reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
//====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Provide a pass which mitigates speculative execution attacks which operate
/// by speculating incorrectly past some predicate (a type check, bounds check,
/// or other condition) to reach a load with invalid inputs and leak the data
/// accessed by that load using a side channel out of the speculative domain.
///
/// For details on the attacks, see the first variant in both the Project Zero
/// writeup and the Spectre paper:
/// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
/// https://spectreattack.com/spectre.pdf
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define PASS_KEY "x86-slh"
#define DEBUG_TYPE PASS_KEY

STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
STATISTIC(NumAddrRegsHardened,
          "Number of address mode used registers hardaned");
STATISTIC(NumPostLoadRegsHardened,
          "Number of post-load register values hardened");
STATISTIC(NumCallsOrJumpsHardened,
          "Number of calls or jumps requiring extra hardening");
STATISTIC(NumInstsInserted, "Number of instructions inserted");
STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");

static cl::opt<bool> EnableSpeculativeLoadHardening(
    "x86-speculative-load-hardening",
    cl::desc("Force enable speculative load hardening"), cl::init(false),
    cl::Hidden);

static cl::opt<bool> HardenEdgesWithLFENCE(
    PASS_KEY "-lfence",
    cl::desc(
        "Use LFENCE along each conditional edge to harden against speculative "
        "loads rather than conditional movs and poisoned pointers."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> EnablePostLoadHardening(
    PASS_KEY "-post-load",
    cl::desc("Harden the value loaded *after* it is loaded by "
             "flushing the loaded bits to 1. This is hard to do "
             "in general but can be done easily for GPRs."),
    cl::init(true), cl::Hidden);

static cl::opt<bool> FenceCallAndRet(
    PASS_KEY "-fence-call-and-ret",
    cl::desc("Use a full speculation fence to harden both call and ret edges "
             "rather than a lighter weight mitigation."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> HardenInterprocedurally(
    PASS_KEY "-ip",
    cl::desc("Harden interprocedurally by passing our state in and out of "
             "functions in the high bits of the stack pointer."),
    cl::init(true), cl::Hidden);

static cl::opt<bool>
    HardenLoads(PASS_KEY "-loads",
                cl::desc("Sanitize loads from memory. When disable, no "
                         "significant security is provided."),
                cl::init(true), cl::Hidden);

static cl::opt<bool> HardenIndirectCallsAndJumps(
    PASS_KEY "-indirect",
    cl::desc("Harden indirect calls and jumps against using speculatively "
             "stored attacker controlled addresses. This is designed to "
             "mitigate Spectre v1.2 style attacks."),
    cl::init(true), cl::Hidden);

namespace {

class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
public:
  X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }

  StringRef getPassName() const override {
    return "X86 speculative load hardening";
  }
  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Pass identification, replacement for typeid.
  static char ID;

private:
  /// The information about a block's conditional terminators needed to trace
  /// our predicate state through the exiting edges.
  struct BlockCondInfo {
    MachineBasicBlock *MBB;

    // We mostly have one conditional branch, and in extremely rare cases have
    // two. Three and more are so rare as to be unimportant for compile time.
    SmallVector<MachineInstr *, 2> CondBrs;

    MachineInstr *UncondBr;
  };

  /// Manages the predicate state traced through the program.
  struct PredState {
    unsigned InitialReg;
    unsigned PoisonReg;

    const TargetRegisterClass *RC;
    MachineSSAUpdater SSA;

    PredState(MachineFunction &MF, const TargetRegisterClass *RC)
        : RC(RC), SSA(MF) {}
  };

  const X86Subtarget *Subtarget;
  MachineRegisterInfo *MRI;
  const X86InstrInfo *TII;
  const TargetRegisterInfo *TRI;

  Optional<PredState> PS;

  void hardenEdgesWithLFENCE(MachineFunction &MF);

  SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);

  SmallVector<MachineInstr *, 16>
  tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);

  void unfoldCallAndJumpLoads(MachineFunction &MF);

  SmallVector<MachineInstr *, 16>
  tracePredStateThroughIndirectBranches(MachineFunction &MF);

  void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);

  unsigned saveEFLAGS(MachineBasicBlock &MBB,
                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
  void restoreEFLAGS(MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                     unsigned OFReg);

  void mergePredStateIntoSP(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                            unsigned PredStateReg);
  unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator InsertPt,
                                  DebugLoc Loc);

  void
  hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
                 MachineOperand &IndexMO,
                 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
  MachineInstr *
  sinkPostLoadHardenedInst(MachineInstr &MI,
                           SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
  bool canHardenRegister(unsigned Reg);
  unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator InsertPt,
                                 DebugLoc Loc);
  unsigned hardenPostLoad(MachineInstr &MI);
  void hardenReturnInstr(MachineInstr &MI);
  void tracePredStateThroughCall(MachineInstr &MI);
  void hardenIndirectCallOrJumpInstr(
      MachineInstr &MI,
      SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
};

} // end anonymous namespace

char X86SpeculativeLoadHardeningPass::ID = 0;

void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  MachineFunctionPass::getAnalysisUsage(AU);
}

static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
                                    MachineBasicBlock &Succ, int SuccCount,
                                    MachineInstr *Br, MachineInstr *&UncondBr,
                                    const X86InstrInfo &TII) {
  assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");

  MachineFunction &MF = *MBB.getParent();

  MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();

  // We have to insert the new block immediately after the current one as we
  // don't know what layout-successor relationships the successor has and we
  // may not be able to (and generally don't want to) try to fix those up.
  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);

  // Update the branch instruction if necessary.
  if (Br) {
    assert(Br->getOperand(0).getMBB() == &Succ &&
           "Didn't start with the right target!");
    Br->getOperand(0).setMBB(&NewMBB);

    // If this successor was reached through a branch rather than fallthrough,
    // we might have *broken* fallthrough and so need to inject a new
    // unconditional branch.
    if (!UncondBr) {
      MachineBasicBlock &OldLayoutSucc =
          *std::next(MachineFunction::iterator(&NewMBB));
      assert(MBB.isSuccessor(&OldLayoutSucc) &&
             "Without an unconditional branch, the old layout successor should "
             "be an actual successor!");
      auto BrBuilder =
          BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
      // Update the unconditional branch now that we've added one.
      UncondBr = &*BrBuilder;
    }

    // Insert unconditional "jump Succ" instruction in the new block if
    // necessary.
    if (!NewMBB.isLayoutSuccessor(&Succ)) {
      SmallVector<MachineOperand, 4> Cond;
      TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
    }
  } else {
    assert(!UncondBr &&
           "Cannot have a branchless successor and an unconditional branch!");
    assert(NewMBB.isLayoutSuccessor(&Succ) &&
           "A non-branch successor must have been a layout successor before "
           "and now is a layout successor of the new block.");
  }

  // If this is the only edge to the successor, we can just replace it in the
  // CFG. Otherwise we need to add a new entry in the CFG for the new
  // successor.
  if (SuccCount == 1) {
    MBB.replaceSuccessor(&Succ, &NewMBB);
  } else {
    MBB.splitSuccessor(&Succ, &NewMBB);
  }

  // Hook up the edge from the new basic block to the old successor in the CFG.
  NewMBB.addSuccessor(&Succ);

  // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
  for (MachineInstr &MI : Succ) {
    if (!MI.isPHI())
      break;
    for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
         OpIdx += 2) {
      MachineOperand &OpV = MI.getOperand(OpIdx);
      MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
      assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
      if (OpMBB.getMBB() != &MBB)
        continue;

      // If this is the last edge to the succesor, just replace MBB in the PHI
      if (SuccCount == 1) {
        OpMBB.setMBB(&NewMBB);
        break;
      }

      // Otherwise, append a new pair of operands for the new incoming edge.
      MI.addOperand(MF, OpV);
      MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
      break;
    }
  }

  // Inherit live-ins from the successor
  for (auto &LI : Succ.liveins())
    NewMBB.addLiveIn(LI);

  LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
                    << Succ.getName() << "'.\n");
  return NewMBB;
}

/// Removing duplicate PHI operands to leave the PHI in a canonical and
/// predictable form.
///
/// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
/// isn't what you might expect. We may have multiple entries in PHI nodes for
/// a single predecessor. This makes CFG-updating extremely complex, so here we
/// simplify all PHI nodes to a model even simpler than the IR's model: exactly
/// one entry per predecessor, regardless of how many edges there are.
static void canonicalizePHIOperands(MachineFunction &MF) {
  SmallPtrSet<MachineBasicBlock *, 4> Preds;
  SmallVector<int, 4> DupIndices;
  for (auto &MBB : MF)
    for (auto &MI : MBB) {
      if (!MI.isPHI())
        break;

      // First we scan the operands of the PHI looking for duplicate entries
      // a particular predecessor. We retain the operand index of each duplicate
      // entry found.
      for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
           OpIdx += 2)
        if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
          DupIndices.push_back(OpIdx);

      // Now walk the duplicate indices, removing both the block and value. Note
      // that these are stored as a vector making this element-wise removal
      // :w
      // potentially quadratic.
      //
      // FIXME: It is really frustrating that we have to use a quadratic
      // removal algorithm here. There should be a better way, but the use-def
      // updates required make that impossible using the public API.
      //
      // Note that we have to process these backwards so that we don't
      // invalidate other indices with each removal.
      while (!DupIndices.empty()) {
        int OpIdx = DupIndices.pop_back_val();
        // Remove both the block and value operand, again in reverse order to
        // preserve indices.
        MI.RemoveOperand(OpIdx + 1);
        MI.RemoveOperand(OpIdx);
      }

      Preds.clear();
    }
}

/// Helper to scan a function for loads vulnerable to misspeculation that we
/// want to harden.
///
/// We use this to avoid making changes to functions where there is nothing we
/// need to do to harden against misspeculation.
static bool hasVulnerableLoad(MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      // Loads within this basic block after an LFENCE are not at risk of
      // speculatively executing with invalid predicates from prior control
      // flow. So break out of this block but continue scanning the function.
      if (MI.getOpcode() == X86::LFENCE)
        break;

