reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
//===- ThreadSafetyTIL.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Basic/LLVM.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstddef>

using namespace clang;
using namespace threadSafety;
using namespace til;

StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
  switch (Op) {
    case UOP_Minus:    return "-";
    case UOP_BitNot:   return "~";
    case UOP_LogicNot: return "!";
  }
  return {};
}

StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
  switch (Op) {
    case BOP_Mul:      return "*";
    case BOP_Div:      return "/";
    case BOP_Rem:      return "%";
    case BOP_Add:      return "+";
    case BOP_Sub:      return "-";
    case BOP_Shl:      return "<<";
    case BOP_Shr:      return ">>";
    case BOP_BitAnd:   return "&";
    case BOP_BitXor:   return "^";
    case BOP_BitOr:    return "|";
    case BOP_Eq:       return "==";
    case BOP_Neq:      return "!=";
    case BOP_Lt:       return "<";
    case BOP_Leq:      return "<=";
    case BOP_Cmp:      return "<=>";
    case BOP_LogicAnd: return "&&";
    case BOP_LogicOr:  return "||";
  }
  return {};
}

SExpr* Future::force() {
  Status = FS_evaluating;
  Result = compute();
  Status = FS_done;
  return Result;
}

unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
  unsigned Idx = Predecessors.size();
  Predecessors.reserveCheck(1, Arena);
  Predecessors.push_back(Pred);
  for (auto *E : Args) {
    if (auto *Ph = dyn_cast<Phi>(E)) {
      Ph->values().reserveCheck(1, Arena);
      Ph->values().push_back(nullptr);
    }
  }
  return Idx;
}

void BasicBlock::reservePredecessors(unsigned NumPreds) {
  Predecessors.reserve(NumPreds, Arena);
  for (auto *E : Args) {
    if (auto *Ph = dyn_cast<Phi>(E)) {
      Ph->values().reserve(NumPreds, Arena);
    }
  }
}

// If E is a variable, then trace back through any aliases or redundant
// Phi nodes to find the canonical definition.
const SExpr *til::getCanonicalVal(const SExpr *E) {
  while (true) {
    if (const auto *V = dyn_cast<Variable>(E)) {
      if (V->kind() == Variable::VK_Let) {
        E = V->definition();
        continue;
      }
    }
    if (const auto *Ph = dyn_cast<Phi>(E)) {
      if (Ph->status() == Phi::PH_SingleVal) {
        E = Ph->values()[0];
        continue;
      }
    }
    break;
  }
  return E;
}

// If E is a variable, then trace back through any aliases or redundant
// Phi nodes to find the canonical definition.
// The non-const version will simplify incomplete Phi nodes.
SExpr *til::simplifyToCanonicalVal(SExpr *E) {
  while (true) {
    if (auto *V = dyn_cast<Variable>(E)) {
      if (V->kind() != Variable::VK_Let)
        return V;
      // Eliminate redundant variables, e.g. x = y, or x = 5,
      // but keep anything more complicated.
      if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
        E = V->definition();
        continue;
      }
      return V;
    }
    if (auto *Ph = dyn_cast<Phi>(E)) {
      if (Ph->status() == Phi::PH_Incomplete)
        simplifyIncompleteArg(Ph);
      // Eliminate redundant Phi nodes.
      if (Ph->status() == Phi::PH_SingleVal) {
        E = Ph->values()[0];
        continue;
      }
    }
    return E;
  }
}

// Trace the arguments of an incomplete Phi node to see if they have the same
// canonical definition.  If so, mark the Phi node as redundant.
// getCanonicalVal() will recursively call simplifyIncompletePhi().
void til::simplifyIncompleteArg(til::Phi *Ph) {
  assert(Ph && Ph->status() == Phi::PH_Incomplete);

  // eliminate infinite recursion -- assume that this node is not redundant.
  Ph->setStatus(Phi::PH_MultiVal);

  SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
  for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) {
    SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
    if (Ei == Ph)
      continue;  // Recursive reference to itself.  Don't count.
    if (Ei != E0) {
      return;    // Status is already set to MultiVal.
    }
  }
  Ph->setStatus(Phi::PH_SingleVal);
}

// Renumbers the arguments and instructions to have unique, sequential IDs.
unsigned BasicBlock::renumberInstrs(unsigned ID) {
  for (auto *Arg : Args)
    Arg->setID(this, ID++);
  for (auto *Instr : Instrs)
    Instr->setID(this, ID++);
  TermInstr->setID(this, ID++);
  return ID;
}

// Sorts the CFGs blocks using a reverse post-order depth-first traversal.
// Each block will be written into the Blocks array in order, and its BlockID
// will be set to the index in the array.  Sorting should start from the entry
// block, and ID should be the total number of blocks.
unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks,
                                     unsigned ID) {
  if (Visited) return ID;
  Visited = true;
  for (auto *Block : successors())
    ID = Block->topologicalSort(Blocks, ID);
  // set ID and update block array in place.
  // We may lose pointers to unreachable blocks.
  assert(ID > 0);
  BlockID = --ID;
  Blocks[BlockID] = this;
  return ID;
}

