reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass exposes codegen information to IR-level passes. Every
/// transformation that uses codegen information is broken into three parts:
/// 1. The IR-level analysis pass.
/// 2. The IR-level transformation interface which provides the needed
///    information.
/// 3. Codegen-level implementation which uses target-specific hooks.
///
/// This file defines #2, which is the interface that IR-level transformations
/// use for querying the codegen.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H

#include "llvm/ADT/Optional.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Analysis/AssumptionCache.h"
#include <functional>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

class AssumptionCache;
class BranchInst;
class Function;
class GlobalValue;
class IntrinsicInst;
class LoadInst;
class Loop;
class SCEV;
class ScalarEvolution;
class StoreInst;
class SwitchInst;
class TargetLibraryInfo;
class Type;
class User;
class Value;

/// Information about a load/store intrinsic defined by the target.
struct MemIntrinsicInfo {
  /// This is the pointer that the intrinsic is loading from or storing to.
  /// If this is non-null, then analysis/optimization passes can assume that
  /// this intrinsic is functionally equivalent to a load/store from this
  /// pointer.
  Value *PtrVal = nullptr;

  // Ordering for atomic operations.
  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;

  // Same Id is set by the target for corresponding load/store intrinsics.
  unsigned short MatchingId = 0;

  bool ReadMem = false;
  bool WriteMem = false;
  bool IsVolatile = false;

  bool isUnordered() const {
    return (Ordering == AtomicOrdering::NotAtomic ||
            Ordering == AtomicOrdering::Unordered) && !IsVolatile;
  }
};

/// Attributes of a target dependent hardware loop.
struct HardwareLoopInfo {
  HardwareLoopInfo() = delete;
  HardwareLoopInfo(Loop *L) : L(L) {}
  Loop *L = nullptr;
  BasicBlock *ExitBlock = nullptr;
  BranchInst *ExitBranch = nullptr;
  const SCEV *ExitCount = nullptr;
  IntegerType *CountType = nullptr;
  Value *LoopDecrement = nullptr; // Decrement the loop counter by this
                                  // value in every iteration.
  bool IsNestingLegal = false;    // Can a hardware loop be a parent to
                                  // another hardware loop?
  bool CounterInReg = false;      // Should loop counter be updated in
                                  // the loop via a phi?
  bool PerformEntryTest = false;  // Generate the intrinsic which also performs
                                  // icmp ne zero on the loop counter value and
                                  // produces an i1 to guard the loop entry.
  bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
                               DominatorTree &DT, bool ForceNestedLoop = false,
                               bool ForceHardwareLoopPHI = false);
  bool canAnalyze(LoopInfo &LI);
};

/// This pass provides access to the codegen interfaces that are needed
/// for IR-level transformations.
class TargetTransformInfo {
public:
  /// Construct a TTI object using a type implementing the \c Concept
  /// API below.
  ///
  /// This is used by targets to construct a TTI wrapping their target-specific
  /// implementation that encodes appropriate costs for their target.
  template <typename T> TargetTransformInfo(T Impl);

  /// Construct a baseline TTI object using a minimal implementation of
  /// the \c Concept API below.
  ///
  /// The TTI implementation will reflect the information in the DataLayout
  /// provided if non-null.
  explicit TargetTransformInfo(const DataLayout &DL);

  // Provide move semantics.
  TargetTransformInfo(TargetTransformInfo &&Arg);
  TargetTransformInfo &operator=(TargetTransformInfo &&RHS);

  // We need to define the destructor out-of-line to define our sub-classes
  // out-of-line.
  ~TargetTransformInfo();

  /// Handle the invalidation of this information.
  ///
  /// When used as a result of \c TargetIRAnalysis this method will be called
  /// when the function this was computed for changes. When it returns false,
  /// the information is preserved across those changes.
  bool invalidate(Function &, const PreservedAnalyses &,
                  FunctionAnalysisManager::Invalidator &) {
    // FIXME: We should probably in some way ensure that the subtarget
    // information for a function hasn't changed.
    return false;
  }

  /// \name Generic Target Information
  /// @{

  /// The kind of cost model.
  ///
  /// There are several different cost models that can be customized by the
  /// target. The normalization of each cost model may be target specific.
  enum TargetCostKind {
    TCK_RecipThroughput, ///< Reciprocal throughput.
    TCK_Latency,         ///< The latency of instruction.
    TCK_CodeSize         ///< Instruction code size.
  };

  /// Query the cost of a specified instruction.
  ///
  /// Clients should use this interface to query the cost of an existing
  /// instruction. The instruction must have a valid parent (basic block).
  ///
  /// Note, this method does not cache the cost calculation and it
  /// can be expensive in some cases.
  int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
    switch (kind){
    case TCK_RecipThroughput:
      return getInstructionThroughput(I);

    case TCK_Latency:
      return getInstructionLatency(I);

    case TCK_CodeSize:
      return getUserCost(I);
    }
    llvm_unreachable("Unknown instruction cost kind");
  }

  /// Underlying constants for 'cost' values in this interface.
  ///
  /// Many APIs in this interface return a cost. This enum defines the
  /// fundamental values that should be used to interpret (and produce) those
  /// costs. The costs are returned as an int rather than a member of this
  /// enumeration because it is expected that the cost of one IR instruction
  /// may have a multiplicative factor to it or otherwise won't fit directly
  /// into the enum. Moreover, it is common to sum or average costs which works
  /// better as simple integral values. Thus this enum only provides constants.
  /// Also note that the returned costs are signed integers to make it natural
  /// to add, subtract, and test with zero (a common boundary condition). It is
  /// not expected that 2^32 is a realistic cost to be modeling at any point.
  ///
  /// Note that these costs should usually reflect the intersection of code-size
  /// cost and execution cost. A free instruction is typically one that folds
  /// into another instruction. For example, reg-to-reg moves can often be
  /// skipped by renaming the registers in the CPU, but they still are encoded
  /// and thus wouldn't be considered 'free' here.
  enum TargetCostConstants {
    TCC_Free = 0,     ///< Expected to fold away in lowering.
    TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
    TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
  };

  /// Estimate the cost of a specific operation when lowered.
  ///
  /// Note that this is designed to work on an arbitrary synthetic opcode, and
  /// thus work for hypothetical queries before an instruction has even been
  /// formed. However, this does *not* work for GEPs, and must not be called
  /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
  /// analyzing a GEP's cost required more information.
  ///
  /// Typically only the result type is required, and the operand type can be
  /// omitted. However, if the opcode is one of the cast instructions, the
  /// operand type is required.
  ///
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
  /// comments for a detailed explanation of the cost values.
  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;

  /// Estimate the cost of a GEP operation when lowered.
  ///
  /// The contract for this function is the same as \c getOperationCost except
  /// that it supports an interface that provides extra information specific to
  /// the GEP operation.
  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) const;

  /// Estimate the cost of a EXT operation when lowered.
  ///
  /// The contract for this function is the same as \c getOperationCost except
  /// that it supports an interface that provides extra information specific to
  /// the EXT operation.
  int getExtCost(const Instruction *I, const Value *Src) const;

  /// Estimate the cost of a function call when lowered.
  ///
  /// The contract for this is the same as \c getOperationCost except that it
  /// supports an interface that provides extra information specific to call
  /// instructions.
  ///
  /// This is the most basic query for estimating call cost: it only knows the
  /// function type and (potentially) the number of arguments at the call site.
  /// The latter is only interesting for varargs function types.
  int getCallCost(FunctionType *FTy, int NumArgs = -1,
                  const User *U = nullptr) const;

  /// Estimate the cost of calling a specific function when lowered.
  ///
  /// This overload adds the ability to reason about the particular function
  /// being called in the event it is a library call with special lowering.
  int getCallCost(const Function *F, int NumArgs = -1,
                  const User *U = nullptr) const;

  /// Estimate the cost of calling a specific function when lowered.
  ///
  /// This overload allows specifying a set of candidate argument values.
  int getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
                  const User *U = nullptr) const;

  /// \returns A value by which our inlining threshold should be multiplied.
  /// This is primarily used to bump up the inlining threshold wholesale on
  /// targets where calls are unusually expensive.
  ///
  /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
  /// individual classes of instructions would be better.
  unsigned getInliningThresholdMultiplier() const;

