reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H

#include "Config.h"
#include "Relocations.h"
#include "Thunks.h"
#include "lld/Common/LLVM.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"

namespace lld {
namespace elf {

class Symbol;
struct SectionPiece;

class Defined;
struct Partition;
class SyntheticSection;
class MergeSyntheticSection;
template <class ELFT> class ObjFile;
class OutputSection;

extern std::vector<Partition> partitions;

// This is the base class of all sections that lld handles. Some are sections in
// input files, some are sections in the produced output file and some exist
// just as a convenience for implementing special ways of combining some
// sections.
class SectionBase {
public:
  enum Kind { Regular, EHFrame, Merge, Synthetic, Output };

  Kind kind() const { return (Kind)sectionKind; }

  StringRef name;

  // This pointer points to the "real" instance of this instance.
  // Usually Repl == this. However, if ICF merges two sections,
  // Repl pointer of one section points to another section. So,
  // if you need to get a pointer to this instance, do not use
  // this but instead this->Repl.
  SectionBase *repl;

  unsigned sectionKind : 3;

  // The next two bit fields are only used by InputSectionBase, but we
  // put them here so the struct packs better.

  unsigned bss : 1;

  // Set for sections that should not be folded by ICF.
  unsigned keepUnique : 1;

  // The 1-indexed partition that this section is assigned to by the garbage
  // collector, or 0 if this section is dead. Normally there is only one
  // partition, so this will either be 0 or 1.
  uint8_t partition;
  elf::Partition &getPartition() const;

  // These corresponds to the fields in Elf_Shdr.
  uint32_t alignment;
  uint64_t flags;
  uint64_t entsize;
  uint32_t type;
  uint32_t link;
  uint32_t info;

  OutputSection *getOutputSection();
  const OutputSection *getOutputSection() const {
    return const_cast<SectionBase *>(this)->getOutputSection();
  }

  // Translate an offset in the input section to an offset in the output
  // section.
  uint64_t getOffset(uint64_t offset) const;

  uint64_t getVA(uint64_t offset = 0) const;

  bool isLive() const { return partition != 0; }
  void markLive() { partition = 1; }
  void markDead() { partition = 0; }

protected:
  SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
              uint64_t entsize, uint64_t alignment, uint32_t type,
              uint32_t info, uint32_t link)
      : name(name), repl(this), sectionKind(sectionKind), bss(false),
        keepUnique(false), partition(0), alignment(alignment), flags(flags),
        entsize(entsize), type(type), link(link), info(info) {}
};

// This corresponds to a section of an input file.
class InputSectionBase : public SectionBase {
public:
  template <class ELFT>
  InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
                   StringRef name, Kind sectionKind);

  InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
                   uint64_t entsize, uint32_t link, uint32_t info,
                   uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
                   Kind sectionKind);

  static bool classof(const SectionBase *s) { return s->kind() != Output; }

  // Relocations that refer to this section.
  unsigned numRelocations : 31;
  unsigned areRelocsRela : 1;
  const void *firstRelocation = nullptr;

  // The file which contains this section. Its dynamic type is always
  // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
  // its static type.
  InputFile *file;

  template <class ELFT> ObjFile<ELFT> *getFile() const {
    return cast_or_null<ObjFile<ELFT>>(file);
  }

  ArrayRef<uint8_t> data() const {
    if (uncompressedSize >= 0)
      uncompress();
    return rawData;
  }

  uint64_t getOffsetInFile() const;

  // Input sections are part of an output section. Special sections
  // like .eh_frame and merge sections are first combined into a
  // synthetic section that is then added to an output section. In all
  // cases this points one level up.
  SectionBase *parent = nullptr;

  template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const {
    assert(!areRelocsRela);
    return llvm::makeArrayRef(
        static_cast<const typename ELFT::Rel *>(firstRelocation),
        numRelocations);
  }

  template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const {
    assert(areRelocsRela);
    return llvm::makeArrayRef(
        static_cast<const typename ELFT::Rela *>(firstRelocation),
        numRelocations);
  }

  // InputSections that are dependent on us (reverse dependency for GC)
  llvm::TinyPtrVector<InputSection *> dependentSections;

  // Returns the size of this section (even if this is a common or BSS.)
  size_t getSize() const;

  InputSection *getLinkOrderDep() const;

  // Get the function symbol that encloses this offset from within the
  // section.
  template <class ELFT>
  Defined *getEnclosingFunction(uint64_t offset);

  // Returns a source location string. Used to construct an error message.
  template <class ELFT> std::string getLocation(uint64_t offset);
  std::string getSrcMsg(const Symbol &sym, uint64_t offset);
  std::string getObjMsg(uint64_t offset);

  // Each section knows how to relocate itself. These functions apply
  // relocations, assuming that Buf points to this section's copy in
  // the mmap'ed output buffer.
  template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
  void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);