      // Looking for loads only.
      if (!MI.mayLoad())
        continue;

      // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
      if (MI.getOpcode() == X86::MFENCE)
        continue;

      // We found a load.
      return true;
    }
  }

  // No loads found.
  return false;
}

bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
                    << " **********\n");

  // Only run if this pass is forced enabled or we detect the relevant function
  // attribute requesting SLH.
  if (!EnableSpeculativeLoadHardening &&
      !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    return false;

  Subtarget = &MF.getSubtarget<X86Subtarget>();
  MRI = &MF.getRegInfo();
  TII = Subtarget->getInstrInfo();
  TRI = Subtarget->getRegisterInfo();

  // FIXME: Support for 32-bit.
  PS.emplace(MF, &X86::GR64_NOSPRegClass);

  if (MF.begin() == MF.end())
    // Nothing to do for a degenerate empty function...
    return false;

  // We support an alternative hardening technique based on a debug flag.
  if (HardenEdgesWithLFENCE) {
    hardenEdgesWithLFENCE(MF);
    return true;
  }

  // Create a dummy debug loc to use for all the generated code here.
  DebugLoc Loc;

  MachineBasicBlock &Entry = *MF.begin();
  auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());

  // Do a quick scan to see if we have any checkable loads.
  bool HasVulnerableLoad = hasVulnerableLoad(MF);

  // See if we have any conditional branching blocks that we will need to trace
  // predicate state through.
  SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);

  // If we have no interesting conditions or loads, nothing to do here.
  if (!HasVulnerableLoad && Infos.empty())
    return true;

  // The poison value is required to be an all-ones value for many aspects of
  // this mitigation.
  const int PoisonVal = -1;
  PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
  BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
      .addImm(PoisonVal);
  ++NumInstsInserted;

  // If we have loads being hardened and we've asked for call and ret edges to
  // get a full fence-based mitigation, inject that fence.
  if (HasVulnerableLoad && FenceCallAndRet) {
    // We need to insert an LFENCE at the start of the function to suspend any
    // incoming misspeculation from the caller. This helps two-fold: the caller
    // may not have been protected as this code has been, and this code gets to
    // not take any specific action to protect across calls.
    // FIXME: We could skip this for functions which unconditionally return
    // a constant.
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }

  // If we guarded the entry with an LFENCE and have no conditionals to protect
  // in blocks, then we're done.
  if (FenceCallAndRet && Infos.empty())
    // We may have changed the function's code at this point to insert fences.
    return true;

  // For every basic block in the function which can b
  if (HardenInterprocedurally && !FenceCallAndRet) {
    // Set up the predicate state by extracting it from the incoming stack
    // pointer so we pick up any misspeculation in our caller.
    PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
  } else {
    // Otherwise, just build the predicate state itself by zeroing a register
    // as we don't need any initial state.
    PS->InitialReg = MRI->createVirtualRegister(PS->RC);
    Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
    auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
                         PredStateSubReg);
    ++NumInstsInserted;
    MachineOperand *ZeroEFLAGSDefOp =
        ZeroI->findRegisterDefOperand(X86::EFLAGS);
    assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
           "Must have an implicit def of EFLAGS!");
    ZeroEFLAGSDefOp->setIsDead(true);
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
            PS->InitialReg)
        .addImm(0)
        .addReg(PredStateSubReg)
        .addImm(X86::sub_32bit);
  }

  // We're going to need to trace predicate state throughout the function's
  // CFG. Prepare for this by setting up our initial state of PHIs with unique
  // predecessor entries and all the initial predicate state.
  canonicalizePHIOperands(MF);

  // Track the updated values in an SSA updater to rewrite into SSA form at the
  // end.
  PS->SSA.Initialize(PS->InitialReg);
  PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);

  // Trace through the CFG.
  auto CMovs = tracePredStateThroughCFG(MF, Infos);

  // We may also enter basic blocks in this function via exception handling
  // control flow. Here, if we are hardening interprocedurally, we need to
  // re-capture the predicate state from the throwing code. In the Itanium ABI,
  // the throw will always look like a call to __cxa_throw and will have the
  // predicate state in the stack pointer, so extract fresh predicate state from
  // the stack pointer and make it available in SSA.
  // FIXME: Handle non-itanium ABI EH models.
  if (HardenInterprocedurally) {
    for (MachineBasicBlock &MBB : MF) {
      assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
      if (!MBB.isEHPad())
        continue;
      PS->SSA.AddAvailableValue(
          &MBB,
          extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
    }
  }

  if (HardenIndirectCallsAndJumps) {
    // If we are going to harden calls and jumps we need to unfold their memory
    // operands.
    unfoldCallAndJumpLoads(MF);

    // Then we trace predicate state through the indirect branches.
    auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
    CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
  }

  // Now that we have the predicate state available at the start of each block
  // in the CFG, trace it through each block, hardening vulnerable instructions
  // as we go.
  tracePredStateThroughBlocksAndHarden(MF);

  // Now rewrite all the uses of the pred state using the SSA updater to insert
  // PHIs connecting the state between blocks along the CFG edges.
  for (MachineInstr *CMovI : CMovs)
    for (MachineOperand &Op : CMovI->operands()) {
      if (!Op.isReg() || Op.getReg() != PS->InitialReg)
        continue;

      PS->SSA.RewriteUse(Op);
    }

  LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
             dbgs() << "\n"; MF.verify(this));
  return true;
}

/// Implements the naive hardening approach of putting an LFENCE after every
/// potentially mis-predicted control flow construct.
///
/// We include this as an alternative mostly for the purpose of comparison. The
/// performance impact of this is expected to be extremely severe and not
/// practical for any real-world users.
void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
    MachineFunction &MF) {
  // First, we scan the function looking for blocks that are reached along edges
  // that we might want to harden.
  SmallSetVector<MachineBasicBlock *, 8> Blocks;
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;

    // Skip blocks unless their terminators start with a branch. Other
    // terminators don't seem interesting for guarding against misspeculation.
    auto TermIt = MBB.getFirstTerminator();
    if (TermIt == MBB.end() || !TermIt->isBranch())
      continue;

    // Add all the non-EH-pad succossors to the blocks we want to harden. We
    // skip EH pads because there isn't really a condition of interest on
    // entering.
    for (MachineBasicBlock *SuccMBB : MBB.successors())
      if (!SuccMBB->isEHPad())
        Blocks.insert(SuccMBB);
  }

  for (MachineBasicBlock *MBB : Blocks) {
    auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
    BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }
}

SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
  SmallVector<BlockCondInfo, 16> Infos;

  // Walk the function and build up a summary for each block's conditions that
  // we need to trace through.
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;

    // We want to reliably handle any conditional branch terminators in the
    // MBB, so we manually analyze the branch. We can handle all of the
    // permutations here, including ones that analyze branch cannot.
    //
    // The approach is to walk backwards across the terminators, resetting at
    // any unconditional non-indirect branch, and track all conditional edges
    // to basic blocks as well as the fallthrough or unconditional successor
    // edge. For each conditional edge, we track the target and the opposite
    // condition code in order to inject a "no-op" cmov into that successor
    // that will harden the predicate. For the fallthrough/unconditional
    // edge, we inject a separate cmov for each conditional branch with
    // matching condition codes. This effectively implements an "and" of the
    // condition flags, even if there isn't a single condition flag that would
    // directly implement that. We don't bother trying to optimize either of
    // these cases because if such an optimization is possible, LLVM should
    // have optimized the conditional *branches* in that way already to reduce
    // instruction count. This late, we simply assume the minimal number of
    // branch instructions is being emitted and use that to guide our cmov
    // insertion.

    BlockCondInfo Info = {&MBB, {}, nullptr};

    // Now walk backwards through the terminators and build up successors they
    // reach and the conditions.
    for (MachineInstr &MI : llvm::reverse(MBB)) {
      // Once we've handled all the terminators, we're done.
      if (!MI.isTerminator())
        break;

      // If we see a non-branch terminator, we can't handle anything so bail.
      if (!MI.isBranch()) {
        Info.CondBrs.clear();
        break;
      }

      // If we see an unconditional branch, reset our state, clear any
      // fallthrough, and set this is the "else" successor.
      if (MI.getOpcode() == X86::JMP_1) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }

      // If we get an invalid condition, we have an indirect branch or some
      // other unanalyzable "fallthrough" case. We model this as a nullptr for
      // the destination so we can still guard any conditional successors.
      // Consider code sequences like:
      // ```
      //   jCC L1
      //   jmpq *%rax
      // ```
      // We still want to harden the edge to `L1`.
      if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }

      // We have a vanilla conditional branch, add it to our list.
      Info.CondBrs.push_back(&MI);
    }
    if (Info.CondBrs.empty()) {
      ++NumBranchesUntraced;
      LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
                 MBB.dump());
      continue;
    }

    Infos.push_back(Info);
  }

  return Infos;
}

/// Trace the predicate state through the CFG, instrumenting each conditional
/// branch such that misspeculation through an edge will poison the predicate
/// state.
///
/// Returns the list of inserted CMov instructions so that they can have their
/// uses of the predicate state rewritten into proper SSA form once it is
/// complete.
SmallVector<MachineInstr *, 16>
X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
    MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
  // Collect the inserted cmov instructions so we can rewrite their uses of the
  // predicate state into SSA form.
  SmallVector<MachineInstr *, 16> CMovs;

  // Now walk all of the basic blocks looking for ones that end in conditional
  // jumps where we need to update this register along each edge.
  for (const BlockCondInfo &Info : Infos) {
    MachineBasicBlock &MBB = *Info.MBB;
    const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
    MachineInstr *UncondBr = Info.UncondBr;

    LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
                      << "\n");
    ++NumCondBranchesTraced;