  /// \returns Vector bonus in percent.
  ///
  /// Vector bonuses: We want to more aggressively inline vector-dense kernels
  /// and apply this bonus based on the percentage of vector instructions. A
  /// bonus is applied if the vector instructions exceed 50% and half that amount
  /// is applied if it exceeds 10%. Note that these bonuses are some what
  /// arbitrary and evolved over time by accident as much as because they are
  /// principled bonuses.
  /// FIXME: It would be nice to base the bonus values on something more
  /// scientific. A target may has no bonus on vector instructions.
  int getInlinerVectorBonusPercent() const;

  /// Estimate the cost of an intrinsic when lowered.
  ///
  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<Type *> ParamTys,
                       const User *U = nullptr) const;

  /// Estimate the cost of an intrinsic when lowered.
  ///
  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<const Value *> Arguments,
                       const User *U = nullptr) const;

  /// \return the expected cost of a memcpy, which could e.g. depend on the
  /// source/destination type and alignment and the number of bytes copied.
  int getMemcpyCost(const Instruction *I) const;

  /// \return The estimated number of case clusters when lowering \p 'SI'.
  /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
  /// table.
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JTSize) const;

  /// Estimate the cost of a given IR user when lowered.
  ///
  /// This can estimate the cost of either a ConstantExpr or Instruction when
  /// lowered. It has two primary advantages over the \c getOperationCost and
  /// \c getGEPCost above, and one significant disadvantage: it can only be
  /// used when the IR construct has already been formed.
  ///
  /// The advantages are that it can inspect the SSA use graph to reason more
  /// accurately about the cost. For example, all-constant-GEPs can often be
  /// folded into a load or other instruction, but if they are used in some
  /// other context they may not be folded. This routine can distinguish such
  /// cases.
  ///
  /// \p Operands is a list of operands which can be a result of transformations
  /// of the current operands. The number of the operands on the list must equal
  /// to the number of the current operands the IR user has. Their order on the
  /// list must be the same as the order of the current operands the IR user
  /// has.
  ///
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
  /// comments for a detailed explanation of the cost values.
  int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;

  /// This is a helper function which calls the two-argument getUserCost
  /// with \p Operands which are the current operands U has.
  int getUserCost(const User *U) const {
    SmallVector<const Value *, 4> Operands(U->value_op_begin(),
                                           U->value_op_end());
    return getUserCost(U, Operands);
  }

  /// Return true if branch divergence exists.
  ///
  /// Branch divergence has a significantly negative impact on GPU performance
  /// when threads in the same wavefront take different paths due to conditional
  /// branches.
  bool hasBranchDivergence() const;

  /// Returns whether V is a source of divergence.
  ///
  /// This function provides the target-dependent information for
  /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
  /// builds the dependency graph, and then runs the reachability algorithm
  /// starting with the sources of divergence.
  bool isSourceOfDivergence(const Value *V) const;

  // Returns true for the target specific
  // set of operations which produce uniform result
  // even taking non-uniform arguments
  bool isAlwaysUniform(const Value *V) const;

  /// Returns the address space ID for a target's 'flat' address space. Note
  /// this is not necessarily the same as addrspace(0), which LLVM sometimes
  /// refers to as the generic address space. The flat address space is a
  /// generic address space that can be used access multiple segments of memory
  /// with different address spaces. Access of a memory location through a
  /// pointer with this address space is expected to be legal but slower
  /// compared to the same memory location accessed through a pointer with a
  /// different address space.
  //
  /// This is for targets with different pointer representations which can
  /// be converted with the addrspacecast instruction. If a pointer is converted
  /// to this address space, optimizations should attempt to replace the access
  /// with the source address space.
  ///
  /// \returns ~0u if the target does not have such a flat address space to
  /// optimize away.
  unsigned getFlatAddressSpace() const;

  /// Return any intrinsic address operand indexes which may be rewritten if
  /// they use a flat address space pointer.
  ///
  /// \returns true if the intrinsic was handled.
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                  Intrinsic::ID IID) const;

  /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
  /// NewV, which has a different address space. This should happen for every
  /// operand index that collectFlatAddressOperands returned for the intrinsic.
  /// \returns true if the intrinsic /// was handled.
  bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
                                        Value *OldV, Value *NewV) const;

  /// Test whether calls to a function lower to actual program function
  /// calls.
  ///
  /// The idea is to test whether the program is likely to require a 'call'
  /// instruction or equivalent in order to call the given function.
  ///
  /// FIXME: It's not clear that this is a good or useful query API. Client's
  /// should probably move to simpler cost metrics using the above.
  /// Alternatively, we could split the cost interface into distinct code-size
  /// and execution-speed costs. This would allow modelling the core of this
  /// query more accurately as a call is a single small instruction, but
  /// incurs significant execution cost.
  bool isLoweredToCall(const Function *F) const;

  struct LSRCost {
    /// TODO: Some of these could be merged. Also, a lexical ordering
    /// isn't always optimal.
    unsigned Insns;
    unsigned NumRegs;
    unsigned AddRecCost;
    unsigned NumIVMuls;
    unsigned NumBaseAdds;
    unsigned ImmCost;
    unsigned SetupCost;
    unsigned ScaleCost;
  };

  /// Parameters that control the generic loop unrolling transformation.
  struct UnrollingPreferences {
    /// The cost threshold for the unrolled loop. Should be relative to the
    /// getUserCost values returned by this API, and the expectation is that
    /// the unrolled loop's instructions when run through that interface should
    /// not exceed this cost. However, this is only an estimate. Also, specific
    /// loops may be unrolled even with a cost above this threshold if deemed
    /// profitable. Set this to UINT_MAX to disable the loop body cost
    /// restriction.
    unsigned Threshold;
    /// If complete unrolling will reduce the cost of the loop, we will boost
    /// the Threshold by a certain percent to allow more aggressive complete
    /// unrolling. This value provides the maximum boost percentage that we
    /// can apply to Threshold (The value should be no less than 100).
    /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
    ///                                    MaxPercentThresholdBoost / 100)
    /// E.g. if complete unrolling reduces the loop execution time by 50%
    /// then we boost the threshold by the factor of 2x. If unrolling is not
    /// expected to reduce the running time, then we do not increase the
    /// threshold.
    unsigned MaxPercentThresholdBoost;
    /// The cost threshold for the unrolled loop when optimizing for size (set
    /// to UINT_MAX to disable).
    unsigned OptSizeThreshold;
    /// The cost threshold for the unrolled loop, like Threshold, but used
    /// for partial/runtime unrolling (set to UINT_MAX to disable).
    unsigned PartialThreshold;
    /// The cost threshold for the unrolled loop when optimizing for size, like
    /// OptSizeThreshold, but used for partial/runtime unrolling (set to
    /// UINT_MAX to disable).
    unsigned PartialOptSizeThreshold;
    /// A forced unrolling factor (the number of concatenated bodies of the
    /// original loop in the unrolled loop body). When set to 0, the unrolling
    /// transformation will select an unrolling factor based on the current cost
    /// threshold and other factors.
    unsigned Count;
    /// A forced peeling factor (the number of bodied of the original loop
    /// that should be peeled off before the loop body). When set to 0, the
    /// unrolling transformation will select a peeling factor based on profile
    /// information and other factors.
    unsigned PeelCount;
    /// Default unroll count for loops with run-time trip count.
    unsigned DefaultUnrollRuntimeCount;
    // Set the maximum unrolling factor. The unrolling factor may be selected
    // using the appropriate cost threshold, but may not exceed this number
    // (set to UINT_MAX to disable). This does not apply in cases where the
    // loop is being fully unrolled.
    unsigned MaxCount;
    /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
    /// applies even if full unrolling is selected. This allows a target to fall
    /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
    unsigned FullUnrollMaxCount;
    // Represents number of instructions optimized when "back edge"
    // becomes "fall through" in unrolled loop.
    // For now we count a conditional branch on a backedge and a comparison
    // feeding it.
    unsigned BEInsns;
    /// Allow partial unrolling (unrolling of loops to expand the size of the
    /// loop body, not only to eliminate small constant-trip-count loops).
    bool Partial;
    /// Allow runtime unrolling (unrolling of loops to expand the size of the
    /// loop body even when the number of loop iterations is not known at
    /// compile time).
    bool Runtime;
    /// Allow generation of a loop remainder (extra iterations after unroll).
    bool AllowRemainder;
    /// Allow emitting expensive instructions (such as divisions) when computing
    /// the trip count of a loop for runtime unrolling.
    bool AllowExpensiveTripCount;
    /// Apply loop unroll on any kind of loop
    /// (mainly to loops that fail runtime unrolling).
    bool Force;
    /// Allow using trip count upper bound to unroll loops.
    bool UpperBound;
    /// Allow peeling off loop iterations.
    bool AllowPeeling;
    /// Allow unrolling of all the iterations of the runtime loop remainder.
    bool UnrollRemainder;
    /// Allow unroll and jam. Used to enable unroll and jam for the target.
    bool UnrollAndJam;
    /// Allow peeling basing on profile. Uses to enable peeling off all
    /// iterations basing on provided profile.
    /// If the value is true the peeling cost model can decide to peel only
    /// some iterations and in this case it will set this to false.
    bool PeelProfiledIterations;
    /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
    /// value above is used during unroll and jam for the outer loop size.
    /// This value is used in the same manner to limit the size of the inner
    /// loop.
    unsigned UnrollAndJamInnerLoopThreshold;
  };

