reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for the subclasses of Constant,
/// which represent the different flavors of constant values that live in LLVM.
/// Note that Constants are immutable (once created they never change) and are
/// fully shared by structural equivalence.  This means that two structurally
/// equivalent constants will always have the same address.  Constants are
/// created on demand as needed and never deleted: thus clients don't have to
/// worry about the lifetime of the objects.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CONSTANTS_H
#define LLVM_IR_CONSTANTS_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>

namespace llvm {

class ArrayType;
class IntegerType;
class PointerType;
class SequentialType;
class StructType;
class VectorType;
template <class ConstantClass> struct ConstantAggrKeyType;

/// Base class for constants with no operands.
///
/// These constants have no operands; they represent their data directly.
/// Since they can be in use by unrelated modules (and are never based on
/// GlobalValues), it never makes sense to RAUW them.
class ConstantData : public Constant {
  friend class Constant;

  Value *handleOperandChangeImpl(Value *From, Value *To) {
    llvm_unreachable("Constant data does not have operands!");
  }

protected:
  explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}

  void *operator new(size_t s) { return User::operator new(s, 0); }

public:
  ConstantData(const ConstantData &) = delete;

  /// Methods to support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Value *V) {
    return V->getValueID() >= ConstantDataFirstVal &&
           V->getValueID() <= ConstantDataLastVal;
  }
};

//===----------------------------------------------------------------------===//
/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// Class for constant integers.
class ConstantInt final : public ConstantData {
  friend class Constant;

  APInt Val;

  ConstantInt(IntegerType *Ty, const APInt& V);

  void destroyConstantImpl();

public:
  ConstantInt(const ConstantInt &) = delete;

  static ConstantInt *getTrue(LLVMContext &Context);
  static ConstantInt *getFalse(LLVMContext &Context);
  static Constant *getTrue(Type *Ty);
  static Constant *getFalse(Type *Ty);

  /// If Ty is a vector type, return a Constant with a splat of the given
  /// value. Otherwise return a ConstantInt for the given value.
  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);

  /// Return a ConstantInt with the specified integer value for the specified
  /// type. If the type is wider than 64 bits, the value will be zero-extended
  /// to fit the type, unless isSigned is true, in which case the value will
  /// be interpreted as a 64-bit signed integer and sign-extended to fit
  /// the type.
  /// Get a ConstantInt for a specific value.
  static ConstantInt *get(IntegerType *Ty, uint64_t V,
                          bool isSigned = false);

  /// Return a ConstantInt with the specified value for the specified type. The
  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
  /// signed value for the type Ty.
  /// Get a ConstantInt for a specific signed value.
  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
  static Constant *getSigned(Type *Ty, int64_t V);

  /// Return a ConstantInt with the specified value and an implied Type. The
  /// type is the integer type that corresponds to the bit width of the value.
  static ConstantInt *get(LLVMContext &Context, const APInt &V);

  /// Return a ConstantInt constructed from the string strStart with the given
  /// radix.
  static ConstantInt *get(IntegerType *Ty, StringRef Str,
                          uint8_t radix);

  /// If Ty is a vector type, return a Constant with a splat of the given
  /// value. Otherwise return a ConstantInt for the given value.
  static Constant *get(Type* Ty, const APInt& V);

  /// Return the constant as an APInt value reference. This allows clients to
  /// obtain a full-precision copy of the value.
  /// Return the constant's value.
  inline const APInt &getValue() const {
    return Val;
  }

  /// getBitWidth - Return the bitwidth of this constant.
  unsigned getBitWidth() const { return Val.getBitWidth(); }

  /// Return the constant as a 64-bit unsigned integer value after it
  /// has been zero extended as appropriate for the type of this constant. Note
  /// that this method can assert if the value does not fit in 64 bits.
  /// Return the zero extended value.
  inline uint64_t getZExtValue() const {
    return Val.getZExtValue();
  }

  /// Return the constant as a 64-bit integer value after it has been sign
  /// extended as appropriate for the type of this constant. Note that
  /// this method can assert if the value does not fit in 64 bits.
  /// Return the sign extended value.
  inline int64_t getSExtValue() const {
    return Val.getSExtValue();
  }

  /// A helper method that can be used to determine if the constant contained
  /// within is equal to a constant.  This only works for very small values,
  /// because this is all that can be represented with all types.
  /// Determine if this constant's value is same as an unsigned char.
  bool equalsInt(uint64_t V) const {
    return Val == V;
  }

  /// getType - Specialize the getType() method to always return an IntegerType,
  /// which reduces the amount of casting needed in parts of the compiler.
  ///
  inline IntegerType *getType() const {
    return cast<IntegerType>(Value::getType());
  }