    // Compute the non-conditional successor as either the target of any
    // unconditional branch or the layout successor.
    MachineBasicBlock *UncondSucc =
        UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
                        ? UncondBr->getOperand(0).getMBB()
                        : nullptr)
                 : &*std::next(MachineFunction::iterator(&MBB));

    // Count how many edges there are to any given successor.
    SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
    if (UncondSucc)
      ++SuccCounts[UncondSucc];
    for (auto *CondBr : CondBrs)
      ++SuccCounts[CondBr->getOperand(0).getMBB()];

    // A lambda to insert cmov instructions into a block checking all of the
    // condition codes in a sequence.
    auto BuildCheckingBlockForSuccAndConds =
        [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
            MachineInstr *Br, MachineInstr *&UncondBr,
            ArrayRef<X86::CondCode> Conds) {
          // First, we split the edge to insert the checking block into a safe
          // location.
          auto &CheckingMBB =
              (SuccCount == 1 && Succ.pred_size() == 1)
                  ? Succ
                  : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);

          bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
          if (!LiveEFLAGS)
            CheckingMBB.addLiveIn(X86::EFLAGS);

          // Now insert the cmovs to implement the checks.
          auto InsertPt = CheckingMBB.begin();
          assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
                 "Should never have a PHI in the initial checking block as it "
                 "always has a single predecessor!");

          // We will wire each cmov to each other, but need to start with the
          // incoming pred state.
          unsigned CurStateReg = PS->InitialReg;

          for (X86::CondCode Cond : Conds) {
            int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
            auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);

            Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
            // Note that we intentionally use an empty debug location so that
            // this picks up the preceding location.
            auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
                                 TII->get(CMovOp), UpdatedStateReg)
                             .addReg(CurStateReg)
                             .addReg(PS->PoisonReg)
                             .addImm(Cond);
            // If this is the last cmov and the EFLAGS weren't originally
            // live-in, mark them as killed.
            if (!LiveEFLAGS && Cond == Conds.back())
              CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);

            ++NumInstsInserted;
            LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
                       dbgs() << "\n");

            // The first one of the cmovs will be using the top level
            // `PredStateReg` and need to get rewritten into SSA form.
            if (CurStateReg == PS->InitialReg)
              CMovs.push_back(&*CMovI);

            // The next cmov should start from this one's def.
            CurStateReg = UpdatedStateReg;
          }

          // And put the last one into the available values for SSA form of our
          // predicate state.
          PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
        };

    std::vector<X86::CondCode> UncondCodeSeq;
    for (auto *CondBr : CondBrs) {
      MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
      int &SuccCount = SuccCounts[&Succ];

      X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
      X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
      UncondCodeSeq.push_back(Cond);

      BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
                                        {InvCond});

      // Decrement the successor count now that we've split one of the edges.
      // We need to keep the count of edges to the successor accurate in order
      // to know above when to *replace* the successor in the CFG vs. just
      // adding the new successor.
      --SuccCount;
    }

    // Since we may have split edges and changed the number of successors,
    // normalize the probabilities. This avoids doing it each time we split an
    // edge.
    MBB.normalizeSuccProbs();

    // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
    // need to intersect the other condition codes. We can do this by just
    // doing a cmov for each one.
    if (!UncondSucc)
      // If we have no fallthrough to protect (perhaps it is an indirect jump?)
      // just skip this and continue.
      continue;

    assert(SuccCounts[UncondSucc] == 1 &&
           "We should never have more than one edge to the unconditional "
           "successor at this point because every other edge must have been "
           "split above!");

    // Sort and unique the codes to minimize them.
    llvm::sort(UncondCodeSeq);
    UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
                        UncondCodeSeq.end());

    // Build a checking version of the successor.
    BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
                                      UncondBr, UncondBr, UncondCodeSeq);
  }

  return CMovs;
}

/// Compute the register class for the unfolded load.
///
/// FIXME: This should probably live in X86InstrInfo, potentially by adding
/// a way to unfold into a newly created vreg rather than requiring a register
/// input.
static const TargetRegisterClass *
getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
                           unsigned Opcode) {
  unsigned Index;
  unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
      Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
  const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
  return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
}

void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
    MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF)
    for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
      // Grab a reference and increment the iterator so we can remove this
      // instruction if needed without disturbing the iteration.
      MachineInstr &MI = *MII++;

      // Must either be a call or a branch.
      if (!MI.isCall() && !MI.isBranch())
        continue;
      // We only care about loading variants of these instructions.
      if (!MI.mayLoad())
        continue;

      switch (MI.getOpcode()) {
      default: {
        LLVM_DEBUG(
            dbgs() << "ERROR: Found an unexpected loading branch or call "
                      "instruction:\n";
            MI.dump(); dbgs() << "\n");
        report_fatal_error("Unexpected loading branch or call!");
      }

      case X86::FARCALL16m:
      case X86::FARCALL32m:
      case X86::FARCALL64:
      case X86::FARJMP16m:
      case X86::FARJMP32m:
      case X86::FARJMP64:
        // We cannot mitigate far jumps or calls, but we also don't expect them
        // to be vulnerable to Spectre v1.2 style attacks.
        continue;

      case X86::CALL16m:
      case X86::CALL16m_NT:
      case X86::CALL32m:
      case X86::CALL32m_NT:
      case X86::CALL64m:
      case X86::CALL64m_NT:
      case X86::JMP16m:
      case X86::JMP16m_NT:
      case X86::JMP32m:
      case X86::JMP32m_NT:
      case X86::JMP64m:
      case X86::JMP64m_NT:
      case X86::TAILJMPm64:
      case X86::TAILJMPm64_REX:
      case X86::TAILJMPm:
      case X86::TCRETURNmi64:
      case X86::TCRETURNmi: {
        // Use the generic unfold logic now that we know we're dealing with
        // expected instructions.
        // FIXME: We don't have test coverage for all of these!
        auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
        if (!UnfoldedRC) {
          LLVM_DEBUG(dbgs()
                         << "ERROR: Unable to unfold load from instruction:\n";
                     MI.dump(); dbgs() << "\n");
          report_fatal_error("Unable to unfold load!");
        }
        Register Reg = MRI->createVirtualRegister(UnfoldedRC);
        SmallVector<MachineInstr *, 2> NewMIs;
        // If we were able to compute an unfolded reg class, any failure here
        // is just a programming error so just assert.
        bool Unfolded =
            TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
                                     /*UnfoldStore*/ false, NewMIs);
        (void)Unfolded;
        assert(Unfolded &&
               "Computed unfolded register class but failed to unfold");
        // Now stitch the new instructions into place and erase the old one.
        for (auto *NewMI : NewMIs)
          MBB.insert(MI.getIterator(), NewMI);
        MI.eraseFromParent();
        LLVM_DEBUG({
          dbgs() << "Unfolded load successfully into:\n";
          for (auto *NewMI : NewMIs) {
            NewMI->dump();
            dbgs() << "\n";
          }
        });
        continue;
      }
      }
      llvm_unreachable("Escaped switch with default!");
    }
}

/// Trace the predicate state through indirect branches, instrumenting them to
/// poison the state if a target is reached that does not match the expected
/// target.
///
/// This is designed to mitigate Spectre variant 1 attacks where an indirect
/// branch is trained to predict a particular target and then mispredicts that
/// target in a way that can leak data. Despite using an indirect branch, this
/// is really a variant 1 style attack: it does not steer execution to an
/// arbitrary or attacker controlled address, and it does not require any
/// special code executing next to the victim. This attack can also be mitigated
/// through retpolines, but those require either replacing indirect branches
/// with conditional direct branches or lowering them through a device that
/// blocks speculation. This mitigation can replace these retpoline-style
/// mitigations for jump tables and other indirect branches within a function
/// when variant 2 isn't a risk while allowing limited speculation. Indirect
/// calls, however, cannot be mitigated through this technique without changing
/// the ABI in a fundamental way.
SmallVector<MachineInstr *, 16>
X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
    MachineFunction &MF) {
  // We use the SSAUpdater to insert PHI nodes for the target addresses of
  // indirect branches. We don't actually need the full power of the SSA updater
  // in this particular case as we always have immediately available values, but
  // this avoids us having to re-implement the PHI construction logic.
  MachineSSAUpdater TargetAddrSSA(MF);
  TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));

  // Track which blocks were terminated with an indirect branch.
  SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;

  // We need to know what blocks end up reached via indirect branches. We
  // expect this to be a subset of those whose address is taken and so track it
  // directly via the CFG.
  SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;

  // Walk all the blocks which end in an indirect branch and make the
  // target address available.
  for (MachineBasicBlock &MBB : MF) {
    // Find the last terminator.
    auto MII = MBB.instr_rbegin();
    while (MII != MBB.instr_rend() && MII->isDebugInstr())
      ++MII;
    if (MII == MBB.instr_rend())
      continue;
    MachineInstr &TI = *MII;
    if (!TI.isTerminator() || !TI.isBranch())
      // No terminator or non-branch terminator.
      continue;

    unsigned TargetReg;

    switch (TI.getOpcode()) {
    default:
      // Direct branch or conditional branch (leading to fallthrough).
      continue;

    case X86::FARJMP16m:
    case X86::FARJMP32m:
    case X86::FARJMP64:
      // We cannot mitigate far jumps or calls, but we also don't expect them
      // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
      continue;

    case X86::JMP16m:
    case X86::JMP16m_NT:
    case X86::JMP32m:
    case X86::JMP32m_NT:
    case X86::JMP64m:
    case X86::JMP64m_NT:
      // Mostly as documentation.
      report_fatal_error("Memory operand jumps should have been unfolded!");

    case X86::JMP16r:
      report_fatal_error(
          "Support for 16-bit indirect branches is not implemented.");
    case X86::JMP32r:
      report_fatal_error(
          "Support for 32-bit indirect branches is not implemented.");

    case X86::JMP64r:
      TargetReg = TI.getOperand(0).getReg();
    }

    // We have definitely found an indirect  branch. Verify that there are no
    // preceding conditional branches as we don't yet support that.
    if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
          return !OtherTI.isDebugInstr() && &OtherTI != &TI;
        })) {
      LLVM_DEBUG({
        dbgs() << "ERROR: Found other terminators in a block with an indirect "
                  "branch! This is not yet supported! Terminator sequence:\n";
        for (MachineInstr &MI : MBB.terminators()) {
          MI.dump();
          dbgs() << '\n';
        }
      });
      report_fatal_error("Unimplemented terminator sequence!");
    }