  /// Get target-customized preferences for the generic loop unrolling
  /// transformation. The caller will initialize UP with the current
  /// target-independent defaults.
  void getUnrollingPreferences(Loop *L, ScalarEvolution &,
                               UnrollingPreferences &UP) const;

  /// Query the target whether it would be profitable to convert the given loop
  /// into a hardware loop.
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) const;

  /// @}

  /// \name Scalar Target Information
  /// @{

  /// Flags indicating the kind of support for population count.
  ///
  /// Compared to the SW implementation, HW support is supposed to
  /// significantly boost the performance when the population is dense, and it
  /// may or may not degrade performance if the population is sparse. A HW
  /// support is considered as "Fast" if it can outperform, or is on a par
  /// with, SW implementation when the population is sparse; otherwise, it is
  /// considered as "Slow".
  enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };

  /// Return true if the specified immediate is legal add immediate, that
  /// is the target has add instructions which can add a register with the
  /// immediate without having to materialize the immediate into a register.
  bool isLegalAddImmediate(int64_t Imm) const;

  /// Return true if the specified immediate is legal icmp immediate,
  /// that is the target has icmp instructions which can compare a register
  /// against the immediate without having to materialize the immediate into a
  /// register.
  bool isLegalICmpImmediate(int64_t Imm) const;

  /// Return true if the addressing mode represented by AM is legal for
  /// this target, for a load/store of the specified type.
  /// The type may be VoidTy, in which case only return true if the addressing
  /// mode is legal for a load/store of any legal type.
  /// If target returns true in LSRWithInstrQueries(), I may be valid.
  /// TODO: Handle pre/postinc as well.
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace = 0,
                             Instruction *I = nullptr) const;

  /// Return true if LSR cost of C1 is lower than C1.
  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                     TargetTransformInfo::LSRCost &C2) const;

  /// Return true if the target can fuse a compare and branch.
  /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
  /// calculation for the instructions in a loop.
  bool canMacroFuseCmp() const;

  /// Return true if the target can save a compare for loop count, for example
  /// hardware loop saves a compare.
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
                  DominatorTree *DT, AssumptionCache *AC,
                  TargetLibraryInfo *LibInfo) const;

  /// \return True is LSR should make efforts to create/preserve post-inc
  /// addressing mode expressions.
  bool shouldFavorPostInc() const;

  /// Return true if LSR should make efforts to generate indexed addressing
  /// modes that operate across loop iterations.
  bool shouldFavorBackedgeIndex(const Loop *L) const;

  /// Return true if the target supports masked store.
  bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) const;
  /// Return true if the target supports masked load.
  bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) const;

  /// Return true if the target supports nontemporal store.
  bool isLegalNTStore(Type *DataType, Align Alignment) const;
  /// Return true if the target supports nontemporal load.
  bool isLegalNTLoad(Type *DataType, Align Alignment) const;

  /// Return true if the target supports masked scatter.
  bool isLegalMaskedScatter(Type *DataType) const;
  /// Return true if the target supports masked gather.
  bool isLegalMaskedGather(Type *DataType) const;

  /// Return true if the target supports masked compress store.
  bool isLegalMaskedCompressStore(Type *DataType) const;
  /// Return true if the target supports masked expand load.
  bool isLegalMaskedExpandLoad(Type *DataType) const;

  /// Return true if the target has a unified operation to calculate division
  /// and remainder. If so, the additional implicit multiplication and
  /// subtraction required to calculate a remainder from division are free. This
  /// can enable more aggressive transformations for division and remainder than
  /// would typically be allowed using throughput or size cost models.
  bool hasDivRemOp(Type *DataType, bool IsSigned) const;

  /// Return true if the given instruction (assumed to be a memory access
  /// instruction) has a volatile variant. If that's the case then we can avoid
  /// addrspacecast to generic AS for volatile loads/stores. Default
  /// implementation returns false, which prevents address space inference for
  /// volatile loads/stores.
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;

  /// Return true if target doesn't mind addresses in vectors.
  bool prefersVectorizedAddressing() const;

  /// Return the cost of the scaling factor used in the addressing
  /// mode represented by AM for this target, for a load/store
  /// of the specified type.
  /// If the AM is supported, the return value must be >= 0.
  /// If the AM is not supported, it returns a negative value.
  /// TODO: Handle pre/postinc as well.
  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale,
                           unsigned AddrSpace = 0) const;

  /// Return true if the loop strength reduce pass should make
  /// Instruction* based TTI queries to isLegalAddressingMode(). This is
  /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
  /// immediate offset and no index register.
  bool LSRWithInstrQueries() const;

  /// Return true if it's free to truncate a value of type Ty1 to type
  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
  /// by referencing its sub-register AX.
  bool isTruncateFree(Type *Ty1, Type *Ty2) const;

  /// Return true if it is profitable to hoist instruction in the
  /// then/else to before if.
  bool isProfitableToHoist(Instruction *I) const;

  bool useAA() const;

  /// Return true if this type is legal.
  bool isTypeLegal(Type *Ty) const;

  /// Return true if switches should be turned into lookup tables for the
  /// target.
  bool shouldBuildLookupTables() const;

  /// Return true if switches should be turned into lookup tables
  /// containing this constant value for the target.
  bool shouldBuildLookupTablesForConstant(Constant *C) const;

  /// Return true if the input function which is cold at all call sites,
  ///  should use coldcc calling convention.
  bool useColdCCForColdCall(Function &F) const;

  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;

  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) const;

  /// If target has efficient vector element load/store instructions, it can
  /// return true here so that insertion/extraction costs are not added to
  /// the scalarization cost of a load/store.
  bool supportsEfficientVectorElementLoadStore() const;

  /// Don't restrict interleaved unrolling to small loops.
  bool enableAggressiveInterleaving(bool LoopHasReductions) const;

  /// Returns options for expansion of memcmp. IsZeroCmp is
  // true if this is the expansion of memcmp(p1, p2, s) == 0.
  struct MemCmpExpansionOptions {
    // Return true if memcmp expansion is enabled.
    operator bool() const { return MaxNumLoads > 0; }

    // Maximum number of load operations.
    unsigned MaxNumLoads = 0;

    // The list of available load sizes (in bytes), sorted in decreasing order.
    SmallVector<unsigned, 8> LoadSizes;

    // For memcmp expansion when the memcmp result is only compared equal or
    // not-equal to 0, allow up to this number of load pairs per block. As an
    // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
    //   a0 = load2bytes &a[0]
    //   b0 = load2bytes &b[0]
    //   a2 = load1byte  &a[2]
    //   b2 = load1byte  &b[2]
    //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
    unsigned NumLoadsPerBlock = 1;

    // Set to true to allow overlapping loads. For example, 7-byte compares can
    // be done with two 4-byte compares instead of 4+2+1-byte compares. This
    // requires all loads in LoadSizes to be doable in an unaligned way.
    bool AllowOverlappingLoads = false;
  };
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
                                               bool IsZeroCmp) const;