  /// This static method returns true if the type Ty is big enough to
  /// represent the value V. This can be used to avoid having the get method
  /// assert when V is larger than Ty can represent. Note that there are two
  /// versions of this method, one for unsigned and one for signed integers.
  /// Although ConstantInt canonicalizes everything to an unsigned integer,
  /// the signed version avoids callers having to convert a signed quantity
  /// to the appropriate unsigned type before calling the method.
  /// @returns true if V is a valid value for type Ty
  /// Determine if the value is in range for the given type.
  static bool isValueValidForType(Type *Ty, uint64_t V);
  static bool isValueValidForType(Type *Ty, int64_t V);

  bool isNegative() const { return Val.isNegative(); }

  /// This is just a convenience method to make client code smaller for a
  /// common code. It also correctly performs the comparison without the
  /// potential for an assertion from getZExtValue().
  bool isZero() const {
    return Val.isNullValue();
  }

  /// This is just a convenience method to make client code smaller for a
  /// common case. It also correctly performs the comparison without the
  /// potential for an assertion from getZExtValue().
  /// Determine if the value is one.
  bool isOne() const {
    return Val.isOneValue();
  }

  /// This function will return true iff every bit in this constant is set
  /// to true.
  /// @returns true iff this constant's bits are all set to true.
  /// Determine if the value is all ones.
  bool isMinusOne() const {
    return Val.isAllOnesValue();
  }

  /// This function will return true iff this constant represents the largest
  /// value that may be represented by the constant's type.
  /// @returns true iff this is the largest value that may be represented
  /// by this type.
  /// Determine if the value is maximal.
  bool isMaxValue(bool isSigned) const {
    if (isSigned)
      return Val.isMaxSignedValue();
    else
      return Val.isMaxValue();
  }

  /// This function will return true iff this constant represents the smallest
  /// value that may be represented by this constant's type.
  /// @returns true if this is the smallest value that may be represented by
  /// this type.
  /// Determine if the value is minimal.
  bool isMinValue(bool isSigned) const {
    if (isSigned)
      return Val.isMinSignedValue();
    else
      return Val.isMinValue();
  }

  /// This function will return true iff this constant represents a value with
  /// active bits bigger than 64 bits or a value greater than the given uint64_t
  /// value.
  /// @returns true iff this constant is greater or equal to the given number.
  /// Determine if the value is greater or equal to the given number.
  bool uge(uint64_t Num) const {
    return Val.uge(Num);
  }

  /// getLimitedValue - If the value is smaller than the specified limit,
  /// return it, otherwise return the limit value.  This causes the value
  /// to saturate to the limit.
  /// @returns the min of the value of the constant and the specified value
  /// Get the constant's value with a saturation limit
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    return Val.getLimitedValue(Limit);
  }

  /// Methods to support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantIntVal;
  }
};

//===----------------------------------------------------------------------===//
/// ConstantFP - Floating Point Values [float, double]
///
class ConstantFP final : public ConstantData {
  friend class Constant;

  APFloat Val;

  ConstantFP(Type *Ty, const APFloat& V);

  void destroyConstantImpl();

public:
  ConstantFP(const ConstantFP &) = delete;

  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
  /// method returns the negative zero constant for floating point or vector
  /// floating point types; for all other types, it returns the null value.
  static Constant *getZeroValueForNegation(Type *Ty);

  /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
  /// for the specified value in the specified type. This should only be used
  /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
  /// host double and as the target format.
  static Constant *get(Type* Ty, double V);

  /// If Ty is a vector type, return a Constant with a splat of the given
  /// value. Otherwise return a ConstantFP for the given value.
  static Constant *get(Type *Ty, const APFloat &V);

  static Constant *get(Type* Ty, StringRef Str);
  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
  static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0);
  static Constant *getQNaN(Type *Ty, bool Negative = false,
                           APInt *Payload = nullptr);
  static Constant *getSNaN(Type *Ty, bool Negative = false,
                           APInt *Payload = nullptr);
  static Constant *getNegativeZero(Type *Ty);
  static Constant *getInfinity(Type *Ty, bool Negative = false);

  /// Return true if Ty is big enough to represent V.
  static bool isValueValidForType(Type *Ty, const APFloat &V);
  inline const APFloat &getValueAPF() const { return Val; }

  /// Return true if the value is positive or negative zero.
  bool isZero() const { return Val.isZero(); }

  /// Return true if the sign bit is set.
  bool isNegative() const { return Val.isNegative(); }