    // Make the target register an available value for this block.
    TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
    IndirectTerminatedMBBs.insert(&MBB);

    // Add all the successors to our target candidates.
    for (MachineBasicBlock *Succ : MBB.successors())
      IndirectTargetMBBs.insert(Succ);
  }

  // Keep track of the cmov instructions we insert so we can return them.
  SmallVector<MachineInstr *, 16> CMovs;

  // If we didn't find any indirect branches with targets, nothing to do here.
  if (IndirectTargetMBBs.empty())
    return CMovs;

  // We found indirect branches and targets that need to be instrumented to
  // harden loads within them. Walk the blocks of the function (to get a stable
  // ordering) and instrument each target of an indirect branch.
  for (MachineBasicBlock &MBB : MF) {
    // Skip the blocks that aren't candidate targets.
    if (!IndirectTargetMBBs.count(&MBB))
      continue;

    // We don't expect EH pads to ever be reached via an indirect branch. If
    // this is desired for some reason, we could simply skip them here rather
    // than asserting.
    assert(!MBB.isEHPad() &&
           "Unexpected EH pad as target of an indirect branch!");

    // We should never end up threading EFLAGS into a block to harden
    // conditional jumps as there would be an additional successor via the
    // indirect branch. As a consequence, all such edges would be split before
    // reaching here, and the inserted block will handle the EFLAGS-based
    // hardening.
    assert(!MBB.isLiveIn(X86::EFLAGS) &&
           "Cannot check within a block that already has live-in EFLAGS!");

    // We can't handle having non-indirect edges into this block unless this is
    // the only successor and we can synthesize the necessary target address.
    for (MachineBasicBlock *Pred : MBB.predecessors()) {
      // If we've already handled this by extracting the target directly,
      // nothing to do.
      if (IndirectTerminatedMBBs.count(Pred))
        continue;

      // Otherwise, we have to be the only successor. We generally expect this
      // to be true as conditional branches should have had a critical edge
      // split already. We don't however need to worry about EH pad successors
      // as they'll happily ignore the target and their hardening strategy is
      // resilient to all ways in which they could be reached speculatively.
      if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
            return Succ->isEHPad() || Succ == &MBB;
          })) {
        LLVM_DEBUG({
          dbgs() << "ERROR: Found conditional entry to target of indirect "
                    "branch!\n";
          Pred->dump();
          MBB.dump();
        });
        report_fatal_error("Cannot harden a conditional entry to a target of "
                           "an indirect branch!");
      }

      // Now we need to compute the address of this block and install it as a
      // synthetic target in the predecessor. We do this at the bottom of the
      // predecessor.
      auto InsertPt = Pred->getFirstTerminator();
      Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
      if (MF.getTarget().getCodeModel() == CodeModel::Small &&
          !Subtarget->isPositionIndependent()) {
        // Directly materialize it into an immediate.
        auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
                             TII->get(X86::MOV64ri32), TargetReg)
                         .addMBB(&MBB);
        ++NumInstsInserted;
        (void)AddrI;
        LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
                   dbgs() << "\n");
      } else {
        auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
                             TargetReg)
                         .addReg(/*Base*/ X86::RIP)
                         .addImm(/*Scale*/ 1)
                         .addReg(/*Index*/ 0)
                         .addMBB(&MBB)
                         .addReg(/*Segment*/ 0);
        ++NumInstsInserted;
        (void)AddrI;
        LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
                   dbgs() << "\n");
      }
      // And make this available.
      TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
    }

    // Materialize the needed SSA value of the target. Note that we need the
    // middle of the block as this block might at the bottom have an indirect
    // branch back to itself. We can do this here because at this point, every
    // predecessor of this block has an available value. This is basically just
    // automating the construction of a PHI node for this target.
    unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);

    // Insert a comparison of the incoming target register with this block's
    // address. This also requires us to mark the block as having its address
    // taken explicitly.
    MBB.setHasAddressTaken();
    auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
    if (MF.getTarget().getCodeModel() == CodeModel::Small &&
        !Subtarget->isPositionIndependent()) {
      // Check directly against a relocated immediate when we can.
      auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
                        .addReg(TargetReg, RegState::Kill)
                        .addMBB(&MBB);
      ++NumInstsInserted;
      (void)CheckI;
      LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
    } else {
      // Otherwise compute the address into a register first.
      Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
      auto AddrI =
          BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
              .addReg(/*Base*/ X86::RIP)
              .addImm(/*Scale*/ 1)
              .addReg(/*Index*/ 0)
              .addMBB(&MBB)
              .addReg(/*Segment*/ 0);
      ++NumInstsInserted;
      (void)AddrI;
      LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
      auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
                        .addReg(TargetReg, RegState::Kill)
                        .addReg(AddrReg, RegState::Kill);
      ++NumInstsInserted;
      (void)CheckI;
      LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
    }

    // Now cmov over the predicate if the comparison wasn't equal.
    int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
    auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
    Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
    auto CMovI =
        BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
            .addReg(PS->InitialReg)
            .addReg(PS->PoisonReg)
            .addImm(X86::COND_NE);
    CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
    ++NumInstsInserted;
    LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
    CMovs.push_back(&*CMovI);

    // And put the new value into the available values for SSA form of our
    // predicate state.
    PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
  }

  // Return all the newly inserted cmov instructions of the predicate state.
  return CMovs;
}

/// Returns true if the instruction has no behavior (specified or otherwise)
/// that is based on the value of any of its register operands
///
/// A classical example of something that is inherently not data invariant is an
/// indirect jump -- the destination is loaded into icache based on the bits set
/// in the jump destination register.
///
/// FIXME: This should become part of our instruction tables.
static bool isDataInvariant(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    // By default, assume that the instruction is not data invariant.
    return false;

    // Some target-independent operations that trivially lower to data-invariant
    // instructions.
  case TargetOpcode::COPY:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
    return true;

  // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  // However, they set flags and are perhaps the most surprisingly constant
  // time operations so we call them out here separately.
  case X86::IMUL16rr:
  case X86::IMUL16rri8:
  case X86::IMUL16rri:
  case X86::IMUL32rr:
  case X86::IMUL32rri8:
  case X86::IMUL32rri:
  case X86::IMUL64rr:
  case X86::IMUL64rri32:
  case X86::IMUL64rri8:

  // Bit scanning and counting instructions that are somewhat surprisingly
  // constant time as they scan across bits and do other fairly complex
  // operations like popcnt, but are believed to be constant time on x86.
  // However, these set flags.
  case X86::BSF16rr:
  case X86::BSF32rr:
  case X86::BSF64rr:
  case X86::BSR16rr:
  case X86::BSR32rr:
  case X86::BSR64rr:
  case X86::LZCNT16rr:
  case X86::LZCNT32rr:
  case X86::LZCNT64rr:
  case X86::POPCNT16rr:
  case X86::POPCNT32rr:
  case X86::POPCNT64rr:
  case X86::TZCNT16rr:
  case X86::TZCNT32rr:
  case X86::TZCNT64rr:

  // Bit manipulation instructions are effectively combinations of basic
  // arithmetic ops, and should still execute in constant time. These also
  // set flags.
  case X86::BLCFILL32rr:
  case X86::BLCFILL64rr:
  case X86::BLCI32rr:
  case X86::BLCI64rr:
  case X86::BLCIC32rr:
  case X86::BLCIC64rr:
  case X86::BLCMSK32rr:
  case X86::BLCMSK64rr:
  case X86::BLCS32rr:
  case X86::BLCS64rr:
  case X86::BLSFILL32rr:
  case X86::BLSFILL64rr:
  case X86::BLSI32rr:
  case X86::BLSI64rr:
  case X86::BLSIC32rr:
  case X86::BLSIC64rr:
  case X86::BLSMSK32rr:
  case X86::BLSMSK64rr:
  case X86::BLSR32rr:
  case X86::BLSR64rr:
  case X86::TZMSK32rr:
  case X86::TZMSK64rr:

  // Bit extracting and clearing instructions should execute in constant time,
  // and set flags.
  case X86::BEXTR32rr:
  case X86::BEXTR64rr:
  case X86::BEXTRI32ri:
  case X86::BEXTRI64ri:
  case X86::BZHI32rr:
  case X86::BZHI64rr:

  // Shift and rotate.
  case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
  case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
  case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
  case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
  case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
  case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
  case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
  case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
  case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
  case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
  case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
  case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
  case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
  case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
  case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
  case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
  case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
  case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
  case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:

  // Basic arithmetic is constant time on the input but does set flags.
  case X86::ADC8rr:   case X86::ADC8ri:
  case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
  case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
  case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
  case X86::ADD8rr:   case X86::ADD8ri:
  case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
  case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
  case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
  case X86::AND8rr:   case X86::AND8ri:
  case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
  case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
  case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
  case X86::OR8rr:    case X86::OR8ri:
  case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
  case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
  case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
  case X86::SBB8rr:   case X86::SBB8ri:
  case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
  case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
  case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
  case X86::SUB8rr:   case X86::SUB8ri:
  case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
  case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
  case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
  case X86::XOR8rr:   case X86::XOR8ri:
  case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
  case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
  case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
  // Arithmetic with just 32-bit and 64-bit variants and no immediates.
  case X86::ADCX32rr: case X86::ADCX64rr:
  case X86::ADOX32rr: case X86::ADOX64rr:
  case X86::ANDN32rr: case X86::ANDN64rr:
  // Unary arithmetic operations.
  case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
  case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
  case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
    // Check whether the EFLAGS implicit-def is dead. We assume that this will
    // always find the implicit-def because this code should only be reached
    // for instructions that do in fact implicitly def this.
    if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
      // If we would clobber EFLAGS that are used, just bail for now.
      LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
                 MI.dump(); dbgs() << "\n");
      return false;
    }

