reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
//===------- QualTypeNames.cpp - Generate Complete QualType Names ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/QualTypeNames.h"

#include <stdio.h>
#include <memory>

namespace clang {

namespace TypeName {

/// Create a NestedNameSpecifier for Namesp and its enclosing
/// scopes.
///
/// \param[in] Ctx - the AST Context to be used.
/// \param[in] Namesp - the NamespaceDecl for which a NestedNameSpecifier
/// is requested.
/// \param[in] WithGlobalNsPrefix - Indicate whether the global namespace
/// specifier "::" should be prepended or not.
static NestedNameSpecifier *createNestedNameSpecifier(
    const ASTContext &Ctx,
    const NamespaceDecl *Namesp,
    bool WithGlobalNsPrefix);

/// Create a NestedNameSpecifier for TagDecl and its enclosing
/// scopes.
///
/// \param[in] Ctx - the AST Context to be used.
/// \param[in] TD - the TagDecl for which a NestedNameSpecifier is
/// requested.
/// \param[in] FullyQualify - Convert all template arguments into fully
/// qualified names.
/// \param[in] WithGlobalNsPrefix - Indicate whether the global namespace
/// specifier "::" should be prepended or not.
static NestedNameSpecifier *createNestedNameSpecifier(
    const ASTContext &Ctx, const TypeDecl *TD,
    bool FullyQualify, bool WithGlobalNsPrefix);

static NestedNameSpecifier *createNestedNameSpecifierForScopeOf(
    const ASTContext &Ctx, const Decl *decl,
    bool FullyQualified, bool WithGlobalNsPrefix);

static NestedNameSpecifier *getFullyQualifiedNestedNameSpecifier(
    const ASTContext &Ctx, NestedNameSpecifier *scope, bool WithGlobalNsPrefix);

static bool getFullyQualifiedTemplateName(const ASTContext &Ctx,
                                          TemplateName &TName,
                                          bool WithGlobalNsPrefix) {
  bool Changed = false;
  NestedNameSpecifier *NNS = nullptr;

  TemplateDecl *ArgTDecl = TName.getAsTemplateDecl();
  // ArgTDecl won't be NULL because we asserted that this isn't a
  // dependent context very early in the call chain.
  assert(ArgTDecl != nullptr);
  QualifiedTemplateName *QTName = TName.getAsQualifiedTemplateName();

  if (QTName && !QTName->hasTemplateKeyword()) {
    NNS = QTName->getQualifier();
    NestedNameSpecifier *QNNS = getFullyQualifiedNestedNameSpecifier(
        Ctx, NNS, WithGlobalNsPrefix);
    if (QNNS != NNS) {
      Changed = true;
      NNS = QNNS;
    } else {
      NNS = nullptr;
    }
  } else {
    NNS = createNestedNameSpecifierForScopeOf(
        Ctx, ArgTDecl, true, WithGlobalNsPrefix);
  }
  if (NNS) {
    TName = Ctx.getQualifiedTemplateName(NNS,
                                         /*TemplateKeyword=*/false, ArgTDecl);
    Changed = true;
  }
  return Changed;
}

static bool getFullyQualifiedTemplateArgument(const ASTContext &Ctx,
                                              TemplateArgument &Arg,
                                              bool WithGlobalNsPrefix) {
  bool Changed = false;

  // Note: we do not handle TemplateArgument::Expression, to replace it
  // we need the information for the template instance decl.

  if (Arg.getKind() == TemplateArgument::Template) {
    TemplateName TName = Arg.getAsTemplate();
    Changed = getFullyQualifiedTemplateName(Ctx, TName, WithGlobalNsPrefix);
    if (Changed) {
      Arg = TemplateArgument(TName);
    }
  } else if (Arg.getKind() == TemplateArgument::Type) {
    QualType SubTy = Arg.getAsType();
    // Check if the type needs more desugaring and recurse.
    QualType QTFQ = getFullyQualifiedType(SubTy, Ctx, WithGlobalNsPrefix);
    if (QTFQ != SubTy) {
      Arg = TemplateArgument(QTFQ);
      Changed = true;
    }
  }
  return Changed;
}