  // The native ELF reloc data type is not very convenient to handle.
  // So we convert ELF reloc records to our own records in Relocations.cpp.
  // This vector contains such "cooked" relocations.
  std::vector<Relocation> relocations;

  // A function compiled with -fsplit-stack calling a function
  // compiled without -fsplit-stack needs its prologue adjusted. Find
  // such functions and adjust their prologues.  This is very similar
  // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
  // information.
  template <typename ELFT>
  void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);


  template <typename T> llvm::ArrayRef<T> getDataAs() const {
    size_t s = data().size();
    assert(s % sizeof(T) == 0);
    return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T));
  }

protected:
  void parseCompressedHeader();
  void uncompress() const;

  mutable ArrayRef<uint8_t> rawData;

  // This field stores the uncompressed size of the compressed data in rawData,
  // or -1 if rawData is not compressed (either because the section wasn't
  // compressed in the first place, or because we ended up uncompressing it).
  // Since the feature is not used often, this is usually -1.
  mutable int64_t uncompressedSize = -1;
};

// SectionPiece represents a piece of splittable section contents.
// We allocate a lot of these and binary search on them. This means that they
// have to be as compact as possible, which is why we don't store the size (can
// be found by looking at the next one).
struct SectionPiece {
  SectionPiece(size_t off, uint32_t hash, bool live)
      : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {}

  uint32_t inputOff;
  uint32_t live : 1;
  uint32_t hash : 31;
  uint64_t outputOff = 0;
};

static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");

// This corresponds to a SHF_MERGE section of an input file.
class MergeInputSection : public InputSectionBase {
public:
  template <class ELFT>
  MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
                    StringRef name);
  MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
                    ArrayRef<uint8_t> data, StringRef name);

  static bool classof(const SectionBase *s) { return s->kind() == Merge; }
  void splitIntoPieces();

  // Translate an offset in the input section to an offset in the parent
  // MergeSyntheticSection.
  uint64_t getParentOffset(uint64_t offset) const;

  // Splittable sections are handled as a sequence of data
  // rather than a single large blob of data.
  std::vector<SectionPiece> pieces;

  // Returns I'th piece's data. This function is very hot when
  // string merging is enabled, so we want to inline.
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  llvm::CachedHashStringRef getData(size_t i) const {
    size_t begin = pieces[i].inputOff;
    size_t end =
        (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
    return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
  }

  // Returns the SectionPiece at a given input section offset.
  SectionPiece *getSectionPiece(uint64_t offset);
  const SectionPiece *getSectionPiece(uint64_t offset) const {
    return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
  }

  SyntheticSection *getParent() const;

private:
  void splitStrings(ArrayRef<uint8_t> a, size_t size);
  void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
};

struct EhSectionPiece {
  EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
                 unsigned firstRelocation)
      : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}

  ArrayRef<uint8_t> data() {
    return {sec->data().data() + this->inputOff, size};
  }

  size_t inputOff;
  ssize_t outputOff = -1;
  InputSectionBase *sec;
  uint32_t size;
  unsigned firstRelocation;
};

// This corresponds to a .eh_frame section of an input file.
class EhInputSection : public InputSectionBase {
public:
  template <class ELFT>
  EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
                 StringRef name);
  static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
  template <class ELFT> void split();
  template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);

  // Splittable sections are handled as a sequence of data
  // rather than a single large blob of data.
  std::vector<EhSectionPiece> pieces;

  SyntheticSection *getParent() const;
};

// This is a section that is added directly to an output section
// instead of needing special combination via a synthetic section. This
// includes all input sections with the exceptions of SHF_MERGE and
// .eh_frame. It also includes the synthetic sections themselves.
class InputSection : public InputSectionBase {
public:
  InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
               ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
  template <class ELFT>
  InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
               StringRef name);

  // Write this section to a mmap'ed file, assuming Buf is pointing to
  // beginning of the output section.
  template <class ELFT> void writeTo(uint8_t *buf);

  uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; }

  OutputSection *getParent() const;

  // This variable has two usages. Initially, it represents an index in the
  // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
  // sections. After assignAddresses is called, it represents the offset from
  // the beginning of the output section this section was assigned to.
  uint64_t outSecOff = 0;

  static bool classof(const SectionBase *s);

  InputSectionBase *getRelocatedSection() const;

  template <class ELFT, class RelTy>
  void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);

  // Used by ICF.
  uint32_t eqClass[2] = {0, 0};

  // Called by ICF to merge two input sections.
  void replace(InputSection *other);

  static InputSection discarded;

private:
  template <class ELFT, class RelTy>
  void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);

  template <class ELFT> void copyShtGroup(uint8_t *buf);
};

// The list of all input sections.
extern std::vector<InputSectionBase *> inputSections;

} // namespace elf

std::string toString(const elf::InputSectionBase *);
} // namespace lld

#endif