  /// Enable matching of interleaved access groups.
  bool enableInterleavedAccessVectorization() const;

  /// Enable matching of interleaved access groups that contain predicated
  /// accesses or gaps and therefore vectorized using masked
  /// vector loads/stores.
  bool enableMaskedInterleavedAccessVectorization() const;

  /// Indicate that it is potentially unsafe to automatically vectorize
  /// floating-point operations because the semantics of vector and scalar
  /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
  /// does not support IEEE-754 denormal numbers, while depending on the
  /// platform, scalar floating-point math does.
  /// This applies to floating-point math operations and calls, not memory
  /// operations, shuffles, or casts.
  bool isFPVectorizationPotentiallyUnsafe() const;

  /// Determine if the target supports unaligned memory accesses.
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                      unsigned BitWidth, unsigned AddressSpace = 0,
                                      unsigned Alignment = 1,
                                      bool *Fast = nullptr) const;

  /// Return hardware support for population count.
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;

  /// Return true if the hardware has a fast square-root instruction.
  bool haveFastSqrt(Type *Ty) const;

  /// Return true if it is faster to check if a floating-point value is NaN
  /// (or not-NaN) versus a comparison against a constant FP zero value.
  /// Targets should override this if materializing a 0.0 for comparison is
  /// generally as cheap as checking for ordered/unordered.
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;

  /// Return the expected cost of supporting the floating point operation
  /// of the specified type.
  int getFPOpCost(Type *Ty) const;

  /// Return the expected cost of materializing for the given integer
  /// immediate of the specified type.
  int getIntImmCost(const APInt &Imm, Type *Ty) const;

  /// Return the expected cost of materialization for the given integer
  /// immediate of the specified type for a given instruction. The cost can be
  /// zero if the immediate can be folded into the specified instruction.
  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                    Type *Ty) const;
  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                    Type *Ty) const;

  /// Return the expected cost for the given integer when optimising
  /// for size. This is different than the other integer immediate cost
  /// functions in that it is subtarget agnostic. This is useful when you e.g.
  /// target one ISA such as Aarch32 but smaller encodings could be possible
  /// with another such as Thumb. This return value is used as a penalty when
  /// the total costs for a constant is calculated (the bigger the cost, the
  /// more beneficial constant hoisting is).
  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) const;
  /// @}

  /// \name Vector Target Information
  /// @{

  /// The various kinds of shuffle patterns for vector queries.
  enum ShuffleKind {
    SK_Broadcast,       ///< Broadcast element 0 to all other elements.
    SK_Reverse,         ///< Reverse the order of the vector.
    SK_Select,          ///< Selects elements from the corresponding lane of
                        ///< either source operand. This is equivalent to a
                        ///< vector select with a constant condition operand.
    SK_Transpose,       ///< Transpose two vectors.
    SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
    SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
    SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
                        ///< with any shuffle mask.
    SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
                        ///< shuffle mask.
  };

  /// Additional information about an operand's possible values.
  enum OperandValueKind {
    OK_AnyValue,               // Operand can have any value.
    OK_UniformValue,           // Operand is uniform (splat of a value).
    OK_UniformConstantValue,   // Operand is uniform constant.
    OK_NonUniformConstantValue // Operand is a non uniform constant value.
  };

  /// Additional properties of an operand's values.
  enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };

  /// \return the number of registers in the target-provided register class.
  unsigned getNumberOfRegisters(unsigned ClassID) const;

  /// \return the target-provided register class ID for the provided type,
  /// accounting for type promotion and other type-legalization techniques that the target might apply.
  /// However, it specifically does not account for the scalarization or splitting of vector types.
  /// Should a vector type require scalarization or splitting into multiple underlying vector registers,
  /// that type should be mapped to a register class containing no registers.
  /// Specifically, this is designed to provide a simple, high-level view of the register allocation
  /// later performed by the backend. These register classes don't necessarily map onto the
  /// register classes used by the backend.
  /// FIXME: It's not currently possible to determine how many registers
  /// are used by the provided type.
  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;

  /// \return the target-provided register class name
  const char* getRegisterClassName(unsigned ClassID) const;

  /// \return The width of the largest scalar or vector register type.
  unsigned getRegisterBitWidth(bool Vector) const;

  /// \return The width of the smallest vector register type.
  unsigned getMinVectorRegisterBitWidth() const;

  /// \return True if the vectorization factor should be chosen to
  /// make the vector of the smallest element type match the size of a
  /// vector register. For wider element types, this could result in
  /// creating vectors that span multiple vector registers.
  /// If false, the vectorization factor will be chosen based on the
  /// size of the widest element type.
  bool shouldMaximizeVectorBandwidth(bool OptSize) const;

  /// \return The minimum vectorization factor for types of given element
  /// bit width, or 0 if there is no minimum VF. The returned value only
  /// applies when shouldMaximizeVectorBandwidth returns true.
  unsigned getMinimumVF(unsigned ElemWidth) const;

  /// \return True if it should be considered for address type promotion.
  /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
  /// profitable without finding other extensions fed by the same input.
  bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;

  /// \return The size of a cache line in bytes.
  unsigned getCacheLineSize() const;

  /// The possible cache levels
  enum class CacheLevel {
    L1D,   // The L1 data cache
    L2D,   // The L2 data cache

    // We currently do not model L3 caches, as their sizes differ widely between
    // microarchitectures. Also, we currently do not have a use for L3 cache
    // size modeling yet.
  };

  /// \return The size of the cache level in bytes, if available.
  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;

  /// \return The associativity of the cache level, if available.
  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;

  /// \return How much before a load we should place the prefetch
  /// instruction.  This is currently measured in number of
  /// instructions.
  unsigned getPrefetchDistance() const;

  /// \return Some HW prefetchers can handle accesses up to a certain
  /// constant stride.  This is the minimum stride in bytes where it
  /// makes sense to start adding SW prefetches.  The default is 1,
  /// i.e. prefetch with any stride.
  unsigned getMinPrefetchStride() const;

  /// \return The maximum number of iterations to prefetch ahead.  If
  /// the required number of iterations is more than this number, no
  /// prefetching is performed.
  unsigned getMaxPrefetchIterationsAhead() const;

  /// \return The maximum interleave factor that any transform should try to
  /// perform for this target. This number depends on the level of parallelism
  /// and the number of execution units in the CPU.
  unsigned getMaxInterleaveFactor(unsigned VF) const;

  /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
  static OperandValueKind getOperandInfo(Value *V,
                                         OperandValueProperties &OpProps);

  /// This is an approximation of reciprocal throughput of a math/logic op.
  /// A higher cost indicates less expected throughput.
  /// From Agner Fog's guides, reciprocal throughput is "the average number of
  /// clock cycles per instruction when the instructions are not part of a
  /// limiting dependency chain."
  /// Therefore, costs should be scaled to account for multiple execution units
  /// on the target that can process this type of instruction. For example, if
  /// there are 5 scalar integer units and 2 vector integer units that can
  /// calculate an 'add' in a single cycle, this model should indicate that the
  /// cost of the vector add instruction is 2.5 times the cost of the scalar
  /// add instruction.
  /// \p Args is an optional argument which holds the instruction operands
  /// values so the TTI can analyze those values searching for special
  /// cases or optimizations based on those values.
  int getArithmeticInstrCost(
      unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
      OperandValueKind Opd2Info = OK_AnyValue,
      OperandValueProperties Opd1PropInfo = OP_None,
      OperandValueProperties Opd2PropInfo = OP_None,
      ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;

  /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
  /// The index and subtype parameters are used by the subvector insertion and
  /// extraction shuffle kinds to show the insert/extract point and the type of
  /// the subvector being inserted/extracted.
  /// NOTE: For subvector extractions Tp represents the source type.
  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
                     Type *SubTp = nullptr) const;

  /// \return The expected cost of cast instructions, such as bitcast, trunc,
  /// zext, etc. If there is an existing instruction that holds Opcode, it
  /// may be passed in the 'I' parameter.
  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                       const Instruction *I = nullptr) const;