  /// Return true if the value is infinity
  bool isInfinity() const { return Val.isInfinity(); }

  /// Return true if the value is a NaN.
  bool isNaN() const { return Val.isNaN(); }

  /// We don't rely on operator== working on double values, as it returns true
  /// for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.  The version with a double operand is retained
  /// because it's so convenient to write isExactlyValue(2.0), but please use
  /// it only for simple constants.
  bool isExactlyValue(const APFloat &V) const;

  bool isExactlyValue(double V) const {
    bool ignored;
    APFloat FV(V);
    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
    return isExactlyValue(FV);
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantFPVal;
  }
};

//===----------------------------------------------------------------------===//
/// All zero aggregate value
///
class ConstantAggregateZero final : public ConstantData {
  friend class Constant;

  explicit ConstantAggregateZero(Type *Ty)
      : ConstantData(Ty, ConstantAggregateZeroVal) {}

  void destroyConstantImpl();

public:
  ConstantAggregateZero(const ConstantAggregateZero &) = delete;

  static ConstantAggregateZero *get(Type *Ty);

  /// If this CAZ has array or vector type, return a zero with the right element
  /// type.
  Constant *getSequentialElement() const;

  /// If this CAZ has struct type, return a zero with the right element type for
  /// the specified element.
  Constant *getStructElement(unsigned Elt) const;

  /// Return a zero of the right value for the specified GEP index if we can,
  /// otherwise return null (e.g. if C is a ConstantExpr).
  Constant *getElementValue(Constant *C) const;

  /// Return a zero of the right value for the specified GEP index.
  Constant *getElementValue(unsigned Idx) const;

  /// Return the number of elements in the array, vector, or struct.
  unsigned getNumElements() const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  ///
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantAggregateZeroVal;
  }
};

/// Base class for aggregate constants (with operands).
///
/// These constants are aggregates of other constants, which are stored as
/// operands.
///
/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
/// ConstantVector.
///
/// \note Some subclasses of \a ConstantData are semantically aggregates --
/// such as \a ConstantDataArray -- but are not subclasses of this because they
/// use operands.
class ConstantAggregate : public Constant {
protected:
  ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);

public:
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() >= ConstantAggregateFirstVal &&
           V->getValueID() <= ConstantAggregateLastVal;
  }
};

template <>
struct OperandTraits<ConstantAggregate>
    : public VariadicOperandTraits<ConstantAggregate> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)

//===----------------------------------------------------------------------===//
/// ConstantArray - Constant Array Declarations
///
class ConstantArray final : public ConstantAggregate {
  friend struct ConstantAggrKeyType<ConstantArray>;
  friend class Constant;

  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);

  void destroyConstantImpl();
  Value *handleOperandChangeImpl(Value *From, Value *To);

public:
  // ConstantArray accessors
  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);

private:
  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);

public:
  /// Specialize the getType() method to always return an ArrayType,
  /// which reduces the amount of casting needed in parts of the compiler.
  inline ArrayType *getType() const {
    return cast<ArrayType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantArrayVal;
  }
};

//===----------------------------------------------------------------------===//
// Constant Struct Declarations
//
class ConstantStruct final : public ConstantAggregate {
  friend struct ConstantAggrKeyType<ConstantStruct>;
  friend class Constant;

  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);

  void destroyConstantImpl();
  Value *handleOperandChangeImpl(Value *From, Value *To);

public:
  // ConstantStruct accessors
  static Constant *get(StructType *T, ArrayRef<Constant*> V);

  template <typename... Csts>
  static typename std::enable_if<are_base_of<Constant, Csts...>::value,
                                 Constant *>::type
  get(StructType *T, Csts *... Vs) {
    SmallVector<Constant *, 8> Values({Vs...});
    return get(T, Values);
  }

  /// Return an anonymous struct that has the specified elements.
  /// If the struct is possibly empty, then you must specify a context.
  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
    return get(getTypeForElements(V, Packed), V);
  }
  static Constant *getAnon(LLVMContext &Ctx,
                           ArrayRef<Constant*> V, bool Packed = false) {
    return get(getTypeForElements(Ctx, V, Packed), V);
  }

  /// Return an anonymous struct type to use for a constant with the specified
  /// set of elements. The list must not be empty.
  static StructType *getTypeForElements(ArrayRef<Constant*> V,
                                        bool Packed = false);
  /// This version of the method allows an empty list.
  static StructType *getTypeForElements(LLVMContext &Ctx,
                                        ArrayRef<Constant*> V,
                                        bool Packed = false);

  /// Specialization - reduce amount of casting.
  inline StructType *getType() const {
    return cast<StructType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantStructVal;
  }
};

