1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
| //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for the subclasses of Constant,
/// which represent the different flavors of constant values that live in LLVM.
/// Note that Constants are immutable (once created they never change) and are
/// fully shared by structural equivalence. This means that two structurally
/// equivalent constants will always have the same address. Constants are
/// created on demand as needed and never deleted: thus clients don't have to
/// worry about the lifetime of the objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTS_H
#define LLVM_IR_CONSTANTS_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
namespace llvm {
class ArrayType;
class IntegerType;
class PointerType;
class SequentialType;
class StructType;
class VectorType;
template <class ConstantClass> struct ConstantAggrKeyType;
/// Base class for constants with no operands.
///
/// These constants have no operands; they represent their data directly.
/// Since they can be in use by unrelated modules (and are never based on
/// GlobalValues), it never makes sense to RAUW them.
class ConstantData : public Constant {
friend class Constant;
Value *handleOperandChangeImpl(Value *From, Value *To) {
llvm_unreachable("Constant data does not have operands!");
}
protected:
explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
void *operator new(size_t s) { return User::operator new(s, 0); }
public:
ConstantData(const ConstantData &) = delete;
/// Methods to support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Value *V) {
return V->getValueID() >= ConstantDataFirstVal &&
V->getValueID() <= ConstantDataLastVal;
}
};
//===----------------------------------------------------------------------===//
/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// Class for constant integers.
class ConstantInt final : public ConstantData {
friend class Constant;
APInt Val;
ConstantInt(IntegerType *Ty, const APInt& V);
void destroyConstantImpl();
public:
ConstantInt(const ConstantInt &) = delete;
static ConstantInt *getTrue(LLVMContext &Context);
static ConstantInt *getFalse(LLVMContext &Context);
static Constant *getTrue(Type *Ty);
static Constant *getFalse(Type *Ty);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
/// Return a ConstantInt with the specified integer value for the specified
/// type. If the type is wider than 64 bits, the value will be zero-extended
/// to fit the type, unless isSigned is true, in which case the value will
/// be interpreted as a 64-bit signed integer and sign-extended to fit
/// the type.
/// Get a ConstantInt for a specific value.
static ConstantInt *get(IntegerType *Ty, uint64_t V,
bool isSigned = false);
/// Return a ConstantInt with the specified value for the specified type. The
/// value V will be canonicalized to a an unsigned APInt. Accessing it with
/// either getSExtValue() or getZExtValue() will yield a correctly sized and
/// signed value for the type Ty.
/// Get a ConstantInt for a specific signed value.
static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
static Constant *getSigned(Type *Ty, int64_t V);
/// Return a ConstantInt with the specified value and an implied Type. The
/// type is the integer type that corresponds to the bit width of the value.
static ConstantInt *get(LLVMContext &Context, const APInt &V);
/// Return a ConstantInt constructed from the string strStart with the given
/// radix.
static ConstantInt *get(IntegerType *Ty, StringRef Str,
uint8_t radix);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(Type* Ty, const APInt& V);
/// Return the constant as an APInt value reference. This allows clients to
/// obtain a full-precision copy of the value.
/// Return the constant's value.
inline const APInt &getValue() const {
return Val;
}
/// getBitWidth - Return the bitwidth of this constant.
unsigned getBitWidth() const { return Val.getBitWidth(); }
/// Return the constant as a 64-bit unsigned integer value after it
/// has been zero extended as appropriate for the type of this constant. Note
/// that this method can assert if the value does not fit in 64 bits.
/// Return the zero extended value.
inline uint64_t getZExtValue() const {
return Val.getZExtValue();
}
/// Return the constant as a 64-bit integer value after it has been sign
/// extended as appropriate for the type of this constant. Note that
/// this method can assert if the value does not fit in 64 bits.
/// Return the sign extended value.
inline int64_t getSExtValue() const {
return Val.getSExtValue();
}
/// A helper method that can be used to determine if the constant contained
/// within is equal to a constant. This only works for very small values,
/// because this is all that can be represented with all types.
/// Determine if this constant's value is same as an unsigned char.
bool equalsInt(uint64_t V) const {
return Val == V;
}
/// getType - Specialize the getType() method to always return an IntegerType,
/// which reduces the amount of casting needed in parts of the compiler.
///
inline IntegerType *getType() const {
return cast<IntegerType>(Value::getType());
}
/// This static method returns true if the type Ty is big enough to
/// represent the value V. This can be used to avoid having the get method
/// assert when V is larger than Ty can represent. Note that there are two
/// versions of this method, one for unsigned and one for signed integers.