  /// \return The expected cost of a sign- or zero-extended vector extract. Use
  /// -1 to indicate that there is no information about the index value.
  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
                               unsigned Index = -1) const;

  /// \return The expected cost of control-flow related instructions such as
  /// Phi, Ret, Br.
  int getCFInstrCost(unsigned Opcode) const;

  /// \returns The expected cost of compare and select instructions. If there
  /// is an existing instruction that holds Opcode, it may be passed in the
  /// 'I' parameter.
  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                 Type *CondTy = nullptr, const Instruction *I = nullptr) const;

  /// \return The expected cost of vector Insert and Extract.
  /// Use -1 to indicate that there is no information on the index value.
  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;

  /// \return The cost of Load and Store instructions.
  int getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                      unsigned AddressSpace,
                      const Instruction *I = nullptr) const;

  /// \return The cost of masked Load and Store instructions.
  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                            unsigned AddressSpace) const;

  /// \return The cost of Gather or Scatter operation
  /// \p Opcode - is a type of memory access Load or Store
  /// \p DataTy - a vector type of the data to be loaded or stored
  /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
  /// \p VariableMask - true when the memory access is predicated with a mask
  ///                   that is not a compile-time constant
  /// \p Alignment - alignment of single element
  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
                             bool VariableMask, unsigned Alignment) const;

  /// \return The cost of the interleaved memory operation.
  /// \p Opcode is the memory operation code
  /// \p VecTy is the vector type of the interleaved access.
  /// \p Factor is the interleave factor
  /// \p Indices is the indices for interleaved load members (as interleaved
  ///    load allows gaps)
  /// \p Alignment is the alignment of the memory operation
  /// \p AddressSpace is address space of the pointer.
  /// \p UseMaskForCond indicates if the memory access is predicated.
  /// \p UseMaskForGaps indicates if gaps should be masked.
  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
                                 ArrayRef<unsigned> Indices, unsigned Alignment,
                                 unsigned AddressSpace,
                                 bool UseMaskForCond = false,
                                 bool UseMaskForGaps = false) const;

  /// Calculate the cost of performing a vector reduction.
  ///
  /// This is the cost of reducing the vector value of type \p Ty to a scalar
  /// value using the operation denoted by \p Opcode. The form of the reduction
  /// can either be a pairwise reduction or a reduction that splits the vector
  /// at every reduction level.
  ///
  /// Pairwise:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v1), (v2+v3), undef, undef)
  /// Split:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v2), (v1+v3), undef, undef)
  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                 bool IsPairwiseForm) const;
  int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
                             bool IsUnsigned) const;

  /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
  /// Three cases are handled: 1. scalar instruction 2. vector instruction
  /// 3. scalar instruction which is to be vectorized with VF.
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                            ArrayRef<Value *> Args, FastMathFlags FMF,
                            unsigned VF = 1) const;

  /// \returns The cost of Intrinsic instructions. Types analysis only.
  /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
  /// arguments and the return value will be computed based on types.
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                            ArrayRef<Type *> Tys, FastMathFlags FMF,
                            unsigned ScalarizationCostPassed = UINT_MAX) const;

  /// \returns The cost of Call instructions.
  int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;

  /// \returns The number of pieces into which the provided type must be
  /// split during legalization. Zero is returned when the answer is unknown.
  unsigned getNumberOfParts(Type *Tp) const;

  /// \returns The cost of the address computation. For most targets this can be
  /// merged into the instruction indexing mode. Some targets might want to
  /// distinguish between address computation for memory operations on vector
  /// types and scalar types. Such targets should override this function.
  /// The 'SE' parameter holds pointer for the scalar evolution object which
  /// is used in order to get the Ptr step value in case of constant stride.
  /// The 'Ptr' parameter holds SCEV of the access pointer.
  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
                                const SCEV *Ptr = nullptr) const;

  /// \returns The cost, if any, of keeping values of the given types alive
  /// over a callsite.
  ///
  /// Some types may require the use of register classes that do not have
  /// any callee-saved registers, so would require a spill and fill.
  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;

  /// \returns True if the intrinsic is a supported memory intrinsic.  Info
  /// will contain additional information - whether the intrinsic may write
  /// or read to memory, volatility and the pointer.  Info is undefined
  /// if false is returned.
  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;

  /// \returns The maximum element size, in bytes, for an element
  /// unordered-atomic memory intrinsic.
  unsigned getAtomicMemIntrinsicMaxElementSize() const;

  /// \returns A value which is the result of the given memory intrinsic.  New
  /// instructions may be created to extract the result from the given intrinsic
  /// memory operation.  Returns nullptr if the target cannot create a result
  /// from the given intrinsic.
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) const;

  /// \returns The type to use in a loop expansion of a memcpy call.
  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                  unsigned SrcAlign, unsigned DestAlign) const;

  /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
  /// \param RemainingBytes The number of bytes to copy.
  ///
  /// Calculates the operand types to use when copying \p RemainingBytes of
  /// memory, where source and destination alignments are \p SrcAlign and
  /// \p DestAlign respectively.
  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
                                         LLVMContext &Context,
                                         unsigned RemainingBytes,
                                         unsigned SrcAlign,
                                         unsigned DestAlign) const;

  /// \returns True if the two functions have compatible attributes for inlining
  /// purposes.
  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const;

  /// \returns True if the caller and callee agree on how \p Args will be passed
  /// to the callee.
  /// \param[out] Args The list of compatible arguments.  The implementation may
  /// filter out any incompatible args from this list.
  bool areFunctionArgsABICompatible(const Function *Caller,
                                    const Function *Callee,
                                    SmallPtrSetImpl<Argument *> &Args) const;

  /// The type of load/store indexing.
  enum MemIndexedMode {
    MIM_Unindexed,  ///< No indexing.
    MIM_PreInc,     ///< Pre-incrementing.
    MIM_PreDec,     ///< Pre-decrementing.
    MIM_PostInc,    ///< Post-incrementing.
    MIM_PostDec     ///< Post-decrementing.
  };

  /// \returns True if the specified indexed load for the given type is legal.
  bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;

  /// \returns True if the specified indexed store for the given type is legal.
  bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;

  /// \returns The bitwidth of the largest vector type that should be used to
  /// load/store in the given address space.
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;

  /// \returns True if the load instruction is legal to vectorize.
  bool isLegalToVectorizeLoad(LoadInst *LI) const;

  /// \returns True if the store instruction is legal to vectorize.
  bool isLegalToVectorizeStore(StoreInst *SI) const;

  /// \returns True if it is legal to vectorize the given load chain.
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                   unsigned Alignment,
                                   unsigned AddrSpace) const;

  /// \returns True if it is legal to vectorize the given store chain.
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                    unsigned Alignment,
                                    unsigned AddrSpace) const;

  /// \returns The new vector factor value if the target doesn't support \p
  /// SizeInBytes loads or has a better vector factor.
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                               unsigned ChainSizeInBytes,
                               VectorType *VecTy) const;

  /// \returns The new vector factor value if the target doesn't support \p
  /// SizeInBytes stores or has a better vector factor.
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                unsigned ChainSizeInBytes,
                                VectorType *VecTy) const;

  /// Flags describing the kind of vector reduction.
  struct ReductionFlags {
    ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
    bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
    bool IsSigned; ///< Whether the operation is a signed int reduction.
    bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
  };

  /// \returns True if the target wants to handle the given reduction idiom in
  /// the intrinsics form instead of the shuffle form.
  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                             ReductionFlags Flags) const;

  /// \returns True if the target wants to expand the given reduction intrinsic
  /// into a shuffle sequence.
  bool shouldExpandReduction(const IntrinsicInst *II) const;

  /// \returns the size cost of rematerializing a GlobalValue address relative
  /// to a stack reload.
  unsigned getGISelRematGlobalCost() const;

  /// @}

private:
  /// Estimate the latency of specified instruction.
  /// Returns 1 as the default value.
  int getInstructionLatency(const Instruction *I) const;

  /// Returns the expected throughput cost of the instruction.
  /// Returns -1 if the cost is unknown.
  int getInstructionThroughput(const Instruction *I) const;

  /// The abstract base class used to type erase specific TTI
  /// implementations.
  class Concept;