static const Type *getFullyQualifiedTemplateType(const ASTContext &Ctx,
                                                 const Type *TypePtr,
                                                 bool WithGlobalNsPrefix) {
  // DependentTemplateTypes exist within template declarations and
  // definitions. Therefore we shouldn't encounter them at the end of
  // a translation unit. If we do, the caller has made an error.
  assert(!isa<DependentTemplateSpecializationType>(TypePtr));
  // In case of template specializations, iterate over the arguments
  // and fully qualify them as well.
  if (const auto *TST = dyn_cast<const TemplateSpecializationType>(TypePtr)) {
    bool MightHaveChanged = false;
    SmallVector<TemplateArgument, 4> FQArgs;
    for (TemplateSpecializationType::iterator I = TST->begin(), E = TST->end();
         I != E; ++I) {
      // Cheap to copy and potentially modified by
      // getFullyQualifedTemplateArgument.
      TemplateArgument Arg(*I);
      MightHaveChanged |= getFullyQualifiedTemplateArgument(
          Ctx, Arg, WithGlobalNsPrefix);
      FQArgs.push_back(Arg);
    }

    // If a fully qualified arg is different from the unqualified arg,
    // allocate new type in the AST.
    if (MightHaveChanged) {
      QualType QT = Ctx.getTemplateSpecializationType(
          TST->getTemplateName(), FQArgs,
          TST->getCanonicalTypeInternal());
      // getTemplateSpecializationType returns a fully qualified
      // version of the specialization itself, so no need to qualify
      // it.
      return QT.getTypePtr();
    }
  } else if (const auto *TSTRecord = dyn_cast<const RecordType>(TypePtr)) {
    // We are asked to fully qualify and we have a Record Type,
    // which can point to a template instantiation with no sugar in any of
    // its template argument, however we still need to fully qualify them.

    if (const auto *TSTDecl =
        dyn_cast<ClassTemplateSpecializationDecl>(TSTRecord->getDecl())) {
      const TemplateArgumentList &TemplateArgs = TSTDecl->getTemplateArgs();

      bool MightHaveChanged = false;
      SmallVector<TemplateArgument, 4> FQArgs;
      for (unsigned int I = 0, E = TemplateArgs.size(); I != E; ++I) {
        // cheap to copy and potentially modified by
        // getFullyQualifedTemplateArgument
        TemplateArgument Arg(TemplateArgs[I]);
        MightHaveChanged |= getFullyQualifiedTemplateArgument(
            Ctx, Arg, WithGlobalNsPrefix);
        FQArgs.push_back(Arg);
      }

      // If a fully qualified arg is different from the unqualified arg,
      // allocate new type in the AST.
      if (MightHaveChanged) {
        TemplateName TN(TSTDecl->getSpecializedTemplate());
        QualType QT = Ctx.getTemplateSpecializationType(
            TN, FQArgs,
            TSTRecord->getCanonicalTypeInternal());
        // getTemplateSpecializationType returns a fully qualified
        // version of the specialization itself, so no need to qualify
        // it.
        return QT.getTypePtr();
      }
    }
  }
  return TypePtr;
}

static NestedNameSpecifier *createOuterNNS(const ASTContext &Ctx, const Decl *D,
                                           bool FullyQualify,
                                           bool WithGlobalNsPrefix) {
  const DeclContext *DC = D->getDeclContext();
  if (const auto *NS = dyn_cast<NamespaceDecl>(DC)) {
    while (NS && NS->isInline()) {
      // Ignore inline namespace;
      NS = dyn_cast<NamespaceDecl>(NS->getDeclContext());
    }
    if (NS->getDeclName()) {
      return createNestedNameSpecifier(Ctx, NS, WithGlobalNsPrefix);
    }
    return nullptr;  // no starting '::', no anonymous
  } else if (const auto *TD = dyn_cast<TagDecl>(DC)) {
    return createNestedNameSpecifier(Ctx, TD, FullyQualify, WithGlobalNsPrefix);
  } else if (const auto *TDD = dyn_cast<TypedefNameDecl>(DC)) {
    return createNestedNameSpecifier(
        Ctx, TDD, FullyQualify, WithGlobalNsPrefix);
  } else if (WithGlobalNsPrefix && DC->isTranslationUnit()) {
    return NestedNameSpecifier::GlobalSpecifier(Ctx);
  }
  return nullptr;  // no starting '::' if |WithGlobalNsPrefix| is false
}