/// Although ConstantInt canonicalizes everything to an unsigned integer,
/// the signed version avoids callers having to convert a signed quantity
/// to the appropriate unsigned type before calling the method.
/// @returns true if V is a valid value for type Ty
/// Determine if the value is in range for the given type.
static bool isValueValidForType(Type *Ty, uint64_t V);
static bool isValueValidForType(Type *Ty, int64_t V);
bool isNegative() const { return Val.isNegative(); }
/// This is just a convenience method to make client code smaller for a
/// common code. It also correctly performs the comparison without the
/// potential for an assertion from getZExtValue().
bool isZero() const {
return Val.isNullValue();
}
/// This is just a convenience method to make client code smaller for a
/// common case. It also correctly performs the comparison without the
/// potential for an assertion from getZExtValue().
/// Determine if the value is one.
bool isOne() const {
return Val.isOneValue();
}
/// This function will return true iff every bit in this constant is set
/// to true.
/// @returns true iff this constant's bits are all set to true.
/// Determine if the value is all ones.
bool isMinusOne() const {
return Val.isAllOnesValue();
}
/// This function will return true iff this constant represents the largest
/// value that may be represented by the constant's type.
/// @returns true iff this is the largest value that may be represented
/// by this type.
/// Determine if the value is maximal.
bool isMaxValue(bool isSigned) const {
if (isSigned)
return Val.isMaxSignedValue();
else
return Val.isMaxValue();
}
/// This function will return true iff this constant represents the smallest
/// value that may be represented by this constant's type.
/// @returns true if this is the smallest value that may be represented by
/// this type.
/// Determine if the value is minimal.
bool isMinValue(bool isSigned) const {
if (isSigned)
return Val.isMinSignedValue();
else
return Val.isMinValue();
}
/// This function will return true iff this constant represents a value with
/// active bits bigger than 64 bits or a value greater than the given uint64_t
/// value.
/// @returns true iff this constant is greater or equal to the given number.
/// Determine if the value is greater or equal to the given number.
bool uge(uint64_t Num) const {
return Val.uge(Num);
}
/// getLimitedValue - If the value is smaller than the specified limit,
/// return it, otherwise return the limit value. This causes the value
/// to saturate to the limit.
/// @returns the min of the value of the constant and the specified value
/// Get the constant's value with a saturation limit
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
return Val.getLimitedValue(Limit);
}
/// Methods to support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Value *V) {
return V->getValueID() == ConstantIntVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantFP - Floating Point Values [float, double]
///
class ConstantFP final : public ConstantData {
friend class Constant;
APFloat Val;
ConstantFP(Type *Ty, const APFloat& V);
void destroyConstantImpl();
public:
ConstantFP(const ConstantFP &) = delete;
/// Floating point negation must be implemented with f(x) = -0.0 - x. This
/// method returns the negative zero constant for floating point or vector
/// floating point types; for all other types, it returns the null value.
static Constant *getZeroValueForNegation(Type *Ty);
/// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
/// for the specified value in the specified type. This should only be used
/// for simple constant values like 2.0/1.0 etc, that are known-valid both as
/// host double and as the target format.
static Constant *get(Type* Ty, double V);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantFP for the given value.
static Constant *get(Type *Ty, const APFloat &V);
static Constant *get(Type* Ty, StringRef Str);
static ConstantFP *get(LLVMContext &Context, const APFloat &V);
static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0);
static Constant *getQNaN(Type *Ty, bool Negative = false,
APInt *Payload = nullptr);
static Constant *getSNaN(Type *Ty, bool Negative = false,
APInt *Payload = nullptr);
static Constant *getNegativeZero(Type *Ty);
static Constant *getInfinity(Type *Ty, bool Negative = false);
/// Return true if Ty is big enough to represent V.
static bool isValueValidForType(Type *Ty, const APFloat &V);
inline const APFloat &getValueAPF() const { return Val; }
/// Return true if the value is positive or negative zero.
bool isZero() const { return Val.isZero(); }
/// Return true if the sign bit is set.
bool isNegative() const { return Val.isNegative(); }
/// Return true if the value is infinity
bool isInfinity() const { return Val.isInfinity(); }
/// Return true if the value is a NaN.
bool isNaN() const { return Val.isNaN(); }
/// We don't rely on operator== working on double values, as it returns true
/// for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values. The version with a double operand is retained
/// because it's so convenient to write isExactlyValue(2.0), but please use
/// it only for simple constants.