  /// The template model for the base class which wraps a concrete
  /// implementation in a type erased interface.
  template <typename T> class Model;

  std::unique_ptr<Concept> TTIImpl;
};

class TargetTransformInfo::Concept {
public:
  virtual ~Concept() = 0;
  virtual const DataLayout &getDataLayout() const = 0;
  virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
  virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
                         ArrayRef<const Value *> Operands) = 0;
  virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
  virtual int getCallCost(FunctionType *FTy, int NumArgs, const User *U) = 0;
  virtual int getCallCost(const Function *F, int NumArgs, const User *U) = 0;
  virtual int getCallCost(const Function *F,
                          ArrayRef<const Value *> Arguments, const User *U) = 0;
  virtual unsigned getInliningThresholdMultiplier() = 0;
  virtual int getInlinerVectorBonusPercent() = 0;
  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                               ArrayRef<Type *> ParamTys, const User *U) = 0;
  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                               ArrayRef<const Value *> Arguments,
                               const User *U) = 0;
  virtual int getMemcpyCost(const Instruction *I) = 0;
  virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                                    unsigned &JTSize) = 0;
  virtual int
  getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
  virtual bool hasBranchDivergence() = 0;
  virtual bool isSourceOfDivergence(const Value *V) = 0;
  virtual bool isAlwaysUniform(const Value *V) = 0;
  virtual unsigned getFlatAddressSpace() = 0;
  virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                          Intrinsic::ID IID) const = 0;
  virtual bool rewriteIntrinsicWithAddressSpace(
    IntrinsicInst *II, Value *OldV, Value *NewV) const = 0;
  virtual bool isLoweredToCall(const Function *F) = 0;
  virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
                                       UnrollingPreferences &UP) = 0;
  virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                        AssumptionCache &AC,
                                        TargetLibraryInfo *LibInfo,
                                        HardwareLoopInfo &HWLoopInfo) = 0;
  virtual bool isLegalAddImmediate(int64_t Imm) = 0;
  virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
                                     int64_t BaseOffset, bool HasBaseReg,
                                     int64_t Scale,
                                     unsigned AddrSpace,
                                     Instruction *I) = 0;
  virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                             TargetTransformInfo::LSRCost &C2) = 0;
  virtual bool canMacroFuseCmp() = 0;
  virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
                          LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
                          TargetLibraryInfo *LibInfo) = 0;
  virtual bool shouldFavorPostInc() const = 0;
  virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
  virtual bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) = 0;
  virtual bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) = 0;
  virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
  virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
  virtual bool isLegalMaskedScatter(Type *DataType) = 0;
  virtual bool isLegalMaskedGather(Type *DataType) = 0;
  virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
  virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
  virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
  virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
  virtual bool prefersVectorizedAddressing() = 0;
  virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
                                   int64_t BaseOffset, bool HasBaseReg,
                                   int64_t Scale, unsigned AddrSpace) = 0;
  virtual bool LSRWithInstrQueries() = 0;
  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
  virtual bool isProfitableToHoist(Instruction *I) = 0;
  virtual bool useAA() = 0;
  virtual bool isTypeLegal(Type *Ty) = 0;
  virtual bool shouldBuildLookupTables() = 0;
  virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
  virtual bool useColdCCForColdCall(Function &F) = 0;
  virtual unsigned
  getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
  virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                                    unsigned VF) = 0;
  virtual bool supportsEfficientVectorElementLoadStore() = 0;
  virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
  virtual MemCmpExpansionOptions
  enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
  virtual bool enableInterleavedAccessVectorization() = 0;
  virtual bool enableMaskedInterleavedAccessVectorization() = 0;
  virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
  virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                              unsigned BitWidth,
                                              unsigned AddressSpace,
                                              unsigned Alignment,
                                              bool *Fast) = 0;
  virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
  virtual bool haveFastSqrt(Type *Ty) = 0;
  virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
  virtual int getFPOpCost(Type *Ty) = 0;
  virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                                    Type *Ty) = 0;
  virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
  virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) = 0;
  virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                            Type *Ty) = 0;
  virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
  virtual unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const = 0;
  virtual const char* getRegisterClassName(unsigned ClassID) const = 0;
  virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
  virtual unsigned getMinVectorRegisterBitWidth() = 0;
  virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
  virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
  virtual bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
  virtual unsigned getCacheLineSize() const = 0;
  virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
  virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;

  /// \return How much before a load we should place the prefetch
  /// instruction.  This is currently measured in number of
  /// instructions.
  virtual unsigned getPrefetchDistance() const = 0;

  /// \return Some HW prefetchers can handle accesses up to a certain
  /// constant stride.  This is the minimum stride in bytes where it
  /// makes sense to start adding SW prefetches.  The default is 1,
  /// i.e. prefetch with any stride.
  virtual unsigned getMinPrefetchStride() const = 0;

  /// \return The maximum number of iterations to prefetch ahead.  If
  /// the required number of iterations is more than this number, no
  /// prefetching is performed.
  virtual unsigned getMaxPrefetchIterationsAhead() const = 0;

  virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
  virtual unsigned
  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
                         OperandValueKind Opd2Info,
                         OperandValueProperties Opd1PropInfo,
                         OperandValueProperties Opd2PropInfo,
                         ArrayRef<const Value *> Args) = 0;
  virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                             Type *SubTp) = 0;
  virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                               const Instruction *I) = 0;
  virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                       VectorType *VecTy, unsigned Index) = 0;
  virtual int getCFInstrCost(unsigned Opcode) = 0;
  virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                Type *CondTy, const Instruction *I) = 0;
  virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
                                 unsigned Index) = 0;
  virtual int getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                              unsigned AddressSpace, const Instruction *I) = 0;
  virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                    unsigned Alignment,
                                    unsigned AddressSpace) = 0;
  virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                     Value *Ptr, bool VariableMask,
                                     unsigned Alignment) = 0;
  virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                         unsigned Factor,
                                         ArrayRef<unsigned> Indices,
                                         unsigned Alignment,
                                         unsigned AddressSpace,
                                         bool UseMaskForCond = false,
                                         bool UseMaskForGaps = false) = 0;
  virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                         bool IsPairwiseForm) = 0;
  virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
                                     bool IsPairwiseForm, bool IsUnsigned) = 0;
  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                      ArrayRef<Type *> Tys, FastMathFlags FMF,
                      unsigned ScalarizationCostPassed) = 0;
  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
         ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
  virtual int getCallInstrCost(Function *F, Type *RetTy,
                               ArrayRef<Type *> Tys) = 0;
  virtual unsigned getNumberOfParts(Type *Tp) = 0;
  virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                        const SCEV *Ptr) = 0;
  virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
  virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
                                  MemIntrinsicInfo &Info) = 0;
  virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
  virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                   Type *ExpectedType) = 0;
  virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                          unsigned SrcAlign,
                                          unsigned DestAlign) const = 0;
  virtual void getMemcpyLoopResidualLoweringType(
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
      unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
  virtual bool areInlineCompatible(const Function *Caller,
                                   const Function *Callee) const = 0;
  virtual bool
  areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
                               SmallPtrSetImpl<Argument *> &Args) const = 0;
  virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
  virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
  virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
  virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
  virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
  virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                           unsigned Alignment,
                                           unsigned AddrSpace) const = 0;
  virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                            unsigned Alignment,
                                            unsigned AddrSpace) const = 0;
  virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                                       unsigned ChainSizeInBytes,
                                       VectorType *VecTy) const = 0;
  virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                        unsigned ChainSizeInBytes,
                                        VectorType *VecTy) const = 0;
  virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                     ReductionFlags) const = 0;
  virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
  virtual unsigned getGISelRematGlobalCost() const = 0;
  virtual int getInstructionLatency(const Instruction *I) = 0;
};

template <typename T>
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
  T Impl;

public:
  Model(T Impl) : Impl(std::move(Impl)) {}
  ~Model() override {}

  const DataLayout &getDataLayout() const override {
    return Impl.getDataLayout();
  }