    // Otherwise, fallthrough to handle these the same as instructions that
    // don't set EFLAGS.
    LLVM_FALLTHROUGH;

  // Unlike other arithmetic, NOT doesn't set EFLAGS.
  case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:

  // Various move instructions used to zero or sign extend things. Note that we
  // intentionally don't support the _NOREX variants as we can't handle that
  // register constraint anyways.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr8: case X86::MOVSX32rr16:
  case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
  case X86::MOVZX16rr8:
  case X86::MOVZX32rr8: case X86::MOVZX32rr16:
  case X86::MOVZX64rr8: case X86::MOVZX64rr16:
  case X86::MOV32rr:

  // Arithmetic instructions that are both constant time and don't set flags.
  case X86::RORX32ri:
  case X86::RORX64ri:
  case X86::SARX32rr:
  case X86::SARX64rr:
  case X86::SHLX32rr:
  case X86::SHLX64rr:
  case X86::SHRX32rr:
  case X86::SHRX64rr:

  // LEA doesn't actually access memory, and its arithmetic is constant time.
  case X86::LEA16r:
  case X86::LEA32r:
  case X86::LEA64_32r:
  case X86::LEA64r:
    return true;
  }
}

/// Returns true if the instruction has no behavior (specified or otherwise)
/// that is based on the value loaded from memory or the value of any
/// non-address register operands.
///
/// For example, if the latency of the instruction is dependent on the
/// particular bits set in any of the registers *or* any of the bits loaded from
/// memory.
///
/// A classical example of something that is inherently not data invariant is an
/// indirect jump -- the destination is loaded into icache based on the bits set
/// in the jump destination register.
///
/// FIXME: This should become part of our instruction tables.
static bool isDataInvariantLoad(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    // By default, assume that the load will immediately leak.
    return false;

  // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  // However, they set flags and are perhaps the most surprisingly constant
  // time operations so we call them out here separately.
  case X86::IMUL16rm:
  case X86::IMUL16rmi8:
  case X86::IMUL16rmi:
  case X86::IMUL32rm:
  case X86::IMUL32rmi8:
  case X86::IMUL32rmi:
  case X86::IMUL64rm:
  case X86::IMUL64rmi32:
  case X86::IMUL64rmi8:

  // Bit scanning and counting instructions that are somewhat surprisingly
  // constant time as they scan across bits and do other fairly complex
  // operations like popcnt, but are believed to be constant time on x86.
  // However, these set flags.
  case X86::BSF16rm:
  case X86::BSF32rm:
  case X86::BSF64rm:
  case X86::BSR16rm:
  case X86::BSR32rm:
  case X86::BSR64rm:
  case X86::LZCNT16rm:
  case X86::LZCNT32rm:
  case X86::LZCNT64rm:
  case X86::POPCNT16rm:
  case X86::POPCNT32rm:
  case X86::POPCNT64rm:
  case X86::TZCNT16rm:
  case X86::TZCNT32rm:
  case X86::TZCNT64rm:

  // Bit manipulation instructions are effectively combinations of basic
  // arithmetic ops, and should still execute in constant time. These also
  // set flags.
  case X86::BLCFILL32rm:
  case X86::BLCFILL64rm:
  case X86::BLCI32rm:
  case X86::BLCI64rm:
  case X86::BLCIC32rm:
  case X86::BLCIC64rm:
  case X86::BLCMSK32rm:
  case X86::BLCMSK64rm:
  case X86::BLCS32rm:
  case X86::BLCS64rm:
  case X86::BLSFILL32rm:
  case X86::BLSFILL64rm:
  case X86::BLSI32rm:
  case X86::BLSI64rm:
  case X86::BLSIC32rm:
  case X86::BLSIC64rm:
  case X86::BLSMSK32rm:
  case X86::BLSMSK64rm:
  case X86::BLSR32rm:
  case X86::BLSR64rm:
  case X86::TZMSK32rm:
  case X86::TZMSK64rm:

  // Bit extracting and clearing instructions should execute in constant time,
  // and set flags.
  case X86::BEXTR32rm:
  case X86::BEXTR64rm:
  case X86::BEXTRI32mi:
  case X86::BEXTRI64mi:
  case X86::BZHI32rm:
  case X86::BZHI64rm:

  // Basic arithmetic is constant time on the input but does set flags.
  case X86::ADC8rm:
  case X86::ADC16rm:
  case X86::ADC32rm:
  case X86::ADC64rm:
  case X86::ADCX32rm:
  case X86::ADCX64rm:
  case X86::ADD8rm:
  case X86::ADD16rm:
  case X86::ADD32rm:
  case X86::ADD64rm:
  case X86::ADOX32rm:
  case X86::ADOX64rm:
  case X86::AND8rm:
  case X86::AND16rm:
  case X86::AND32rm:
  case X86::AND64rm:
  case X86::ANDN32rm:
  case X86::ANDN64rm:
  case X86::OR8rm:
  case X86::OR16rm:
  case X86::OR32rm:
  case X86::OR64rm:
  case X86::SBB8rm:
  case X86::SBB16rm:
  case X86::SBB32rm:
  case X86::SBB64rm:
  case X86::SUB8rm:
  case X86::SUB16rm:
  case X86::SUB32rm:
  case X86::SUB64rm:
  case X86::XOR8rm:
  case X86::XOR16rm:
  case X86::XOR32rm:
  case X86::XOR64rm:
    // Check whether the EFLAGS implicit-def is dead. We assume that this will
    // always find the implicit-def because this code should only be reached
    // for instructions that do in fact implicitly def this.
    if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
      // If we would clobber EFLAGS that are used, just bail for now.
      LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
                 MI.dump(); dbgs() << "\n");
      return false;
    }

    // Otherwise, fallthrough to handle these the same as instructions that
    // don't set EFLAGS.
    LLVM_FALLTHROUGH;

  // Integer multiply w/o affecting flags is still believed to be constant
  // time on x86. Called out separately as this is among the most surprising
  // instructions to exhibit that behavior.
  case X86::MULX32rm:
  case X86::MULX64rm:

  // Arithmetic instructions that are both constant time and don't set flags.
  case X86::RORX32mi:
  case X86::RORX64mi:
  case X86::SARX32rm:
  case X86::SARX64rm:
  case X86::SHLX32rm:
  case X86::SHLX64rm:
  case X86::SHRX32rm:
  case X86::SHRX64rm:

  // Conversions are believed to be constant time and don't set flags.
  case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
  case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
  case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
  case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
  case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
  case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
  case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
  case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
  case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
  case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
  // AVX512 added unsigned integer conversions.
  case X86::VCVTTSD2USI64Zrm:
  case X86::VCVTTSD2USIZrm:
  case X86::VCVTTSS2USI64Zrm:
  case X86::VCVTTSS2USIZrm:
  case X86::VCVTUSI2SDZrm:
  case X86::VCVTUSI642SDZrm:
  case X86::VCVTUSI2SSZrm:
  case X86::VCVTUSI642SSZrm:

  // Loads to register don't set flags.
  case X86::MOV8rm:
  case X86::MOV8rm_NOREX:
  case X86::MOV16rm:
  case X86::MOV32rm:
  case X86::MOV64rm:
  case X86::MOVSX16rm8:
  case X86::MOVSX32rm16:
  case X86::MOVSX32rm8:
  case X86::MOVSX32rm8_NOREX:
  case X86::MOVSX64rm16:
  case X86::MOVSX64rm32:
  case X86::MOVSX64rm8:
  case X86::MOVZX16rm8:
  case X86::MOVZX32rm16:
  case X86::MOVZX32rm8:
  case X86::MOVZX32rm8_NOREX:
  case X86::MOVZX64rm16:
  case X86::MOVZX64rm8:
    return true;
  }
}

static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                         const TargetRegisterInfo &TRI) {
  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
    if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
      // If the def is dead, then EFLAGS is not live.
      if (DefOp->isDead())
        return false;

      // Otherwise we've def'ed it, and it is live.
      return true;
    }
    // While at this instruction, also check if we use and kill EFLAGS
    // which means it isn't live.
    if (MI.killsRegister(X86::EFLAGS, &TRI))
      return false;
  }

  // If we didn't find anything conclusive (neither definitely alive or
  // definitely dead) return whether it lives into the block.
  return MBB.isLiveIn(X86::EFLAGS);
}

/// Trace the predicate state through each of the blocks in the function,
/// hardening everything necessary along the way.
///
/// We call this routine once the initial predicate state has been established
/// for each basic block in the function in the SSA updater. This routine traces
/// it through the instructions within each basic block, and for non-returning
/// blocks informs the SSA updater about the final state that lives out of the
/// block. Along the way, it hardens any vulnerable instruction using the
/// currently valid predicate state. We have to do these two things together
/// because the SSA updater only works across blocks. Within a block, we track
/// the current predicate state directly and update it as it changes.
///
/// This operates in two passes over each block. First, we analyze the loads in
/// the block to determine which strategy will be used to harden them: hardening
/// the address or hardening the loaded value when loaded into a register
/// amenable to hardening. We have to process these first because the two
/// strategies may interact -- later hardening may change what strategy we wish
/// to use. We also will analyze data dependencies between loads and avoid
/// hardening those loads that are data dependent on a load with a hardened
/// address. We also skip hardening loads already behind an LFENCE as that is
/// sufficient to harden them against misspeculation.
///
/// Second, we actively trace the predicate state through the block, applying
/// the hardening steps we determined necessary in the first pass as we go.
///
/// These two passes are applied to each basic block. We operate one block at a
/// time to simplify reasoning about reachability and sequencing.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
    MachineFunction &MF) {
  SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
  SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;

  SmallSet<unsigned, 16> HardenedAddrRegs;

  SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;

  // Track the set of load-dependent registers through the basic block. Because
  // the values of these registers have an existing data dependency on a loaded
  // value which we would have checked, we can omit any checks on them.
  SparseBitVector<> LoadDepRegs;

  for (MachineBasicBlock &MBB : MF) {
    // The first pass over the block: collect all the loads which can have their
    // loaded value hardened and all the loads that instead need their address
    // hardened. During this walk we propagate load dependence for address
    // hardened loads and also look for LFENCE to stop hardening wherever
    // possible. When deciding whether or not to harden the loaded value or not,
    // we check to see if any registers used in the address will have been
    // hardened at this point and if so, harden any remaining address registers
    // as that often successfully re-uses hardened addresses and minimizes
    // instructions.
    //
    // FIXME: We should consider an aggressive mode where we continue to keep as
    // many loads value hardened even when some address register hardening would
    // be free (due to reuse).
    //
    // Note that we only need this pass if we are actually hardening loads.
    if (HardenLoads)
      for (MachineInstr &MI : MBB) {
        // We naively assume that all def'ed registers of an instruction have
        // a data dependency on all of their operands.
        // FIXME: Do a more careful analysis of x86 to build a conservative
        // model here.
        if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
              return Op.isReg() && LoadDepRegs.test(Op.getReg());
            }))
          for (MachineOperand &Def : MI.defs())
            if (Def.isReg())
              LoadDepRegs.set(Def.getReg());

        // Both Intel and AMD are guiding that they will change the semantics of
        // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
        // no more need to guard things in this block.
        if (MI.getOpcode() == X86::LFENCE)
          break;

        // If this instruction cannot load, nothing to do.
        if (!MI.mayLoad())
          continue;

        // Some instructions which "load" are trivially safe or unimportant.
        if (MI.getOpcode() == X86::MFENCE)
          continue;

        // Extract the memory operand information about this instruction.
        // FIXME: This doesn't handle loading pseudo instructions which we often
        // could handle with similarly generic logic. We probably need to add an
        // MI-layer routine similar to the MC-layer one we use here which maps
        // pseudos much like this maps real instructions.
        const MCInstrDesc &Desc = MI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        if (MemRefBeginIdx < 0) {
          LLVM_DEBUG(dbgs()
                         << "WARNING: unable to harden loading instruction: ";
                     MI.dump());
          continue;
        }

        MemRefBeginIdx += X86II::getOperandBias(Desc);

        MachineOperand &BaseMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);

        // If we have at least one (non-frame-index, non-RIP) register operand,
        // and neither operand is load-dependent, we need to check the load.
        unsigned BaseReg = 0, IndexReg = 0;
        if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
            BaseMO.getReg() != X86::NoRegister)
          BaseReg = BaseMO.getReg();
        if (IndexMO.getReg() != X86::NoRegister)
          IndexReg = IndexMO.getReg();

        if (!BaseReg && !IndexReg)
          // No register operands!
          continue;

        // If any register operand is dependent, this load is dependent and we
        // needn't check it.
        // FIXME: Is this true in the case where we are hardening loads after
        // they complete? Unclear, need to investigate.
        if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
            (IndexReg && LoadDepRegs.test(IndexReg)))
          continue;

        // If post-load hardening is enabled, this load is compatible with
        // post-load hardening, and we aren't already going to harden one of the
        // address registers, queue it up to be hardened post-load. Notably,
        // even once hardened this won't introduce a useful dependency that
        // could prune out subsequent loads.
        if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
            MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
            canHardenRegister(MI.getOperand(0).getReg()) &&
            !HardenedAddrRegs.count(BaseReg) &&
            !HardenedAddrRegs.count(IndexReg)) {
          HardenPostLoad.insert(&MI);
          HardenedAddrRegs.insert(MI.getOperand(0).getReg());
          continue;
        }

        // Record this instruction for address hardening and record its register
        // operands as being address-hardened.
        HardenLoadAddr.insert(&MI);
        if (BaseReg)
          HardenedAddrRegs.insert(BaseReg);
        if (IndexReg)
          HardenedAddrRegs.insert(IndexReg);

        for (MachineOperand &Def : MI.defs())
          if (Def.isReg())
            LoadDepRegs.set(Def.getReg());
      }

    // Now re-walk the instructions in the basic block, and apply whichever
    // hardening strategy we have elected. Note that we do this in a second
    // pass specifically so that we have the complete set of instructions for
    // which we will do post-load hardening and can defer it in certain
    // circumstances.
    for (MachineInstr &MI : MBB) {
      if (HardenLoads) {
        // We cannot both require hardening the def of a load and its address.
        assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
               "Requested to harden both the address and def of a load!");

        // Check if this is a load whose address needs to be hardened.
        if (HardenLoadAddr.erase(&MI)) {
          const MCInstrDesc &Desc = MI.getDesc();
          int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
          assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");

          MemRefBeginIdx += X86II::getOperandBias(Desc);

          MachineOperand &BaseMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
          MachineOperand &IndexMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
          hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
          continue;
        }

        // Test if this instruction is one of our post load instructions (and
        // remove it from the set if so).
        if (HardenPostLoad.erase(&MI)) {
          assert(!MI.isCall() && "Must not try to post-load harden a call!");

          // If this is a data-invariant load, we want to try and sink any
          // hardening as far as possible.
          if (isDataInvariantLoad(MI)) {
            // Sink the instruction we'll need to harden as far as we can down
            // the graph.
            MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);

            // If we managed to sink this instruction, update everything so we
            // harden that instruction when we reach it in the instruction
            // sequence.
            if (SunkMI != &MI) {
              // If in sinking there was no instruction needing to be hardened,
              // we're done.
              if (!SunkMI)
                continue;

              // Otherwise, add this to the set of defs we harden.
              HardenPostLoad.insert(SunkMI);
              continue;
            }
          }

          unsigned HardenedReg = hardenPostLoad(MI);

          // Mark the resulting hardened register as such so we don't re-harden.
          AddrRegToHardenedReg[HardenedReg] = HardenedReg;

          continue;
        }

        // Check for an indirect call or branch that may need its input hardened
        // even if we couldn't find the specific load used, or were able to
        // avoid hardening it for some reason. Note that here we cannot break
        // out afterward as we may still need to handle any call aspect of this
        // instruction.
        if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
          hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
      }

      // After we finish hardening loads we handle interprocedural hardening if
      // enabled and relevant for this instruction.
      if (!HardenInterprocedurally)
        continue;
      if (!MI.isCall() && !MI.isReturn())
        continue;

      // If this is a direct return (IE, not a tail call) just directly harden
      // it.
      if (MI.isReturn() && !MI.isCall()) {
        hardenReturnInstr(MI);
        continue;
      }

      // Otherwise we have a call. We need to handle transferring the predicate
      // state into a call and recovering it after the call returns (unless this
      // is a tail call).
      assert(MI.isCall() && "Should only reach here for calls!");
      tracePredStateThroughCall(MI);
    }

    HardenPostLoad.clear();
    HardenLoadAddr.clear();
    HardenedAddrRegs.clear();
    AddrRegToHardenedReg.clear();

    // Currently, we only track data-dependent loads within a basic block.
    // FIXME: We should see if this is necessary or if we could be more
    // aggressive here without opening up attack avenues.
    LoadDepRegs.clear();
  }
}

/// Save EFLAGS into the returned GPR. This can in turn be restored with
/// `restoreEFLAGS`.
///
/// Note that LLVM can only lower very simple patterns of saved and restored
/// EFLAGS registers. The restore should always be within the same basic block
/// as the save so that no PHI nodes are inserted.
unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
  // what instruction selection does.
  Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
  // We directly copy the FLAGS register and rely on later lowering to clean
  // this up into the appropriate setCC instructions.
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
  ++NumInstsInserted;
  return Reg;
}

/// Restore EFLAGS from the provided GPR. This should be produced by
/// `saveEFLAGS`.
///
/// This must be done within the same basic block as the save in order to
/// reliably lower.
void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned Reg) {
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
  ++NumInstsInserted;
}

/// Takes the current predicate state (in a register) and merges it into the
/// stack pointer. The state is essentially a single bit, but we merge this in
/// a way that won't form non-canonical pointers and also will be preserved
/// across normal stack adjustments.
void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned PredStateReg) {
  Register TmpReg = MRI->createVirtualRegister(PS->RC);
  // FIXME: This hard codes a shift distance based on the number of bits needed
  // to stay canonical on 64-bit. We should compute this somehow and support
  // 32-bit as part of that.
  auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
                    .addReg(PredStateReg, RegState::Kill)
                    .addImm(47);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
                 .addReg(X86::RSP)
                 .addReg(TmpReg, RegState::Kill);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
}

/// Extracts the predicate state stored in the high bits of the stack pointer.
unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  Register PredStateReg = MRI->createVirtualRegister(PS->RC);
  Register TmpReg = MRI->createVirtualRegister(PS->RC);

  // We know that the stack pointer will have any preserved predicate state in
  // its high bit. We just want to smear this across the other bits. Turns out,
  // this is exactly what an arithmetic right shift does.
  BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
      .addReg(X86::RSP);
  auto ShiftI =
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
          .addReg(TmpReg, RegState::Kill)
          .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;

  return PredStateReg;
}

void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
    MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();

  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);