bool isExactlyValue(const APFloat &V) const;
bool isExactlyValue(double V) const {
bool ignored;
APFloat FV(V);
FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
return isExactlyValue(FV);
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantFPVal;
}
};
//===----------------------------------------------------------------------===//
/// All zero aggregate value
///
class ConstantAggregateZero final : public ConstantData {
friend class Constant;
explicit ConstantAggregateZero(Type *Ty)
: ConstantData(Ty, ConstantAggregateZeroVal) {}
void destroyConstantImpl();
public:
ConstantAggregateZero(const ConstantAggregateZero &) = delete;
static ConstantAggregateZero *get(Type *Ty);
/// If this CAZ has array or vector type, return a zero with the right element
/// type.
Constant *getSequentialElement() const;
/// If this CAZ has struct type, return a zero with the right element type for
/// the specified element.
Constant *getStructElement(unsigned Elt) const;
/// Return a zero of the right value for the specified GEP index if we can,
/// otherwise return null (e.g. if C is a ConstantExpr).
Constant *getElementValue(Constant *C) const;
/// Return a zero of the right value for the specified GEP index.
Constant *getElementValue(unsigned Idx) const;
/// Return the number of elements in the array, vector, or struct.
unsigned getNumElements() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const Value *V) {
return V->getValueID() == ConstantAggregateZeroVal;
}
};
/// Base class for aggregate constants (with operands).
///
/// These constants are aggregates of other constants, which are stored as
/// operands.
///
/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
/// ConstantVector.
///
/// \note Some subclasses of \a ConstantData are semantically aggregates --
/// such as \a ConstantDataArray -- but are not subclasses of this because they
/// use operands.
class ConstantAggregate : public Constant {
protected:
ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
public:
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() >= ConstantAggregateFirstVal &&
V->getValueID() <= ConstantAggregateLastVal;
}
};
template <>
struct OperandTraits<ConstantAggregate>
: public VariadicOperandTraits<ConstantAggregate> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
//===----------------------------------------------------------------------===//
/// ConstantArray - Constant Array Declarations
///
class ConstantArray final : public ConstantAggregate {
friend struct ConstantAggrKeyType<ConstantArray>;
friend class Constant;
ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl();
Value *handleOperandChangeImpl(Value *From, Value *To);
public:
// ConstantArray accessors
static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
private:
static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
public:
/// Specialize the getType() method to always return an ArrayType,
/// which reduces the amount of casting needed in parts of the compiler.
inline ArrayType *getType() const {
return cast<ArrayType>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantArrayVal;
}
};
//===----------------------------------------------------------------------===//
// Constant Struct Declarations
//
class ConstantStruct final : public ConstantAggregate {
friend struct ConstantAggrKeyType<ConstantStruct>;
friend class Constant;
ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl();
Value *handleOperandChangeImpl(Value *From, Value *To);
public:
// ConstantStruct accessors
static Constant *get(StructType *T, ArrayRef<Constant*> V);
template <typename... Csts>
static typename std::enable_if<are_base_of<Constant, Csts...>::value,
Constant *>::type
get(StructType *T, Csts *... Vs) {
SmallVector<Constant *, 8> Values({Vs...});
return get(T, Values);
}
/// Return an anonymous struct that has the specified elements.
/// If the struct is possibly empty, then you must specify a context.
static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
return get(getTypeForElements(V, Packed), V);
}
static Constant *getAnon(LLVMContext &Ctx,
ArrayRef<Constant*> V, bool Packed = false) {
return get(getTypeForElements(Ctx, V, Packed), V);
}
/// Return an anonymous struct type to use for a constant with the specified
/// set of elements. The list must not be empty.
static StructType *getTypeForElements(ArrayRef<Constant*> V,
bool Packed = false);
/// This version of the method allows an empty list.
static StructType *getTypeForElements(LLVMContext &Ctx,
ArrayRef<Constant*> V,
bool Packed = false);
/// Specialization - reduce amount of casting.
inline StructType *getType() const {
return cast<StructType>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantStructVal;
}
};
//===----------------------------------------------------------------------===//
/// Constant Vector Declarations
///
class ConstantVector final : public ConstantAggregate {
friend struct ConstantAggrKeyType<ConstantVector>;
friend class Constant;
ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
void destroyConstantImpl();
Value *handleOperandChangeImpl(Value *From, Value *To);
public:
// ConstantVector accessors
static Constant *get(ArrayRef<Constant*> V);
private:
static Constant *getImpl(ArrayRef<Constant *> V);
public:
/// Return a ConstantVector with the specified constant in each element.
static Constant *getSplat(unsigned NumElts, Constant *Elt);
/// Specialize the getType() method to always return a VectorType,
/// which reduces the amount of casting needed in parts of the compiler.
inline VectorType *getType() const {
return cast<VectorType>(Value::getType());
}
/// If this is a splat constant, meaning that all of the elements have the
/// same value, return that value. Otherwise return NULL.
