reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
//===- ARM.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

namespace {
class ARM final : public TargetInfo {
public:
  ARM();
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
  void addPltSymbols(InputSection &isec, uint64_t off) const override;
  void addPltHeaderSymbols(InputSection &isd) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
};
} // namespace

ARM::ARM() {
  copyRel = R_ARM_COPY;
  relativeRel = R_ARM_RELATIVE;
  iRelativeRel = R_ARM_IRELATIVE;
  gotRel = R_ARM_GLOB_DAT;
  noneRel = R_ARM_NONE;
  pltRel = R_ARM_JUMP_SLOT;
  symbolicRel = R_ARM_ABS32;
  tlsGotRel = R_ARM_TLS_TPOFF32;
  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
  gotBaseSymInGotPlt = false;
  pltEntrySize = 16;
  pltHeaderSize = 32;
  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
  needsThunks = true;
}

uint32_t ARM::calcEFlags() const {
  // The ABIFloatType is used by loaders to detect the floating point calling
  // convention.
  uint32_t abiFloatType = 0;
  if (config->armVFPArgs == ARMVFPArgKind::Base ||
      config->armVFPArgs == ARMVFPArgKind::Default)
    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
    abiFloatType = EF_ARM_ABI_FLOAT_HARD;

  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
  // but we don't have any firm guarantees of conformance. Linux AArch64
  // kernels (as of 2016) require an EABI version to be set.
  return EF_ARM_EABI_VER5 | abiFloatType;
}

RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
                        const uint8_t *loc) const {
  switch (type) {
  case R_ARM_THM_JUMP11:
    return R_PC;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return R_PLT_PC;
  case R_ARM_GOTOFF32:
    // (S + A) - GOT_ORG
    return R_GOTREL;
  case R_ARM_GOT_BREL:
    // GOT(S) + A - GOT_ORG
    return R_GOT_OFF;
  case R_ARM_GOT_PREL:
  case R_ARM_TLS_IE32:
    // GOT(S) + A - P
    return R_GOT_PC;
  case R_ARM_SBREL32:
    return R_ARM_SBREL;
  case R_ARM_TARGET1:
    return config->target1Rel ? R_PC : R_ABS;
  case R_ARM_TARGET2:
    if (config->target2 == Target2Policy::Rel)
      return R_PC;
    if (config->target2 == Target2Policy::Abs)
      return R_ABS;
    return R_GOT_PC;
  case R_ARM_TLS_GD32:
    return R_TLSGD_PC;
  case R_ARM_TLS_LDM32:
    return R_TLSLD_PC;
  case R_ARM_BASE_PREL:
    // B(S) + A - P
    // FIXME: currently B(S) assumed to be .got, this may not hold for all
    // platforms.
    return R_GOTONLY_PC;
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
    return R_PC;
  case R_ARM_NONE:
    return R_NONE;
  case R_ARM_TLS_LE32:
    return R_TLS;
  case R_ARM_V4BX:
    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
    // given address. It can be used to implement a special linker mode which
    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
    // not ARMv4 output, we can just ignore it.
    return R_HINT;
  default:
    return R_ABS;
  }
}

RelType ARM::getDynRel(RelType type) const {
  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
    return R_ARM_ABS32;
  return R_ARM_NONE;
}

void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
  write32le(buf, in.plt->getVA());
}

void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
  // An ARM entry is the address of the ifunc resolver function.
  write32le(buf, s.getVA());
}

// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltHeaderLong(uint8_t *buf) {
  const uint8_t pltData[] = {
      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4};
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t l1 = in.plt->getVA() + 8;
  write32le(buf + 16, gotPlt - l1 - 8);
}

// The default PLT header requires the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *buf) const {
  // Use a similar sequence to that in writePlt(), the difference is the calling
  // conventions mean we use lr instead of ip. The PLT entry is responsible for
  // saving lr on the stack, the dynamic loader is responsible for reloading
  // it.
  const uint32_t pltData[] = {
      0xe52de004, // L1: str lr, [sp,#-4]!
      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
  };

  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltHeaderLong(buf);
    return;
  }
  write32le(buf + 0, pltData[0]);
  write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
  write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
  write32le(buf + 12, pltData[3] | (offset & 0xfff));
  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
  memcpy(buf + 20, trapInstr.data(), 4);
  memcpy(buf + 24, trapInstr.data(), 4);
  memcpy(buf + 28, trapInstr.data(), 4);
}

void ARM::addPltHeaderSymbols(InputSection &isec) const {
  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
}

// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
                         uint64_t pltEntryAddr, int32_t index,
                         unsigned relOff) {
  const uint8_t pltData[] = {
      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t l1 = pltEntryAddr + 4;
  write32le(buf + 12, gotPltEntryAddr - l1 - 8);
}