  SmallVector<MachineOperand *, 2> HardenOpRegs;

  if (BaseMO.isFI()) {
    // A frame index is never a dynamically controllable load, so only
    // harden it if we're covering fixed address loads as well.
    LLVM_DEBUG(
        dbgs() << "  Skipping hardening base of explicit stack frame load: ";
        MI.dump(); dbgs() << "\n");
  } else if (BaseMO.getReg() == X86::RSP) {
    // Some idempotent atomic operations are lowered directly to a locked
    // OR with 0 to the top of stack(or slightly offset from top) which uses an
    // explicit RSP register as the base.
    assert(IndexMO.getReg() == X86::NoRegister &&
           "Explicit RSP access with dynamic index!");
    LLVM_DEBUG(
        dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
  } else if (BaseMO.getReg() == X86::RIP ||
             BaseMO.getReg() == X86::NoRegister) {
    // For both RIP-relative addressed loads or absolute loads, we cannot
    // meaningfully harden them because the address being loaded has no
    // dynamic component.
    //
    // FIXME: When using a segment base (like TLS does) we end up with the
    // dynamic address being the base plus -1 because we can't mutate the
    // segment register here. This allows the signed 32-bit offset to point at
    // valid segment-relative addresses and load them successfully.
    LLVM_DEBUG(
        dbgs() << "  Cannot harden base of "
               << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
               << " address in a load!");
  } else {
    assert(BaseMO.isReg() &&
           "Only allowed to have a frame index or register base.");
    HardenOpRegs.push_back(&BaseMO);
  }

  if (IndexMO.getReg() != X86::NoRegister &&
      (HardenOpRegs.empty() ||
       HardenOpRegs.front()->getReg() != IndexMO.getReg()))
    HardenOpRegs.push_back(&IndexMO);

  assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
         "Should have exactly one or two registers to harden!");
  assert((HardenOpRegs.size() == 1 ||
          HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
         "Should not have two of the same registers!");

  // Remove any registers that have alreaded been checked.
  llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
    // See if this operand's register has already been checked.
    auto It = AddrRegToHardenedReg.find(Op->getReg());
    if (It == AddrRegToHardenedReg.end())
      // Not checked, so retain this one.
      return false;

    // Otherwise, we can directly update this operand and remove it.
    Op->setReg(It->second);
    return true;
  });
  // If there are none left, we're done.
  if (HardenOpRegs.empty())
    return;

  // Compute the current predicate state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);

  auto InsertPt = MI.getIterator();

  // If EFLAGS are live and we don't have access to instructions that avoid
  // clobbering EFLAGS we need to save and restore them. This in turn makes
  // the EFLAGS no longer live.
  unsigned FlagsReg = 0;
  if (EFLAGSLive && !Subtarget->hasBMI2()) {
    EFLAGSLive = false;
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
  }

  for (MachineOperand *Op : HardenOpRegs) {
    Register OpReg = Op->getReg();
    auto *OpRC = MRI->getRegClass(OpReg);
    Register TmpReg = MRI->createVirtualRegister(OpRC);

    // If this is a vector register, we'll need somewhat custom logic to handle
    // hardening it.
    if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
                                 OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
      assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);

      // Move our state into a vector register.
      // FIXME: We could skip this at the cost of longer encodings with AVX-512
      // but that doesn't seem likely worth it.
      Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
      auto MovI =
          BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
              .addReg(StateReg);
      (void)MovI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");

      // Broadcast it across the vector register.
      Register VBStateReg = MRI->createVirtualRegister(OpRC);
      auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
                                TII->get(Is128Bit ? X86::VPBROADCASTQrr
                                                  : X86::VPBROADCASTQYrr),
                                VBStateReg)
                            .addReg(VStateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");

      // Merge our potential poison state into the value with a vector or.
      auto OrI =
          BuildMI(MBB, InsertPt, Loc,
                  TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
              .addReg(VBStateReg)
              .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
      assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
      bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
      if (Is128Bit || Is256Bit)
        assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");

      // Broadcast our state into a vector register.
      Register VStateReg = MRI->createVirtualRegister(OpRC);
      unsigned BroadcastOp =
          Is128Bit ? X86::VPBROADCASTQrZ128r
                   : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
      auto BroadcastI =
          BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
              .addReg(StateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");

      // Merge our potential poison state into the value with a vector or.
      unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
                               : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
      auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
                     .addReg(VStateReg)
                     .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else {
      // FIXME: Need to support GR32 here for 32-bit code.
      assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
             "Not a supported register class for address hardening!");

      if (!EFLAGSLive) {
        // Merge our potential poison state into the value with an or.
        auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
                       .addReg(StateReg)
                       .addReg(OpReg);
        OrI->addRegisterDead(X86::EFLAGS, TRI);
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
      } else {
        // We need to avoid touching EFLAGS so shift out all but the least
        // significant bit using the instruction that doesn't update flags.
        auto ShiftI =
            BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
                .addReg(OpReg)
                .addReg(StateReg);
        (void)ShiftI;
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
                   dbgs() << "\n");
      }
    }

    // Record this register as checked and update the operand.
    assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
           "Should not have checked this register yet!");
    AddrRegToHardenedReg[Op->getReg()] = TmpReg;
    Op->setReg(TmpReg);
    ++NumAddrRegsHardened;
  }

  // And restore the flags if needed.
  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
}

MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
    MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
  assert(isDataInvariantLoad(InitialMI) &&
         "Cannot get here with a non-invariant load!");

  // See if we can sink hardening the loaded value.
  auto SinkCheckToSingleUse =
      [&](MachineInstr &MI) -> Optional<MachineInstr *> {
    Register DefReg = MI.getOperand(0).getReg();

    // We need to find a single use which we can sink the check. We can
    // primarily do this because many uses may already end up checked on their
    // own.
    MachineInstr *SingleUseMI = nullptr;
    for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
      // If we're already going to harden this use, it is data invariant and
      // within our block.
      if (HardenedInstrs.count(&UseMI)) {
        if (!isDataInvariantLoad(UseMI)) {
          // If we've already decided to harden a non-load, we must have sunk
          // some other post-load hardened instruction to it and it must itself
          // be data-invariant.
          assert(isDataInvariant(UseMI) &&
                 "Data variant instruction being hardened!");
          continue;
        }

        // Otherwise, this is a load and the load component can't be data
        // invariant so check how this register is being used.
        const MCInstrDesc &Desc = UseMI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        assert(MemRefBeginIdx >= 0 &&
               "Should always have mem references here!");
        MemRefBeginIdx += X86II::getOperandBias(Desc);

        MachineOperand &BaseMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
        if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
            (IndexMO.isReg() && IndexMO.getReg() == DefReg))
          // The load uses the register as part of its address making it not
          // invariant.
          return {};

        continue;
      }

      if (SingleUseMI)
        // We already have a single use, this would make two. Bail.
        return {};

      // If this single use isn't data invariant, isn't in this block, or has
      // interfering EFLAGS, we can't sink the hardening to it.
      if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
        return {};

      // If this instruction defines multiple registers bail as we won't harden
      // all of them.
      if (UseMI.getDesc().getNumDefs() > 1)
        return {};

      // If this register isn't a virtual register we can't walk uses of sanely,
      // just bail. Also check that its register class is one of the ones we
      // can harden.
      Register UseDefReg = UseMI.getOperand(0).getReg();
      if (!Register::isVirtualRegister(UseDefReg) ||
          !canHardenRegister(UseDefReg))
        return {};

      SingleUseMI = &UseMI;
    }

    // If SingleUseMI is still null, there is no use that needs its own
    // checking. Otherwise, it is the single use that needs checking.
    return {SingleUseMI};
  };

  MachineInstr *MI = &InitialMI;
  while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
    // Update which MI we're checking now.
    MI = *SingleUse;
    if (!MI)
      break;
  }

  return MI;
}

bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
  auto *RC = MRI->getRegClass(Reg);
  int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
  if (RegBytes > 8)
    // We don't support post-load hardening of vectors.
    return false;

  unsigned RegIdx = Log2_32(RegBytes);
  assert(RegIdx < 4 && "Unsupported register size");

  // If this register class is explicitly constrained to a class that doesn't
  // require REX prefix, we may not be able to satisfy that constraint when
  // emitting the hardening instructions, so bail out here.
  // FIXME: This seems like a pretty lame hack. The way this comes up is when we
  // end up both with a NOREX and REX-only register as operands to the hardening
  // instructions. It would be better to fix that code to handle this situation
  // rather than hack around it in this way.
  const TargetRegisterClass *NOREXRegClasses[] = {
      &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
      &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
  if (RC == NOREXRegClasses[RegIdx])
    return false;

  const TargetRegisterClass *GPRRegClasses[] = {
      &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
      &X86::GR64RegClass};
  return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
}

/// Harden a value in a register.
///
/// This is the low-level logic to fully harden a value sitting in a register
/// against leaking during speculative execution.
///
/// Unlike hardening an address that is used by a load, this routine is required
/// to hide *all* incoming bits in the register.
///
/// `Reg` must be a virtual register. Currently, it is required to be a GPR no
/// larger than the predicate state register. FIXME: We should support vector
/// registers here by broadcasting the predicate state.
///
/// The new, hardened virtual register is returned. It will have the same
/// register class as `Reg`.
unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
    unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  assert(canHardenRegister(Reg) && "Cannot harden this register!");
  assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!");

  auto *RC = MRI->getRegClass(Reg);
  int Bytes = TRI->getRegSizeInBits(*RC) / 8;

  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);

  // FIXME: Need to teach this about 32-bit mode.
  if (Bytes != 8) {
    unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
    unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
    Register NarrowStateReg = MRI->createVirtualRegister(RC);
    BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
        .addReg(StateReg, 0, SubRegImm);
    StateReg = NarrowStateReg;
  }

  unsigned FlagsReg = 0;
  if (isEFLAGSLive(MBB, InsertPt, *TRI))
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);

  Register NewReg = MRI->createVirtualRegister(RC);
  unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
  unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
                 .addReg(StateReg)
                 .addReg(Reg);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");

  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);

  return NewReg;
}

/// Harden a load by hardening the loaded value in the defined register.
///
/// We can harden a non-leaking load into a register without touching the
/// address by just hiding all of the loaded bits during misspeculation. We use
/// an `or` instruction to do this because we set up our poison value as all
/// ones. And the goal is just for the loaded bits to not be exposed to
/// execution and coercing them to one is sufficient.
///
/// Returns the newly hardened register.
unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();

  auto &DefOp = MI.getOperand(0);
  Register OldDefReg = DefOp.getReg();
  auto *DefRC = MRI->getRegClass(OldDefReg);