Constant *getSplatValue() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantVectorVal;
}
};
//===----------------------------------------------------------------------===//
/// A constant pointer value that points to null
///
class ConstantPointerNull final : public ConstantData {
friend class Constant;
explicit ConstantPointerNull(PointerType *T)
: ConstantData(T, Value::ConstantPointerNullVal) {}
void destroyConstantImpl();
public:
ConstantPointerNull(const ConstantPointerNull &) = delete;
/// Static factory methods - Return objects of the specified value
static ConstantPointerNull *get(PointerType *T);
/// Specialize the getType() method to always return an PointerType,
/// which reduces the amount of casting needed in parts of the compiler.
inline PointerType *getType() const {
return cast<PointerType>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantPointerNullVal;
}
};
//===----------------------------------------------------------------------===//
/// ConstantDataSequential - A vector or array constant whose element type is a
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
/// operands because it stores all of the elements of the constant as densely
/// packed data, instead of as Value*'s.
///
/// This is the common base class of ConstantDataArray and ConstantDataVector.
///
class ConstantDataSequential : public ConstantData {
friend class LLVMContextImpl;
friend class Constant;
/// A pointer to the bytes underlying this constant (which is owned by the
/// uniquing StringMap).
const char *DataElements;
/// This forms a link list of ConstantDataSequential nodes that have
/// the same value but different type. For example, 0,0,0,1 could be a 4
/// element array of i8, or a 1-element array of i32. They'll both end up in
/// the same StringMap bucket, linked up.
ConstantDataSequential *Next;
void destroyConstantImpl();
protected:
explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
: ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
~ConstantDataSequential() { delete Next; }
static Constant *getImpl(StringRef Bytes, Type *Ty);
public:
ConstantDataSequential(const ConstantDataSequential &) = delete;
/// Return true if a ConstantDataSequential can be formed with a vector or
/// array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
static bool isElementTypeCompatible(Type *Ty);
/// If this is a sequential container of integers (of any size), return the
/// specified element in the low bits of a uint64_t.
uint64_t getElementAsInteger(unsigned i) const;
/// If this is a sequential container of integers (of any size), return the
/// specified element as an APInt.
APInt getElementAsAPInt(unsigned i) const;
/// If this is a sequential container of floating point type, return the
/// specified element as an APFloat.
APFloat getElementAsAPFloat(unsigned i) const;
/// If this is an sequential container of floats, return the specified element
/// as a float.
float getElementAsFloat(unsigned i) const;
/// If this is an sequential container of doubles, return the specified
/// element as a double.
double getElementAsDouble(unsigned i) const;
/// Return a Constant for a specified index's element.
/// Note that this has to compute a new constant to return, so it isn't as
/// efficient as getElementAsInteger/Float/Double.
Constant *getElementAsConstant(unsigned i) const;
/// Specialize the getType() method to always return a SequentialType, which
/// reduces the amount of casting needed in parts of the compiler.
inline SequentialType *getType() const {
return cast<SequentialType>(Value::getType());
}
/// Return the element type of the array/vector.
Type *getElementType() const;
/// Return the number of elements in the array or vector.
unsigned getNumElements() const;
/// Return the size (in bytes) of each element in the array/vector.
/// The size of the elements is known to be a multiple of one byte.
uint64_t getElementByteSize() const;
/// This method returns true if this is an array of \p CharSize integers.
bool isString(unsigned CharSize = 8) const;
/// This method returns true if the array "isString", ends with a null byte,
/// and does not contains any other null bytes.
bool isCString() const;
/// If this array is isString(), then this method returns the array as a
/// StringRef. Otherwise, it asserts out.
StringRef getAsString() const {
assert(isString() && "Not a string");
return getRawDataValues();
}
/// If this array is isCString(), then this method returns the array (without
/// the trailing null byte) as a StringRef. Otherwise, it asserts out.
StringRef getAsCString() const {
assert(isCString() && "Isn't a C string");
StringRef Str = getAsString();
return Str.substr(0, Str.size()-1);
}
/// Return the raw, underlying, bytes of this data. Note that this is an
/// extremely tricky thing to work with, as it exposes the host endianness of
/// the data elements.