// The default PLT entries require the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                   uint64_t pltEntryAddr, int32_t index,
                   unsigned relOff) const {
  // The PLT entry is similar to the example given in Appendix A of ELF for
  // the Arm Architecture. Instead of using the Group Relocations to find the
  // optimal rotation for the 8-bit immediate used in the add instructions we
  // hard code the most compact rotations for simplicity. This saves a load
  // instruction over the long plt sequences.
  const uint32_t pltData[] = {
      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
  };

  uint64_t offset = gotPltEntryAddr - pltEntryAddr - 8;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltLong(buf, gotPltEntryAddr, pltEntryAddr, index, relOff);
    return;
  }
  write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
  write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
  write32le(buf + 8, pltData[2] | (offset & 0xfff));
  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
}

void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
}

bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                     uint64_t branchAddr, const Symbol &s) const {
  // If S is an undefined weak symbol and does not have a PLT entry then it
  // will be resolved as a branch to the next instruction.
  if (s.isUndefWeak() && !s.isInPlt())
    return false;
  // A state change from ARM to Thumb and vice versa must go through an
  // interworking thunk if the relocation type is not R_ARM_CALL or
  // R_ARM_THM_CALL.
  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
    // Source is ARM, all PLT entries are ARM so no interworking required.
    // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
    if (expr == R_PC && ((s.getVA() & 1) == 1))
      return true;
    LLVM_FALLTHROUGH;
  case R_ARM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst);
  }
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    // Source is Thumb, all PLT entries are ARM so interworking is required.
    // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
    if (expr == R_PLT_PC || ((s.getVA() & 1) == 0))
      return true;
    LLVM_FALLTHROUGH;
  case R_ARM_THM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst);
  }
  }
  return false;
}

uint32_t ARM::getThunkSectionSpacing() const {
  // The placing of pre-created ThunkSections is controlled by the value
  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
  // place the ThunkSection such that all branches from the InputSections
  // prior to the ThunkSection can reach a Thunk placed at the end of the
  // ThunkSection. Graphically:
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |

  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
  // B.W:
  // ARM B, BL, BLX range +/- 32MiB
  // Thumb B.W, BL, BLX range +/- 16MiB
  // Thumb B<cc>.W range +/- 1MiB
  // If a branch cannot reach a pre-created ThunkSection a new one will be
  // created so we can handle the rare cases of a Thumb 2 conditional branch.
  // We intentionally use a lower size for thunkSectionSpacing than the maximum
  // branch range so the end of the ThunkSection is more likely to be within
  // range of the branch instruction that is furthest away. The value we shorten
  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
  // one of the Thunks going out of range.

  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
  // ARMv6T2) the range is +/- 4MiB.

  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
                                         : 0x400000 - 0x7500;
}

bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  uint64_t range;
  uint64_t instrSize;

  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
  case R_ARM_CALL:
    range = 0x2000000;
    instrSize = 4;
    break;
  case R_ARM_THM_JUMP19:
    range = 0x100000;
    instrSize = 2;
    break;
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
    instrSize = 2;
    break;
  default:
    return true;
  }
  // PC at Src is 2 instructions ahead, immediate of branch is signed
  if (src > dst)
    range -= 2 * instrSize;
  else
    range += instrSize;

  if ((dst & 0x1) == 0)
    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
    // destination will be 4 byte aligned.
    src &= ~0x3;
  else
    // Bit 0 == 1 denotes Thumb state, it is not part of the range
    dst &= ~0x1;

  uint64_t distance = (src > dst) ? src - dst : dst - src;
  return distance <= range;
}