  // Because we want to completely replace the uses of this def'ed value with
  // the hardened value, create a dedicated new register that will only be used
  // to communicate the unhardened value to the hardening.
  Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
  DefOp.setReg(UnhardenedReg);

  // Now harden this register's value, getting a hardened reg that is safe to
  // use. Note that we insert the instructions to compute this *after* the
  // defining instruction, not before it.
  unsigned HardenedReg = hardenValueInRegister(
      UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);

  // Finally, replace the old register (which now only has the uses of the
  // original def) with the hardened register.
  MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);

  ++NumPostLoadRegsHardened;
  return HardenedReg;
}

/// Harden a return instruction.
///
/// Returns implicitly perform a load which we need to harden. Without hardening
/// this load, an attacker my speculatively write over the return address to
/// steer speculation of the return to an attacker controlled address. This is
/// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
/// this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// We can harden this by introducing an LFENCE that will delay any load of the
/// return address until prior instructions have retired (and thus are not being
/// speculated), or we can harden the address used by the implicit load: the
/// stack pointer.
///
/// If we are not using an LFENCE, hardening the stack pointer has an additional
/// benefit: it allows us to pass the predicate state accumulated in this
/// function back to the caller. In the absence of a BCBS attack on the return,
/// the caller will typically be resumed and speculatively executed due to the
/// Return Stack Buffer (RSB) prediction which is very accurate and has a high
/// priority. It is possible that some code from the caller will be executed
/// speculatively even during a BCBS-attacked return until the steering takes
/// effect. Whenever this happens, the caller can recover the (poisoned)
/// predicate state from the stack pointer and continue to harden loads.
void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();
  auto InsertPt = MI.getIterator();

  if (FenceCallAndRet)
    // No need to fence here as we'll fence at the return site itself. That
    // handles more cases than we can handle here.
    return;

  // Take our predicate state, shift it to the high 17 bits (so that we keep
  // pointers canonical) and merge it into RSP. This will allow the caller to
  // extract it when we return (speculatively).
  mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
}

/// Trace the predicate state through a call.
///
/// There are several layers of this needed to handle the full complexity of
/// calls.
///
/// First, we need to send the predicate state into the called function. We do
/// this by merging it into the high bits of the stack pointer.
///
/// For tail calls, this is all we need to do.
///
/// For calls where we might return and resume the control flow, we need to
/// extract the predicate state from the high bits of the stack pointer after
/// control returns from the called function.
///
/// We also need to verify that we intended to return to this location in the
/// code. An attacker might arrange for the processor to mispredict the return
/// to this valid but incorrect return address in the program rather than the
/// correct one. See the paper on this attack, called "ret2spec" by the
/// researchers, here:
/// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
///
/// The way we verify that we returned to the correct location is by preserving
/// the expected return address across the call. One technique involves taking
/// advantage of the red-zone to load the return address from `8(%rsp)` where it
/// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
/// directly save the address into a register that will be preserved across the
/// call. We compare this intended return address against the address
/// immediately following the call (the observed return address). If these
/// mismatch, we have detected misspeculation and can poison our predicate
/// state.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
    MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  auto InsertPt = MI.getIterator();
  DebugLoc Loc = MI.getDebugLoc();

  if (FenceCallAndRet) {
    if (MI.isReturn())
      // Tail call, we don't return to this function.
      // FIXME: We should also handle noreturn calls.
      return;

    // We don't need to fence before the call because the function should fence
    // in its entry. However, we do need to fence after the call returns.
    // Fencing before the return doesn't correctly handle cases where the return
    // itself is mispredicted.
    BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
    return;
  }

  // First, we transfer the predicate state into the called function by merging
  // it into the stack pointer. This will kill the current def of the state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
  mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);

  // If this call is also a return, it is a tail call and we don't need anything
  // else to handle it so just return. Also, if there are no further
  // instructions and no successors, this call does not return so we can also
  // bail.
  if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
    return;

  // Create a symbol to track the return address and attach it to the call
  // machine instruction. We will lower extra symbols attached to call
  // instructions as label immediately following the call.
  MCSymbol *RetSymbol =
      MF.getContext().createTempSymbol("slh_ret_addr",
                                       /*AlwaysAddSuffix*/ true);
  MI.setPostInstrSymbol(MF, RetSymbol);

  const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
  unsigned ExpectedRetAddrReg = 0;

  // If we have no red zones or if the function returns twice (possibly without
  // using the `ret` instruction) like setjmp, we need to save the expected
  // return address prior to the call.
  if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
      MF.exposesReturnsTwice()) {
    // If we don't have red zones, we need to compute the expected return
    // address prior to the call and store it in a register that lives across
    // the call.
    //
    // In some ways, this is doubly satisfying as a mitigation because it will
    // also successfully detect stack smashing bugs in some cases (typically,
    // when a callee-saved register is used and the callee doesn't push it onto
    // the stack). But that isn't our primary goal, so we only use it as
    // a fallback.
    //
    // FIXME: It isn't clear that this is reliable in the face of
    // rematerialization in the register allocator. We somehow need to force
    // that to not occur for this particular instruction, and instead to spill
    // or otherwise preserve the value computed *prior* to the call.
    //
    // FIXME: It is even less clear why MachineCSE can't just fold this when we
    // end up having to use identical instructions both before and after the
    // call to feed the comparison.
    ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
    if (MF.getTarget().getCodeModel() == CodeModel::Small &&
        !Subtarget->isPositionIndependent()) {
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
          .addSym(RetSymbol);
    } else {
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
          .addReg(/*Base*/ X86::RIP)
          .addImm(/*Scale*/ 1)
          .addReg(/*Index*/ 0)
          .addSym(RetSymbol)
          .addReg(/*Segment*/ 0);
    }
  }

  // Step past the call to handle when it returns.
  ++InsertPt;

  // If we didn't pre-compute the expected return address into a register, then
  // red zones are enabled and the return address is still available on the
  // stack immediately after the call. As the very first instruction, we load it
  // into a register.
  if (!ExpectedRetAddrReg) {
    ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
        .addReg(/*Base*/ X86::RSP)
        .addImm(/*Scale*/ 1)
        .addReg(/*Index*/ 0)
        .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
                                     // the return address is 8-bytes past it.
        .addReg(/*Segment*/ 0);
  }

  // Now we extract the callee's predicate state from the stack pointer.
  unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);

  // Test the expected return address against our actual address. If we can
  // form this basic block's address as an immediate, this is easy. Otherwise
  // we compute it.
  if (MF.getTarget().getCodeModel() == CodeModel::Small &&
      !Subtarget->isPositionIndependent()) {
    // FIXME: Could we fold this with the load? It would require careful EFLAGS
    // management.
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
        .addReg(ExpectedRetAddrReg, RegState::Kill)
        .addSym(RetSymbol);
  } else {
    Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
        .addReg(/*Base*/ X86::RIP)
        .addImm(/*Scale*/ 1)
        .addReg(/*Index*/ 0)
        .addSym(RetSymbol)
        .addReg(/*Segment*/ 0);
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
        .addReg(ExpectedRetAddrReg, RegState::Kill)
        .addReg(ActualRetAddrReg, RegState::Kill);
  }

  // Now conditionally update the predicate state we just extracted if we ended
  // up at a different return address than expected.
  int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
  auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);

  Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
  auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
                   .addReg(NewStateReg, RegState::Kill)
                   .addReg(PS->PoisonReg)
                   .addImm(X86::COND_NE);
  CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
  ++NumInstsInserted;
  LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");

  PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
}

/// An attacker may speculatively store over a value that is then speculatively
/// loaded and used as the target of an indirect call or jump instruction. This
/// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
/// in this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// When this happens, the speculative execution of the call or jump will end up
/// being steered to this attacker controlled address. While most such loads
/// will be adequately hardened already, we want to ensure that they are
/// definitively treated as needing post-load hardening. While address hardening
/// is sufficient to prevent secret data from leaking to the attacker, it may
/// not be sufficient to prevent an attacker from steering speculative
/// execution. We forcibly unfolded all relevant loads above and so will always
/// have an opportunity to post-load harden here, we just need to scan for cases
/// not already flagged and add them.
void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
    MachineInstr &MI,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  switch (MI.getOpcode()) {
  case X86::FARCALL16m:
  case X86::FARCALL32m:
  case X86::FARCALL64:
  case X86::FARJMP16m:
  case X86::FARJMP32m:
  case X86::FARJMP64:
    // We don't need to harden either far calls or far jumps as they are
    // safe from Spectre.
    return;

  default:
    break;
  }

  // We should never see a loading instruction at this point, as those should
  // have been unfolded.
  assert(!MI.mayLoad() && "Found a lingering loading instruction!");

  // If the first operand isn't a register, this is a branch or call
  // instruction with an immediate operand which doesn't need to be hardened.
  if (!MI.getOperand(0).isReg())
    return;

  // For all of these, the target register is the first operand of the
  // instruction.
  auto &TargetOp = MI.getOperand(0);
  Register OldTargetReg = TargetOp.getReg();

  // Try to lookup a hardened version of this register. We retain a reference
  // here as we want to update the map to track any newly computed hardened
  // register.
  unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];

  // If we don't have a hardened register yet, compute one. Otherwise, just use
  // the already hardened register.
  //
  // FIXME: It is a little suspect that we use partially hardened registers that
  // only feed addresses. The complexity of partial hardening with SHRX
  // continues to pile up. Should definitively measure its value and consider
  // eliminating it.
  if (!HardenedTargetReg)
    HardenedTargetReg = hardenValueInRegister(
        OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());

  // Set the target operand to the hardened register.
  TargetOp.setReg(HardenedTargetReg);

  ++NumCallsOrJumpsHardened;
}

INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
                      "X86 speculative load hardener", false, false)
INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
                    "X86 speculative load hardener", false, false)

FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
  return new X86SpeculativeLoadHardeningPass();
}