StringRef getRawDataValues() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataArrayVal ||
V->getValueID() == ConstantDataVectorVal;
}
private:
const char *getElementPointer(unsigned Elt) const;
};
//===----------------------------------------------------------------------===//
/// An array constant whose element type is a simple 1/2/4/8-byte integer or
/// float/double, and whose elements are just simple data values
/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
/// stores all of the elements of the constant as densely packed data, instead
/// of as Value*'s.
class ConstantDataArray final : public ConstantDataSequential {
friend class ConstantDataSequential;
explicit ConstantDataArray(Type *ty, const char *Data)
: ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
public:
ConstantDataArray(const ConstantDataArray &) = delete;
/// get() constructor - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
template <typename ElementTy>
static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
Type::getScalarTy<ElementTy>(Context));
}
/// get() constructor - ArrayTy needs to be compatible with
/// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
template <typename ArrayTy>
static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
return ConstantDataArray::get(Context, makeArrayRef(Elts));
}
/// get() constructor - Return a constant with array type with an element
/// count and element type matching the NumElements and ElementTy parameters
/// passed in. Note that this can return a ConstantAggregateZero object.
/// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the
/// buffer containing the elements. Be careful to make sure Data uses the
/// right endianness, the buffer will be used as-is.
static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) {
Type *Ty = ArrayType::get(ElementTy, NumElements);
return getImpl(Data, Ty);
}
/// getFP() constructors - Return a constant with array type with an element
/// count and element type of float with precision matching the number of
/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
/// double for 64bits) Note that this can return a ConstantAggregateZero
/// object.
static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
/// This method constructs a CDS and initializes it with a text string.
/// The default behavior (AddNull==true) causes a null terminator to
/// be placed at the end of the array (increasing the length of the string by
/// one more than the StringRef would normally indicate. Pass AddNull=false
/// to disable this behavior.
static Constant *getString(LLVMContext &Context, StringRef Initializer,
bool AddNull = true);
/// Specialize the getType() method to always return an ArrayType,
/// which reduces the amount of casting needed in parts of the compiler.
inline ArrayType *getType() const {
return cast<ArrayType>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataArrayVal;
}
};
//===----------------------------------------------------------------------===//
/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
/// float/double, and whose elements are just simple data values
/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
/// stores all of the elements of the constant as densely packed data, instead
/// of as Value*'s.
class ConstantDataVector final : public ConstantDataSequential {
friend class ConstantDataSequential;
explicit ConstantDataVector(Type *ty, const char *Data)
: ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
public:
ConstantDataVector(const ConstantDataVector &) = delete;
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
/// getFP() constructors - Return a constant with vector type with an element
/// count and element type of float with the precision matching the number of
/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
/// double for 64bits) Note that this can return a ConstantAggregateZero
/// object.
static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
/// Return a ConstantVector with the specified constant in each element.
/// The specified constant has to be a of a compatible type (i8/i16/
/// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
static Constant *getSplat(unsigned NumElts, Constant *Elt);
/// Returns true if this is a splat constant, meaning that all elements have
/// the same value.
bool isSplat() const;
/// If this is a splat constant, meaning that all of the elements have the
/// same value, return that value. Otherwise return NULL.
Constant *getSplatValue() const;
/// Specialize the getType() method to always return a VectorType,
/// which reduces the amount of casting needed in parts of the compiler.
inline VectorType *getType() const {
return cast<VectorType>(Value::getType());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantDataVectorVal;
}
};
//===----------------------------------------------------------------------===//
/// A constant token which is empty
///
class ConstantTokenNone final : public ConstantData {
friend class Constant;
explicit ConstantTokenNone(LLVMContext &Context)
: ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
void destroyConstantImpl();
public:
ConstantTokenNone(const ConstantTokenNone &) = delete;
/// Return the ConstantTokenNone.
static ConstantTokenNone *get(LLVMContext &Context);
/// Methods to support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Value *V) {
return V->getValueID() == ConstantTokenNoneVal;
}
};
/// The address of a basic block.
///
class BlockAddress final : public Constant {
friend class Constant;
BlockAddress(Function *F, BasicBlock *BB);
void *operator new(size_t s) { return User::operator new(s, 2); }
void destroyConstantImpl();
Value *handleOperandChangeImpl(Value *From, Value *To);
public:
/// Return a BlockAddress for the specified function and basic block.
static BlockAddress *get(Function *F, BasicBlock *BB);
/// Return a BlockAddress for the specified basic block. The basic
/// block must be embedded into a function.
static BlockAddress *get(BasicBlock *BB);
/// Lookup an existing \c BlockAddress constant for the given BasicBlock.