void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_RELATIVE:
  case R_ARM_SBREL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_LE32:
  case R_ARM_TLS_TPOFF32:
  case R_ARM_TLS_DTPOFF32:
    write32le(loc, val);
    break;
  case R_ARM_PREL31:
    checkInt(loc, val, 31, type);
    write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
    break;
  case R_ARM_CALL:
    // R_ARM_CALL is used for BL and BLX instructions, depending on the
    // value of bit 0 of Val, we must select a BL or BLX instruction
    if (val & 1) {
      // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
      checkInt(loc, val, 26, type);
      write32le(loc, 0xfa000000 |                    // opcode
                         ((val & 2) << 23) |         // H
                         ((val >> 2) & 0x00ffffff)); // imm24
      break;
    }
    if ((read32le(loc) & 0xfe000000) == 0xfa000000)
      // BLX (always unconditional) instruction to an ARM Target, select an
      // unconditional BL.
      write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
    // fall through as BL encoding is shared with B
    LLVM_FALLTHROUGH;
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    checkInt(loc, val, 26, type);
    write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
    break;
  case R_ARM_THM_JUMP11:
    checkInt(loc, val, 12, type);
    write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
    break;
  case R_ARM_THM_JUMP19:
    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
    checkInt(loc, val, 21, type);
    write16le(loc,
              (read16le(loc) & 0xfbc0) |   // opcode cond
                  ((val >> 10) & 0x0400) | // S
                  ((val >> 12) & 0x003f)); // imm6
    write16le(loc + 2,
              0x8000 |                    // opcode
                  ((val >> 8) & 0x0800) | // J2
                  ((val >> 5) & 0x2000) | // J1
                  ((val >> 1) & 0x07ff)); // imm11
    break;
  case R_ARM_THM_CALL:
    // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
    // value of bit 0 of Val, we must select a BL or BLX instruction
    if ((val & 1) == 0) {
      // Ensure BLX destination is 4-byte aligned. As BLX instruction may
      // only be two byte aligned. This must be done before overflow check
      val = alignTo(val, 4);
    }
    // Bit 12 is 0 for BLX, 1 for BL
    write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12);
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      checkInt(loc, val, 23, type);
      write16le(loc,
                0xf000 |                     // opcode
                    ((val >> 12) & 0x07ff)); // imm11
      write16le(loc + 2,
                (read16le(loc + 2) & 0xd000) | // opcode
                    0x2800 |                   // J1 == J2 == 1
                    ((val >> 1) & 0x07ff));    // imm11
      break;
    }
    // Fall through as rest of encoding is the same as B.W
    LLVM_FALLTHROUGH;
  case R_ARM_THM_JUMP24:
    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
    checkInt(loc, val, 25, type);
    write16le(loc,
              0xf000 |                     // opcode
                  ((val >> 14) & 0x0400) | // S
                  ((val >> 12) & 0x03ff)); // imm10
    write16le(loc + 2,
              (read16le(loc + 2) & 0xd000) |                  // opcode
                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
                  ((val >> 1) & 0x07ff));                     // imm11
    break;
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVW_PREL_NC:
    write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
                       (val & 0x0fff));
    break;
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVT_PREL:
    write32le(loc, (read32le(loc) & ~0x000f0fff) |
                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
    break;
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVT_PREL:
    // Encoding T1: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf2c0 |                     // opcode
                  ((val >> 17) & 0x0400) | // i
                  ((val >> 28) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val >> 12) & 0x7000) |   // imm3
                  ((val >> 16) & 0x00ff));   // imm8
    break;
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVW_PREL_NC:
    // Encoding T3: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf240 |                     // opcode
                  ((val >> 1) & 0x0400) |  // i
                  ((val >> 12) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val << 4) & 0x7000) |    // imm3
                  (val & 0x00ff));           // imm8
    break;
  default:
    error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
  }
}

int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  default:
    return 0;
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LE32:
    return SignExtend64<32>(read32le(buf));
  case R_ARM_PREL31:
    return SignExtend64<31>(read32le(buf));
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    return SignExtend64<26>(read32le(buf) << 2);
  case R_ARM_THM_JUMP11:
    return SignExtend64<12>(read16le(buf) << 1);
  case R_ARM_THM_JUMP19: {
    // Encoding T3: A = S:J2:J1:imm10:imm6:0
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
                            ((lo & 0x0800) << 8) |  // J2
                            ((lo & 0x2000) << 5) |  // J1
                            ((hi & 0x003f) << 12) | // imm6
                            ((lo & 0x07ff) << 1));  // imm11:0
  }
  case R_ARM_THM_CALL:
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      uint16_t hi = read16le(buf);
      uint16_t lo = read16le(buf + 2);
      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
                              ((lo & 0x7ff) << 1));  // imm11:0
      break;
    }
    LLVM_FALLTHROUGH;
  case R_ARM_THM_JUMP24: {
    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
                            ((hi & 0x003ff) << 12) |                   // imm0
                            ((lo & 0x007ff) << 1)); // imm11:0
  }
  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
  // MOVT is in the range -32768 <= A < 32768
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL: {
    uint64_t val = read32le(buf) & 0x000f0fff;
    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
  }
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL: {
    // Encoding T3: A = imm4:i:imm3:imm8
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
                            ((hi & 0x0400) << 1) |  // i
                            ((lo & 0x7000) >> 4) |  // imm3
                            (lo & 0x00ff));         // imm8
  }
  }
}

TargetInfo *getARMTargetInfo() {
  static ARM target;
  return &target;
}

} // namespace elf
} // namespace lld