/// Return a fully qualified version of this name specifier.
static NestedNameSpecifier *getFullyQualifiedNestedNameSpecifier(
    const ASTContext &Ctx, NestedNameSpecifier *Scope,
    bool WithGlobalNsPrefix) {
  switch (Scope->getKind()) {
    case NestedNameSpecifier::Global:
      // Already fully qualified
      return Scope;
    case NestedNameSpecifier::Namespace:
      return TypeName::createNestedNameSpecifier(
          Ctx, Scope->getAsNamespace(), WithGlobalNsPrefix);
    case NestedNameSpecifier::NamespaceAlias:
      // Namespace aliases are only valid for the duration of the
      // scope where they were introduced, and therefore are often
      // invalid at the end of the TU.  So use the namespace name more
      // likely to be valid at the end of the TU.
      return TypeName::createNestedNameSpecifier(
          Ctx,
          Scope->getAsNamespaceAlias()->getNamespace()->getCanonicalDecl(),
          WithGlobalNsPrefix);
    case NestedNameSpecifier::Identifier:
      // A function or some other construct that makes it un-namable
      // at the end of the TU. Skip the current component of the name,
      // but use the name of it's prefix.
      return getFullyQualifiedNestedNameSpecifier(
          Ctx, Scope->getPrefix(), WithGlobalNsPrefix);
    case NestedNameSpecifier::Super:
    case NestedNameSpecifier::TypeSpec:
    case NestedNameSpecifier::TypeSpecWithTemplate: {
      const Type *Type = Scope->getAsType();
      // Find decl context.
      const TagDecl *TD = nullptr;
      if (const TagType *TagDeclType = Type->getAs<TagType>()) {
        TD = TagDeclType->getDecl();
      } else {
        TD = Type->getAsCXXRecordDecl();
      }
      if (TD) {
        return TypeName::createNestedNameSpecifier(Ctx, TD,
                                                   true /*FullyQualified*/,
                                                   WithGlobalNsPrefix);
      } else if (const auto *TDD = dyn_cast<TypedefType>(Type)) {
        return TypeName::createNestedNameSpecifier(Ctx, TDD->getDecl(),
                                                   true /*FullyQualified*/,
                                                   WithGlobalNsPrefix);
      }
      return Scope;
    }
  }
  llvm_unreachable("bad NNS kind");
}

/// Create a nested name specifier for the declaring context of
/// the type.
static NestedNameSpecifier *createNestedNameSpecifierForScopeOf(
    const ASTContext &Ctx, const Decl *Decl,
    bool FullyQualified, bool WithGlobalNsPrefix) {
  assert(Decl);

  const DeclContext *DC = Decl->getDeclContext()->getRedeclContext();
  const auto *Outer = dyn_cast_or_null<NamedDecl>(DC);
  const auto *OuterNS = dyn_cast_or_null<NamespaceDecl>(DC);
  if (Outer && !(OuterNS && OuterNS->isAnonymousNamespace())) {
    if (const auto *CxxDecl = dyn_cast<CXXRecordDecl>(DC)) {
      if (ClassTemplateDecl *ClassTempl =
              CxxDecl->getDescribedClassTemplate()) {
        // We are in the case of a type(def) that was declared in a
        // class template but is *not* type dependent.  In clang, it
        // gets attached to the class template declaration rather than
        // any specific class template instantiation.  This result in
        // 'odd' fully qualified typename:
        //
        //    vector<_Tp,_Alloc>::size_type
        //
        // Make the situation is 'useable' but looking a bit odd by
        // picking a random instance as the declaring context.
        if (ClassTempl->spec_begin() != ClassTempl->spec_end()) {
          Decl = *(ClassTempl->spec_begin());
          Outer = dyn_cast<NamedDecl>(Decl);
          OuterNS = dyn_cast<NamespaceDecl>(Decl);
        }
      }
    }

