the First.
        if (!isReplaceable(First, Last, AddrDispShift)) {
          ++I2;
          continue;
        }

        // Loop over all uses of the Last LEA and update their operands. Note
        // that the correctness of this has already been checked in the
        // isReplaceable function.
        Register FirstVReg = First.getOperand(0).getReg();
        Register LastVReg = Last.getOperand(0).getReg();
        for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
             UI != UE;) {
          MachineOperand &MO = *UI++;
          MachineInstr &MI = *MO.getParent();

          if (MI.isDebugValue()) {
            // Replace DBG_VALUE instruction with modified version using the
            // register from the replacing LEA and the address displacement
            // between the LEA instructions.
            replaceDebugValue(MI, FirstVReg, AddrDispShift);
            continue;
          }

          // Get the number of the first memory operand.
          const MCInstrDesc &Desc = MI.getDesc();
          int MemOpNo =
              X86II::getMemoryOperandNo(Desc.TSFlags) +
              X86II::getOperandBias(Desc);

          // Update address base.
          MO.setReg(FirstVReg);

          // Update address disp.
          MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
          if (Op.isImm())
            Op.setImm(Op.getImm() + AddrDispShift);
          else if (!Op.isJTI())
            Op.setOffset(Op.getOffset() + AddrDispShift);
        }

        // Since we can possibly extend register lifetime, clear kill flags.
        MRI->clearKillFlags(FirstVReg);

        ++NumRedundantLEAs;
        LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
                   Last.dump(););

        // By this moment, all of the Last LEA's uses must be replaced. So we
        // can freely remove it.
        assert(MRI->use_empty(LastVReg) &&
               "The LEA's def register must have no uses");
        Last.eraseFromParent();

        // Erase removed LEA from the list.
        I2 = List.erase(I2);

        Changed = true;
      }
      ++I1;
    }
  }

  return Changed;
}

bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
    return false;

  MRI = &MF.getRegInfo();
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();

  // Process all basic blocks.
  for (auto &MBB : MF) {
    MemOpMap LEAs;
    InstrPos.clear();

    // Find all LEA instructions in basic block.
    findLEAs(MBB, LEAs);

    // If current basic block has no LEAs, move on to the next one.
    if (LEAs.empty())
      continue;

    // Remove redundant LEA instructions.
    Changed |= removeRedundantLEAs(LEAs);

    // Remove redundant address calculations. Do it only for -Os/-Oz since only
    // a code size gain is expected from this part of the pass.
    if (MF.getFunction().hasOptSize())
      Changed |= removeRedundantAddrCalc(LEAs);
  }

  return Changed;
}