  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
    return Impl.getOperationCost(Opcode, Ty, OpTy);
  }
  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) override {
    return Impl.getGEPCost(PointeeType, Ptr, Operands);
  }
  int getExtCost(const Instruction *I, const Value *Src) override {
    return Impl.getExtCost(I, Src);
  }
  int getCallCost(FunctionType *FTy, int NumArgs, const User *U) override {
    return Impl.getCallCost(FTy, NumArgs, U);
  }
  int getCallCost(const Function *F, int NumArgs, const User *U) override {
    return Impl.getCallCost(F, NumArgs, U);
  }
  int getCallCost(const Function *F,
                  ArrayRef<const Value *> Arguments, const User *U) override {
    return Impl.getCallCost(F, Arguments, U);
  }
  unsigned getInliningThresholdMultiplier() override {
    return Impl.getInliningThresholdMultiplier();
  }
  int getInlinerVectorBonusPercent() override {
    return Impl.getInlinerVectorBonusPercent();
  }
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<Type *> ParamTys, const User *U = nullptr) override {
    return Impl.getIntrinsicCost(IID, RetTy, ParamTys, U);
  }
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<const Value *> Arguments,
                       const User *U = nullptr) override {
    return Impl.getIntrinsicCost(IID, RetTy, Arguments, U);
  }
  int getMemcpyCost(const Instruction *I) override {
    return Impl.getMemcpyCost(I);
  }
  int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
    return Impl.getUserCost(U, Operands);
  }
  bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
  bool isSourceOfDivergence(const Value *V) override {
    return Impl.isSourceOfDivergence(V);
  }

  bool isAlwaysUniform(const Value *V) override {
    return Impl.isAlwaysUniform(V);
  }

  unsigned getFlatAddressSpace() override {
    return Impl.getFlatAddressSpace();
  }

  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                  Intrinsic::ID IID) const override {
    return Impl.collectFlatAddressOperands(OpIndexes, IID);
  }

  bool rewriteIntrinsicWithAddressSpace(
    IntrinsicInst *II, Value *OldV, Value *NewV) const override {
    return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
  }

  bool isLoweredToCall(const Function *F) override {
    return Impl.isLoweredToCall(F);
  }
  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               UnrollingPreferences &UP) override {
    return Impl.getUnrollingPreferences(L, SE, UP);
  }
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) override {
    return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
  }
  bool isLegalAddImmediate(int64_t Imm) override {
    return Impl.isLegalAddImmediate(Imm);
  }
  bool isLegalICmpImmediate(int64_t Imm) override {
    return Impl.isLegalICmpImmediate(Imm);
  }
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace,
                             Instruction *I) override {
    return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
                                      Scale, AddrSpace, I);
  }
  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                     TargetTransformInfo::LSRCost &C2) override {
    return Impl.isLSRCostLess(C1, C2);
  }
  bool canMacroFuseCmp() override {
    return Impl.canMacroFuseCmp();
  }
  bool canSaveCmp(Loop *L, BranchInst **BI,
                        ScalarEvolution *SE,
                        LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
                        TargetLibraryInfo *LibInfo) override {
    return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
  }
  bool shouldFavorPostInc() const override {
    return Impl.shouldFavorPostInc();
  }
  bool shouldFavorBackedgeIndex(const Loop *L) const override {
    return Impl.shouldFavorBackedgeIndex(L);
  }
  bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) override {
    return Impl.isLegalMaskedStore(DataType, Alignment);
  }
  bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) override {
    return Impl.isLegalMaskedLoad(DataType, Alignment);
  }
  bool isLegalNTStore(Type *DataType, Align Alignment) override {
    return Impl.isLegalNTStore(DataType, Alignment);
  }
  bool isLegalNTLoad(Type *DataType, Align Alignment) override {
    return Impl.isLegalNTLoad(DataType, Alignment);
  }
  bool isLegalMaskedScatter(Type *DataType) override {
    return Impl.isLegalMaskedScatter(DataType);
  }
  bool isLegalMaskedGather(Type *DataType) override {
    return Impl.isLegalMaskedGather(DataType);
  }
  bool isLegalMaskedCompressStore(Type *DataType) override {
    return Impl.isLegalMaskedCompressStore(DataType);
  }
  bool isLegalMaskedExpandLoad(Type *DataType) override {
    return Impl.isLegalMaskedExpandLoad(DataType);
  }
  bool hasDivRemOp(Type *DataType, bool IsSigned) override {
    return Impl.hasDivRemOp(DataType, IsSigned);
  }
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
    return Impl.hasVolatileVariant(I, AddrSpace);
  }
  bool prefersVectorizedAddressing() override {
    return Impl.prefersVectorizedAddressing();
  }
  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale,
                           unsigned AddrSpace) override {
    return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
                                     Scale, AddrSpace);
  }
  bool LSRWithInstrQueries() override {
    return Impl.LSRWithInstrQueries();
  }
  bool isTruncateFree(Type *Ty1, Type *Ty2) override {
    return Impl.isTruncateFree(Ty1, Ty2);
  }
  bool isProfitableToHoist(Instruction *I) override {
    return Impl.isProfitableToHoist(I);
  }
  bool useAA() override { return Impl.useAA(); }
  bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
  bool shouldBuildLookupTables() override {
    return Impl.shouldBuildLookupTables();
  }
  bool shouldBuildLookupTablesForConstant(Constant *C) override {
    return Impl.shouldBuildLookupTablesForConstant(C);
  }
  bool useColdCCForColdCall(Function &F) override {
    return Impl.useColdCCForColdCall(F);
  }

  unsigned getScalarizationOverhead(Type *Ty, bool Insert,
                                    bool Extract) override {
    return Impl.getScalarizationOverhead(Ty, Insert, Extract);
  }
  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) override {
    return Impl.getOperandsScalarizationOverhead(Args, VF);
  }

  bool supportsEfficientVectorElementLoadStore() override {
    return Impl.supportsEfficientVectorElementLoadStore();
  }

  bool enableAggressiveInterleaving(bool LoopHasReductions) override {
    return Impl.enableAggressiveInterleaving(LoopHasReductions);
  }
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
                                               bool IsZeroCmp) const override {
    return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
  }
  bool enableInterleavedAccessVectorization() override {
    return Impl.enableInterleavedAccessVectorization();
  }
  bool enableMaskedInterleavedAccessVectorization() override {
    return Impl.enableMaskedInterleavedAccessVectorization();
  }
  bool isFPVectorizationPotentiallyUnsafe() override {
    return Impl.isFPVectorizationPotentiallyUnsafe();
  }
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                      unsigned BitWidth, unsigned AddressSpace,
                                      unsigned Alignment, bool *Fast) override {
    return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
                                               Alignment, Fast);
  }
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
    return Impl.getPopcntSupport(IntTyWidthInBit);
  }
  bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }

  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
    return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
  }

  int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }

  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) override {
    return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
  }
  int getIntImmCost(const APInt &Imm, Type *Ty) override {
    return Impl.getIntImmCost(Imm, Ty);
  }
  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                    Type *Ty) override {
    return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
  }
  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                    Type *Ty) override {
    return Impl.getIntImmCost(IID, Idx, Imm, Ty);
  }
  unsigned getNumberOfRegisters(unsigned ClassID) const override {
    return Impl.getNumberOfRegisters(ClassID);
  }
  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const override {
    return Impl.getRegisterClassForType(Vector, Ty);
  }
  const char* getRegisterClassName(unsigned ClassID) const override {
    return Impl.getRegisterClassName(ClassID);
  }
  unsigned getRegisterBitWidth(bool Vector) const override {
    return Impl.getRegisterBitWidth(Vector);
  }
  unsigned getMinVectorRegisterBitWidth() override {
    return Impl.getMinVectorRegisterBitWidth();
  }
  bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
    return Impl.shouldMaximizeVectorBandwidth(OptSize);
  }
  unsigned getMinimumVF(unsigned ElemWidth) const override {
    return Impl.getMinimumVF(ElemWidth);
  }
  bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
    return Impl.shouldConsiderAddressTypePromotion(
        I, AllowPromotionWithoutCommonHeader);
  }
  unsigned getCacheLineSize() const override {
    return Impl.getCacheLineSize();
  }
  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const override {
    return Impl.getCacheSize(Level);
  }
  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
    return Impl.getCacheAssociativity(Level);
  }