///
/// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
static BlockAddress *lookup(const BasicBlock *BB);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Function *getFunction() const { return (Function*)Op<0>().get(); }
BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == BlockAddressVal;
}
};
template <>
struct OperandTraits<BlockAddress> :
public FixedNumOperandTraits<BlockAddress, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
//===----------------------------------------------------------------------===//
/// A constant value that is initialized with an expression using
/// other constant values.
///
/// This class uses the standard Instruction opcodes to define the various
/// constant expressions. The Opcode field for the ConstantExpr class is
/// maintained in the Value::SubclassData field.
class ConstantExpr : public Constant {
friend struct ConstantExprKeyType;
friend class Constant;
void destroyConstantImpl();
Value *handleOperandChangeImpl(Value *From, Value *To);
protected:
ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
: Constant(ty, ConstantExprVal, Ops, NumOps) {
// Operation type (an Instruction opcode) is stored as the SubclassData.
setValueSubclassData(Opcode);
}
public:
// Static methods to construct a ConstantExpr of different kinds. Note that
// these methods may return a object that is not an instance of the
// ConstantExpr class, because they will attempt to fold the constant
// expression into something simpler if possible.
/// getAlignOf constant expr - computes the alignment of a type in a target
/// independent way (Note: the return type is an i64).
static Constant *getAlignOf(Type *Ty);
/// getSizeOf constant expr - computes the (alloc) size of a type (in
/// address-units, not bits) in a target independent way (Note: the return
/// type is an i64).
///
static Constant *getSizeOf(Type *Ty);
/// getOffsetOf constant expr - computes the offset of a struct field in a
/// target independent way (Note: the return type is an i64).
///
static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
/// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
/// which supports any aggregate type, and any Constant index.
///
static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
static Constant *getFNeg(Constant *C);
static Constant *getNot(Constant *C);
static Constant *getAdd(Constant *C1, Constant *C2,
bool HasNUW = false, bool HasNSW = false);
static Constant *getFAdd(Constant *C1, Constant *C2);
static Constant *getSub(Constant *C1, Constant *C2,
bool HasNUW = false, bool HasNSW = false);
static Constant *getFSub(Constant *C1, Constant *C2);
static Constant *getMul(Constant *C1, Constant *C2,
bool HasNUW = false, bool HasNSW = false);
static Constant *getFMul(Constant *C1, Constant *C2);
static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
static Constant *getFDiv(Constant *C1, Constant *C2);
static Constant *getURem(Constant *C1, Constant *C2);
static Constant *getSRem(Constant *C1, Constant *C2);
static Constant *getFRem(Constant *C1, Constant *C2);
static Constant *getAnd(Constant *C1, Constant *C2);
static Constant *getOr(Constant *C1, Constant *C2);
static Constant *getXor(Constant *C1, Constant *C2);
static Constant *getShl(Constant *C1, Constant *C2,
bool HasNUW = false, bool HasNSW = false);
static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getFPTrunc(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getFPExtend(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
static Constant *getPtrToInt(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getIntToPtr(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getBitCast(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
bool OnlyIfReduced = false);
static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
static Constant *getNSWAdd(Constant *C1, Constant *C2) {
return getAdd(C1, C2, false, true);
}
static Constant *getNUWAdd(Constant *C1, Constant *C2) {
return getAdd(C1, C2, true, false);
}
static Constant *getNSWSub(Constant *C1, Constant *C2) {
return getSub(C1, C2, false, true);
}
static Constant *getNUWSub(Constant *C1, Constant *C2) {
return getSub(C1, C2, true, false);
}
static Constant *getNSWMul(Constant *C1, Constant *C2) {
return getMul(C1, C2, false, true);
}
static Constant *getNUWMul(Constant *C1, Constant *C2) {
return getMul(C1, C2, true, false);
}
static Constant *getNSWShl(Constant *C1, Constant *C2) {
return getShl(C1, C2, false, true);
}
static Constant *getNUWShl(Constant *C1, Constant *C2) {
return getShl(C1, C2, true, false);
}
static Constant *getExactSDiv(Constant *C1, Constant *C2) {
return getSDiv(C1, C2, true);
}
static Constant *getExactUDiv(Constant *C1, Constant *C2) {
return getUDiv(C1, C2, true);
}
static Constant *getExactAShr(Constant *C1, Constant *C2) {
return getAShr(C1, C2, true);
}
static Constant *getExactLShr(Constant *C1, Constant *C2) {
return getLShr(C1, C2, true);
}
/// Return the identity constant for a binary opcode.