// Performs a reverse topological traversal, starting from the exit block and
// following back-edges.  The dominator is serialized before any predecessors,
// which guarantees that all blocks are serialized after their dominator and
// before their post-dominator (because it's a reverse topological traversal).
// ID should be initially set to 0.
//
// This sort assumes that (1) dominators have been computed, (2) there are no
// critical edges, and (3) the entry block is reachable from the exit block
// and no blocks are accessible via traversal of back-edges from the exit that
// weren't accessible via forward edges from the entry.
unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks,
                                          unsigned ID) {
  // Visited is assumed to have been set by the topologicalSort.  This pass
  // assumes !Visited means that we've visited this node before.
  if (!Visited) return ID;
  Visited = false;
  if (DominatorNode.Parent)
    ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
  for (auto *Pred : Predecessors)
    ID = Pred->topologicalFinalSort(Blocks, ID);
  assert(static_cast<size_t>(ID) < Blocks.size());
  BlockID = ID++;
  Blocks[BlockID] = this;
  return ID;
}

// Computes the immediate dominator of the current block.  Assumes that all of
// its predecessors have already computed their dominators.  This is achieved
// by visiting the nodes in topological order.
void BasicBlock::computeDominator() {
  BasicBlock *Candidate = nullptr;
  // Walk backwards from each predecessor to find the common dominator node.
  for (auto *Pred : Predecessors) {
    // Skip back-edges
    if (Pred->BlockID >= BlockID) continue;
    // If we don't yet have a candidate for dominator yet, take this one.
    if (Candidate == nullptr) {
      Candidate = Pred;
      continue;
    }
    // Walk the alternate and current candidate back to find a common ancestor.
    auto *Alternate = Pred;
    while (Alternate != Candidate) {
      if (Candidate->BlockID > Alternate->BlockID)
        Candidate = Candidate->DominatorNode.Parent;
      else
        Alternate = Alternate->DominatorNode.Parent;
    }
  }
  DominatorNode.Parent = Candidate;
  DominatorNode.SizeOfSubTree = 1;
}

// Computes the immediate post-dominator of the current block.  Assumes that all
// of its successors have already computed their post-dominators.  This is
// achieved visiting the nodes in reverse topological order.
void BasicBlock::computePostDominator() {
  BasicBlock *Candidate = nullptr;
  // Walk back from each predecessor to find the common post-dominator node.
  for (auto *Succ : successors()) {
    // Skip back-edges
    if (Succ->BlockID <= BlockID) continue;
    // If we don't yet have a candidate for post-dominator yet, take this one.
    if (Candidate == nullptr) {
      Candidate = Succ;
      continue;
    }
    // Walk the alternate and current candidate back to find a common ancestor.
    auto *Alternate = Succ;
    while (Alternate != Candidate) {
      if (Candidate->BlockID < Alternate->BlockID)
        Candidate = Candidate->PostDominatorNode.Parent;
      else
        Alternate = Alternate->PostDominatorNode.Parent;
    }
  }
  PostDominatorNode.Parent = Candidate;
  PostDominatorNode.SizeOfSubTree = 1;
}

// Renumber instructions in all blocks
void SCFG::renumberInstrs() {
  unsigned InstrID = 0;
  for (auto *Block : Blocks)
    InstrID = Block->renumberInstrs(InstrID);
}

static inline void computeNodeSize(BasicBlock *B,
                                   BasicBlock::TopologyNode BasicBlock::*TN) {
  BasicBlock::TopologyNode *N = &(B->*TN);
  if (N->Parent) {
    BasicBlock::TopologyNode *P = &(N->Parent->*TN);
    // Initially set ID relative to the (as yet uncomputed) parent ID
    N->NodeID = P->SizeOfSubTree;
    P->SizeOfSubTree += N->SizeOfSubTree;
  }
}

static inline void computeNodeID(BasicBlock *B,
                                 BasicBlock::TopologyNode BasicBlock::*TN) {
  BasicBlock::TopologyNode *N = &(B->*TN);
  if (N->Parent) {
    BasicBlock::TopologyNode *P = &(N->Parent->*TN);
    N->NodeID += P->NodeID;    // Fix NodeIDs relative to starting node.
  }
}

// Normalizes a CFG.  Normalization has a few major components:
// 1) Removing unreachable blocks.
// 2) Computing dominators and post-dominators
// 3) Topologically sorting the blocks into the "Blocks" array.
void SCFG::computeNormalForm() {
  // Topologically sort the blocks starting from the entry block.
  unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
  if (NumUnreachableBlocks > 0) {
    // If there were unreachable blocks shift everything down, and delete them.
    for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
      unsigned NI = I - NumUnreachableBlocks;
      Blocks[NI] = Blocks[I];
      Blocks[NI]->BlockID = NI;
      // FIXME: clean up predecessor pointers to unreachable blocks?
    }
    Blocks.drop(NumUnreachableBlocks);
  }

  // Compute dominators.
  for (auto *Block : Blocks)
    Block->computeDominator();

  // Once dominators have been computed, the final sort may be performed.
  unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
  assert(static_cast<size_t>(NumBlocks) == Blocks.size());
  (void) NumBlocks;

  // Renumber the instructions now that we have a final sort.
  renumberInstrs();

  // Compute post-dominators and compute the sizes of each node in the
  // dominator tree.
  for (auto *Block : Blocks.reverse()) {
    Block->computePostDominator();
    computeNodeSize(Block, &BasicBlock::DominatorNode);
  }
  // Compute the sizes of each node in the post-dominator tree and assign IDs in
  // the dominator tree.
  for (auto *Block : Blocks) {
    computeNodeID(Block, &BasicBlock::DominatorNode);
    computeNodeSize(Block, &BasicBlock::PostDominatorNode);
  }
  // Assign IDs in the post-dominator tree.
  for (auto *Block : Blocks.reverse()) {
    computeNodeID(Block, &BasicBlock::PostDominatorNode);
  }
}