  /// Return the preferred prefetch distance in terms of instructions.
  ///
  unsigned getPrefetchDistance() const override {
    return Impl.getPrefetchDistance();
  }

  /// Return the minimum stride necessary to trigger software
  /// prefetching.
  ///
  unsigned getMinPrefetchStride() const override {
    return Impl.getMinPrefetchStride();
  }

  /// Return the maximum prefetch distance in terms of loop
  /// iterations.
  ///
  unsigned getMaxPrefetchIterationsAhead() const override {
    return Impl.getMaxPrefetchIterationsAhead();
  }

  unsigned getMaxInterleaveFactor(unsigned VF) override {
    return Impl.getMaxInterleaveFactor(VF);
  }
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JTSize) override {
    return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
  }
  unsigned
  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
                         OperandValueKind Opd2Info,
                         OperandValueProperties Opd1PropInfo,
                         OperandValueProperties Opd2PropInfo,
                         ArrayRef<const Value *> Args) override {
    return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                       Opd1PropInfo, Opd2PropInfo, Args);
  }
  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                     Type *SubTp) override {
    return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
  }
  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                       const Instruction *I) override {
    return Impl.getCastInstrCost(Opcode, Dst, Src, I);
  }
  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
                               unsigned Index) override {
    return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
  }
  int getCFInstrCost(unsigned Opcode) override {
    return Impl.getCFInstrCost(Opcode);
  }
  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                         const Instruction *I) override {
    return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
  }
  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
    return Impl.getVectorInstrCost(Opcode, Val, Index);
  }
  int getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                      unsigned AddressSpace, const Instruction *I) override {
    return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
  }
  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                            unsigned AddressSpace) override {
    return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
  }
  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                             Value *Ptr, bool VariableMask,
                             unsigned Alignment) override {
    return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                       Alignment);
  }
  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
                                 ArrayRef<unsigned> Indices, unsigned Alignment,
                                 unsigned AddressSpace, bool UseMaskForCond,
                                 bool UseMaskForGaps) override {
    return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace,
                                           UseMaskForCond, UseMaskForGaps);
  }
  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                 bool IsPairwiseForm) override {
    return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
  }
  int getMinMaxReductionCost(Type *Ty, Type *CondTy,
                             bool IsPairwiseForm, bool IsUnsigned) override {
    return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
   }
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
               FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
    return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
                                      ScalarizationCostPassed);
  }
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
       ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
    return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
  }
  int getCallInstrCost(Function *F, Type *RetTy,
                       ArrayRef<Type *> Tys) override {
    return Impl.getCallInstrCost(F, RetTy, Tys);
  }
  unsigned getNumberOfParts(Type *Tp) override {
    return Impl.getNumberOfParts(Tp);
  }
  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                const SCEV *Ptr) override {
    return Impl.getAddressComputationCost(Ty, SE, Ptr);
  }
  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
    return Impl.getCostOfKeepingLiveOverCall(Tys);
  }
  bool getTgtMemIntrinsic(IntrinsicInst *Inst,
                          MemIntrinsicInfo &Info) override {
    return Impl.getTgtMemIntrinsic(Inst, Info);
  }
  unsigned getAtomicMemIntrinsicMaxElementSize() const override {
    return Impl.getAtomicMemIntrinsicMaxElementSize();
  }
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) override {
    return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
  }
  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                  unsigned SrcAlign,
                                  unsigned DestAlign) const override {
    return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
  }
  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
                                         LLVMContext &Context,
                                         unsigned RemainingBytes,
                                         unsigned SrcAlign,
                                         unsigned DestAlign) const override {
    Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
                                           SrcAlign, DestAlign);
  }
  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const override {
    return Impl.areInlineCompatible(Caller, Callee);
  }
  bool areFunctionArgsABICompatible(
      const Function *Caller, const Function *Callee,
      SmallPtrSetImpl<Argument *> &Args) const override {
    return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
  }
  bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
    return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
  }
  bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
    return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
  }
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
    return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
  }
  bool isLegalToVectorizeLoad(LoadInst *LI) const override {
    return Impl.isLegalToVectorizeLoad(LI);
  }
  bool isLegalToVectorizeStore(StoreInst *SI) const override {
    return Impl.isLegalToVectorizeStore(SI);
  }
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                   unsigned Alignment,
                                   unsigned AddrSpace) const override {
    return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
                                            AddrSpace);
  }
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                    unsigned Alignment,
                                    unsigned AddrSpace) const override {
    return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
                                             AddrSpace);
  }
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                               unsigned ChainSizeInBytes,
                               VectorType *VecTy) const override {
    return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
  }
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                unsigned ChainSizeInBytes,
                                VectorType *VecTy) const override {
    return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
  }
  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                             ReductionFlags Flags) const override {
    return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
  }
  bool shouldExpandReduction(const IntrinsicInst *II) const override {
    return Impl.shouldExpandReduction(II);
  }

  unsigned getGISelRematGlobalCost() const override {
    return Impl.getGISelRematGlobalCost();
  }

  int getInstructionLatency(const Instruction *I) override {
    return Impl.getInstructionLatency(I);
  }
};

template <typename T>
TargetTransformInfo::TargetTransformInfo(T Impl)
    : TTIImpl(new Model<T>(Impl)) {}

/// Analysis pass providing the \c TargetTransformInfo.
///
/// The core idea of the TargetIRAnalysis is to expose an interface through
/// which LLVM targets can analyze and provide information about the middle
/// end's target-independent IR. This supports use cases such as target-aware
/// cost modeling of IR constructs.
///
/// This is a function analysis because much of the cost modeling for targets
/// is done in a subtarget specific way and LLVM supports compiling different
/// functions targeting different subtargets in order to support runtime
/// dispatch according to the observed subtarget.
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
public:
  typedef TargetTransformInfo Result;

  /// Default construct a target IR analysis.
  ///
  /// This will use the module's datalayout to construct a baseline
  /// conservative TTI result.
  TargetIRAnalysis();

  /// Construct an IR analysis pass around a target-provide callback.
  ///
  /// The callback will be called with a particular function for which the TTI
  /// is needed and must return a TTI object for that function.
  TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);

  // Value semantics. We spell out the constructors for MSVC.
  TargetIRAnalysis(const TargetIRAnalysis &Arg)
      : TTICallback(Arg.TTICallback) {}
  TargetIRAnalysis(TargetIRAnalysis &&Arg)
      : TTICallback(std::move(Arg.TTICallback)) {}
  TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
    TTICallback = RHS.TTICallback;
    return *this;
  }
  TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
    TTICallback = std::move(RHS.TTICallback);
    return *this;
  }

  Result run(const Function &F, FunctionAnalysisManager &);

private:
  friend AnalysisInfoMixin<TargetIRAnalysis>;
  static AnalysisKey Key;

  /// The callback used to produce a result.
  ///
  /// We use a completely opaque callback so that targets can provide whatever
  /// mechanism they desire for constructing the TTI for a given function.
  ///
  /// FIXME: Should we really use std::function? It's relatively inefficient.
  /// It might be possible to arrange for even stateful callbacks to outlive
  /// the analysis and thus use a function_ref which would be lighter weight.
  /// This may also be less error prone as the callback is likely to reference
  /// the external TargetMachine, and that reference needs to never dangle.
  std::function<Result(const Function &)> TTICallback;

  /// Helper function used as the callback in the default constructor.
  static Result getDefaultTTI(const Function &F);
};

/// Wrapper pass for TargetTransformInfo.
///
/// This pass can be constructed from a TTI object which it stores internally
/// and is queried by passes.
class TargetTransformInfoWrapperPass : public ImmutablePass {
  TargetIRAnalysis TIRA;
  Optional<TargetTransformInfo> TTI;

  virtual void anchor();

public:
  static char ID;

  /// We must provide a default constructor for the pass but it should
  /// never be used.
  ///
  /// Use the constructor below or call one of the creation routines.
  TargetTransformInfoWrapperPass();

  explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);

  TargetTransformInfo &getTTI(const Function &F);
};

/// Create an analysis pass wrapper around a TTI object.
///
/// This analysis pass just holds the TTI instance and makes it available to
/// clients.
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);

} // End llvm namespace

#endif