/// The identity constant C is defined as X op C = X and C op X = X for every
/// X when the binary operation is commutative. If the binop is not
/// commutative, callers can acquire the operand 1 identity constant by
/// setting AllowRHSConstant to true. For example, any shift has a zero
/// identity constant for operand 1: X shift 0 = X.
/// Return nullptr if the operator does not have an identity constant.
static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
bool AllowRHSConstant = false);
/// Return the absorbing element for the given binary
/// operation, i.e. a constant C such that X op C = C and C op X = C for
/// every X. For example, this returns zero for integer multiplication.
/// It returns null if the operator doesn't have an absorbing element.
static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
/// Convenience function for getting a Cast operation.
///
/// \param ops The opcode for the conversion
/// \param C The constant to be converted
/// \param Ty The type to which the constant is converted
/// \param OnlyIfReduced see \a getWithOperands() docs.
static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
bool OnlyIfReduced = false);
// Create a ZExt or BitCast cast constant expression
static Constant *getZExtOrBitCast(
Constant *C, ///< The constant to zext or bitcast
Type *Ty ///< The type to zext or bitcast C to
);
// Create a SExt or BitCast cast constant expression
static Constant *getSExtOrBitCast(
Constant *C, ///< The constant to sext or bitcast
Type *Ty ///< The type to sext or bitcast C to
);
// Create a Trunc or BitCast cast constant expression
static Constant *getTruncOrBitCast(
Constant *C, ///< The constant to trunc or bitcast
Type *Ty ///< The type to trunc or bitcast C to
);
/// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
/// expression.
static Constant *getPointerCast(
Constant *C, ///< The pointer value to be casted (operand 0)
Type *Ty ///< The type to which cast should be made
);
/// Create a BitCast or AddrSpaceCast for a pointer type depending on
/// the address space.
static Constant *getPointerBitCastOrAddrSpaceCast(
Constant *C, ///< The constant to addrspacecast or bitcast
Type *Ty ///< The type to bitcast or addrspacecast C to
);
/// Create a ZExt, Bitcast or Trunc for integer -> integer casts
static Constant *getIntegerCast(
Constant *C, ///< The integer constant to be casted
Type *Ty, ///< The integer type to cast to
bool isSigned ///< Whether C should be treated as signed or not
);
/// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
static Constant *getFPCast(
Constant *C, ///< The integer constant to be casted
Type *Ty ///< The integer type to cast to
);
/// Return true if this is a convert constant expression
bool isCast() const;
/// Return true if this is a compare constant expression
bool isCompare() const;
/// Return true if this is an insertvalue or extractvalue expression,
/// and the getIndices() method may be used.
bool hasIndices() const;
/// Return true if this is a getelementptr expression and all
/// the index operands are compile-time known integers within the
/// corresponding notional static array extents. Note that this is
/// not equivalant to, a subset of, or a superset of the "inbounds"
/// property.
bool isGEPWithNoNotionalOverIndexing() const;
/// Select constant expr
///
/// \param OnlyIfReducedTy see \a getWithOperands() docs.
static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
Type *OnlyIfReducedTy = nullptr);
/// get - Return a unary operator constant expression,
/// folding if possible.
///
/// \param OnlyIfReducedTy see \a getWithOperands() docs.
static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
Type *OnlyIfReducedTy = nullptr);
/// get - Return a binary or shift operator constant expression,
/// folding if possible.
///
/// \param OnlyIfReducedTy see \a getWithOperands() docs.
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
/// Return an ICmp or FCmp comparison operator constant expression.
///
/// \param OnlyIfReduced see \a getWithOperands() docs.
static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
bool OnlyIfReduced = false);
/// get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
bool OnlyIfReduced = false);
static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
bool OnlyIfReduced = false);
/// Getelementptr form. Value* is only accepted for convenience;
/// all elements must be Constants.
///
/// \param InRangeIndex the inrange index if present or None.