    if (OuterNS) {
      return createNestedNameSpecifier(Ctx, OuterNS, WithGlobalNsPrefix);
    } else if (const auto *TD = dyn_cast<TagDecl>(Outer)) {
      return createNestedNameSpecifier(
          Ctx, TD, FullyQualified, WithGlobalNsPrefix);
    } else if (dyn_cast<TranslationUnitDecl>(Outer)) {
      // Context is the TU. Nothing needs to be done.
      return nullptr;
    } else {
      // Decl's context was neither the TU, a namespace, nor a
      // TagDecl, which means it is a type local to a scope, and not
      // accessible at the end of the TU.
      return nullptr;
    }
  } else if (WithGlobalNsPrefix && DC->isTranslationUnit()) {
    return NestedNameSpecifier::GlobalSpecifier(Ctx);
  }
  return nullptr;
}

/// Create a nested name specifier for the declaring context of
/// the type.
static NestedNameSpecifier *createNestedNameSpecifierForScopeOf(
    const ASTContext &Ctx, const Type *TypePtr,
    bool FullyQualified, bool WithGlobalNsPrefix) {
  if (!TypePtr) return nullptr;

  Decl *Decl = nullptr;
  // There are probably other cases ...
  if (const auto *TDT = dyn_cast<TypedefType>(TypePtr)) {
    Decl = TDT->getDecl();
  } else if (const auto *TagDeclType = dyn_cast<TagType>(TypePtr)) {
    Decl = TagDeclType->getDecl();
  } else if (const auto *TST = dyn_cast<TemplateSpecializationType>(TypePtr)) {
    Decl = TST->getTemplateName().getAsTemplateDecl();
  } else {
    Decl = TypePtr->getAsCXXRecordDecl();
  }

  if (!Decl) return nullptr;

  return createNestedNameSpecifierForScopeOf(
      Ctx, Decl, FullyQualified, WithGlobalNsPrefix);
}

NestedNameSpecifier *createNestedNameSpecifier(const ASTContext &Ctx,
                                               const NamespaceDecl *Namespace,
                                               bool WithGlobalNsPrefix) {
  while (Namespace && Namespace->isInline()) {
    // Ignore inline namespace;
    Namespace = dyn_cast<NamespaceDecl>(Namespace->getDeclContext());
  }
  if (!Namespace) return nullptr;

  bool FullyQualified = true;  // doesn't matter, DeclContexts are namespaces
  return NestedNameSpecifier::Create(
      Ctx,
      createOuterNNS(Ctx, Namespace, FullyQualified, WithGlobalNsPrefix),
      Namespace);
}

NestedNameSpecifier *createNestedNameSpecifier(const ASTContext &Ctx,
                                               const TypeDecl *TD,
                                               bool FullyQualify,
                                               bool WithGlobalNsPrefix) {
  return NestedNameSpecifier::Create(
      Ctx,
      createOuterNNS(Ctx, TD, FullyQualify, WithGlobalNsPrefix),
      false /*No TemplateKeyword*/,
      TD->getTypeForDecl());
}

/// Return the fully qualified type, including fully-qualified
/// versions of any template parameters.
QualType getFullyQualifiedType(QualType QT, const ASTContext &Ctx,
                               bool WithGlobalNsPrefix) {
  // In case of myType* we need to strip the pointer first, fully
  // qualify and attach the pointer once again.
  if (isa<PointerType>(QT.getTypePtr())) {
    // Get the qualifiers.
    Qualifiers Quals = QT.getQualifiers();
    QT = getFullyQualifiedType(QT->getPointeeType(), Ctx, WithGlobalNsPrefix);
    QT = Ctx.getPointerType(QT);
    // Add back the qualifiers.
    QT = Ctx.getQualifiedType(QT, Quals);
    return QT;
  }