/// \param OnlyIfReducedTy see \a getWithOperands() docs.
static Constant *getGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Constant *> IdxList,
bool InBounds = false,
Optional<unsigned> InRangeIndex = None,
Type *OnlyIfReducedTy = nullptr) {
return getGetElementPtr(
Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
InBounds, InRangeIndex, OnlyIfReducedTy);
}
static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
bool InBounds = false,
Optional<unsigned> InRangeIndex = None,
Type *OnlyIfReducedTy = nullptr) {
// This form of the function only exists to avoid ambiguous overload
// warnings about whether to convert Idx to ArrayRef<Constant *> or
// ArrayRef<Value *>.
return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
OnlyIfReducedTy);
}
static Constant *getGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Value *> IdxList,
bool InBounds = false,
Optional<unsigned> InRangeIndex = None,
Type *OnlyIfReducedTy = nullptr);
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Constant *> IdxList) {
return getGetElementPtr(Ty, C, IdxList, true);
}
static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
Constant *Idx) {
// This form of the function only exists to avoid ambiguous overload
// warnings about whether to convert Idx to ArrayRef<Constant *> or
// ArrayRef<Value *>.
return getGetElementPtr(Ty, C, Idx, true);
}
static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Value *> IdxList) {
return getGetElementPtr(Ty, C, IdxList, true);
}
static Constant *getExtractElement(Constant *Vec, Constant *Idx,
Type *OnlyIfReducedTy = nullptr);
static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
Type *OnlyIfReducedTy = nullptr);
static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
Type *OnlyIfReducedTy = nullptr);
static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy = nullptr);
static Constant *getInsertValue(Constant *Agg, Constant *Val,
ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy = nullptr);
/// Return the opcode at the root of this constant expression
unsigned getOpcode() const { return getSubclassDataFromValue(); }
/// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
/// FCMP constant expression.
unsigned getPredicate() const;
/// Assert that this is an insertvalue or exactvalue
/// expression and return the list of indices.
ArrayRef<unsigned> getIndices() const;
/// Return a string representation for an opcode.
const char *getOpcodeName() const;
/// Return a constant expression identical to this one, but with the specified
/// operand set to the specified value.
Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
/// This returns the current constant expression with the operands replaced
/// with the specified values. The specified array must have the same number
/// of operands as our current one.
Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
return getWithOperands(Ops, getType());
}
/// Get the current expression with the operands replaced.
///
/// Return the current constant expression with the operands replaced with \c
/// Ops and the type with \c Ty. The new operands must have the same number
/// as the current ones.
///
/// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
/// gets constant-folded, the type changes, or the expression is otherwise
/// canonicalized. This parameter should almost always be \c false.
Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
bool OnlyIfReduced = false,
Type *SrcTy = nullptr) const;
/// Returns an Instruction which implements the same operation as this
/// ConstantExpr. The instruction is not linked to any basic block.
///
/// A better approach to this could be to have a constructor for Instruction
/// which would take a ConstantExpr parameter, but that would have spread
/// implementation details of ConstantExpr outside of Constants.cpp, which
/// would make it harder to remove ConstantExprs altogether.
Instruction *getAsInstruction();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == ConstantExprVal;
}
private:
// Shadow Value::setValueSubclassData with a private forwarding method so that
// subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
};
template <>
struct OperandTraits<ConstantExpr> :
public VariadicOperandTraits<ConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
//===----------------------------------------------------------------------===//
/// 'undef' values are things that do not have specified contents.
/// These are used for a variety of purposes, including global variable
/// initializers and operands to instructions. 'undef' values can occur with
/// any first-class type.
///
/// Undef values aren't exactly constants; if they have multiple uses, they
/// can appear to have different bit patterns at each use. See
/// LangRef.html#undefvalues for details.
///
class UndefValue final : public ConstantData {
friend class Constant;
explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
void destroyConstantImpl();
public:
UndefValue(const UndefValue &) = delete;
/// Static factory methods - Return an 'undef' object of the specified type.
static UndefValue *get(Type *T);
/// If this Undef has array or vector type, return a undef with the right
/// element type.
UndefValue *getSequentialElement() const;
/// If this undef has struct type, return a undef with the right element type
/// for the specified element.
UndefValue *getStructElement(unsigned Elt) const;
/// Return an undef of the right value for the specified GEP index if we can,
/// otherwise return null (e.g. if C is a ConstantExpr).
UndefValue *getElementValue(Constant *C) const;
/// Return an undef of the right value for the specified GEP index.
UndefValue *getElementValue(unsigned Idx) const;
/// Return the number of elements in the array, vector, or struct.
unsigned getNumElements() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == UndefValueVal;
}
};
} // end namespace llvm
#endif // LLVM_IR_CONSTANTS_H
|