  if (auto *MPT = dyn_cast<MemberPointerType>(QT.getTypePtr())) {
    // Get the qualifiers.
    Qualifiers Quals = QT.getQualifiers();
    // Fully qualify the pointee and class types.
    QT = getFullyQualifiedType(QT->getPointeeType(), Ctx, WithGlobalNsPrefix);
    QualType Class = getFullyQualifiedType(QualType(MPT->getClass(), 0), Ctx,
                                           WithGlobalNsPrefix);
    QT = Ctx.getMemberPointerType(QT, Class.getTypePtr());
    // Add back the qualifiers.
    QT = Ctx.getQualifiedType(QT, Quals);
    return QT;
  }

  // In case of myType& we need to strip the reference first, fully
  // qualify and attach the reference once again.
  if (isa<ReferenceType>(QT.getTypePtr())) {
    // Get the qualifiers.
    bool IsLValueRefTy = isa<LValueReferenceType>(QT.getTypePtr());
    Qualifiers Quals = QT.getQualifiers();
    QT = getFullyQualifiedType(QT->getPointeeType(), Ctx, WithGlobalNsPrefix);
    // Add the r- or l-value reference type back to the fully
    // qualified one.
    if (IsLValueRefTy)
      QT = Ctx.getLValueReferenceType(QT);
    else
      QT = Ctx.getRValueReferenceType(QT);
    // Add back the qualifiers.
    QT = Ctx.getQualifiedType(QT, Quals);
    return QT;
  }

  // Remove the part of the type related to the type being a template
  // parameter (we won't report it as part of the 'type name' and it
  // is actually make the code below to be more complex (to handle
  // those)
  while (isa<SubstTemplateTypeParmType>(QT.getTypePtr())) {
    // Get the qualifiers.
    Qualifiers Quals = QT.getQualifiers();

    QT = cast<SubstTemplateTypeParmType>(QT.getTypePtr())->desugar();

    // Add back the qualifiers.
    QT = Ctx.getQualifiedType(QT, Quals);
  }

  NestedNameSpecifier *Prefix = nullptr;
  // Local qualifiers are attached to the QualType outside of the
  // elaborated type.  Retrieve them before descending into the
  // elaborated type.
  Qualifiers PrefixQualifiers = QT.getLocalQualifiers();
  QT = QualType(QT.getTypePtr(), 0);
  ElaboratedTypeKeyword Keyword = ETK_None;
  if (const auto *ETypeInput = dyn_cast<ElaboratedType>(QT.getTypePtr())) {
    QT = ETypeInput->getNamedType();
    assert(!QT.hasLocalQualifiers());
    Keyword = ETypeInput->getKeyword();
  }
  // Create a nested name specifier if needed.
  Prefix = createNestedNameSpecifierForScopeOf(Ctx, QT.getTypePtr(),
                                               true /*FullyQualified*/,
                                               WithGlobalNsPrefix);

  // In case of template specializations iterate over the arguments and
  // fully qualify them as well.
  if (isa<const TemplateSpecializationType>(QT.getTypePtr()) ||
      isa<const RecordType>(QT.getTypePtr())) {
    // We are asked to fully qualify and we have a Record Type (which
    // may point to a template specialization) or Template
    // Specialization Type. We need to fully qualify their arguments.

    const Type *TypePtr = getFullyQualifiedTemplateType(
        Ctx, QT.getTypePtr(), WithGlobalNsPrefix);
    QT = QualType(TypePtr, 0);
  }
  if (Prefix || Keyword != ETK_None) {
    QT = Ctx.getElaboratedType(Keyword, Prefix, QT);
  }
  QT = Ctx.getQualifiedType(QT, PrefixQualifiers);
  return QT;
}

std::string getFullyQualifiedName(QualType QT,
                                  const ASTContext &Ctx,
                                  const PrintingPolicy &Policy,
                                  bool WithGlobalNsPrefix) {
  QualType FQQT = getFullyQualifiedType(QT, Ctx, WithGlobalNsPrefix);
  return FQQT.getAsString(Policy);
}

}  // end namespace TypeName
}  // end namespace clang