//===----------------------------------------------------------------------===//
/// Constant Vector Declarations
///
class ConstantVector final : public ConstantAggregate {
  friend struct ConstantAggrKeyType<ConstantVector>;
  friend class Constant;

  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);

  void destroyConstantImpl();
  Value *handleOperandChangeImpl(Value *From, Value *To);

public:
  // ConstantVector accessors
  static Constant *get(ArrayRef<Constant*> V);

private:
  static Constant *getImpl(ArrayRef<Constant *> V);

public:
  /// Return a ConstantVector with the specified constant in each element.
  static Constant *getSplat(unsigned NumElts, Constant *Elt);

  /// Specialize the getType() method to always return a VectorType,
  /// which reduces the amount of casting needed in parts of the compiler.
  inline VectorType *getType() const {
    return cast<VectorType>(Value::getType());
  }

  /// If this is a splat constant, meaning that all of the elements have the
  /// same value, return that value. Otherwise return NULL.
  Constant *getSplatValue() const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantVectorVal;
  }
};

//===----------------------------------------------------------------------===//
/// A constant pointer value that points to null
///
class ConstantPointerNull final : public ConstantData {
  friend class Constant;

  explicit ConstantPointerNull(PointerType *T)
      : ConstantData(T, Value::ConstantPointerNullVal) {}

  void destroyConstantImpl();

public:
  ConstantPointerNull(const ConstantPointerNull &) = delete;

  /// Static factory methods - Return objects of the specified value
  static ConstantPointerNull *get(PointerType *T);

  /// Specialize the getType() method to always return an PointerType,
  /// which reduces the amount of casting needed in parts of the compiler.
  inline PointerType *getType() const {
    return cast<PointerType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantPointerNullVal;
  }
};

//===----------------------------------------------------------------------===//
/// ConstantDataSequential - A vector or array constant whose element type is a
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
/// operands because it stores all of the elements of the constant as densely
/// packed data, instead of as Value*'s.
///
/// This is the common base class of ConstantDataArray and ConstantDataVector.
///
class ConstantDataSequential : public ConstantData {
  friend class LLVMContextImpl;
  friend class Constant;

  /// A pointer to the bytes underlying this constant (which is owned by the
  /// uniquing StringMap).
  const char *DataElements;

  /// This forms a link list of ConstantDataSequential nodes that have
  /// the same value but different type.  For example, 0,0,0,1 could be a 4
  /// element array of i8, or a 1-element array of i32.  They'll both end up in
  /// the same StringMap bucket, linked up.
  ConstantDataSequential *Next;

  void destroyConstantImpl();

protected:
  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
      : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
  ~ConstantDataSequential() { delete Next; }

  static Constant *getImpl(StringRef Bytes, Type *Ty);

public:
  ConstantDataSequential(const ConstantDataSequential &) = delete;

  /// Return true if a ConstantDataSequential can be formed with a vector or
  /// array of the specified element type.
  /// ConstantDataArray only works with normal float and int types that are
  /// stored densely in memory, not with things like i42 or x86_f80.
  static bool isElementTypeCompatible(Type *Ty);

  /// If this is a sequential container of integers (of any size), return the
  /// specified element in the low bits of a uint64_t.
  uint64_t getElementAsInteger(unsigned i) const;

  /// If this is a sequential container of integers (of any size), return the
  /// specified element as an APInt.
  APInt getElementAsAPInt(unsigned i) const;

  /// If this is a sequential container of floating point type, return the
  /// specified element as an APFloat.
  APFloat getElementAsAPFloat(unsigned i) const;

  /// If this is an sequential container of floats, return the specified element
  /// as a float.
  float getElementAsFloat(unsigned i) const;

  /// If this is an sequential container of doubles, return the specified
  /// element as a double.
  double getElementAsDouble(unsigned i) const;

  /// Return a Constant for a specified index's element.
  /// Note that this has to compute a new constant to return, so it isn't as
  /// efficient as getElementAsInteger/Float/Double.
  Constant *getElementAsConstant(unsigned i) const;

  /// Specialize the getType() method to always return a SequentialType, which
  /// reduces the amount of casting needed in parts of the compiler.
  inline SequentialType *getType() const {
    return cast<SequentialType>(Value::getType());
  }

  /// Return the element type of the array/vector.
  Type *getElementType() const;

  /// Return the number of elements in the array or vector.
  unsigned getNumElements() const;

  /// Return the size (in bytes) of each element in the array/vector.
  /// The size of the elements is known to be a multiple of one byte.
  uint64_t getElementByteSize() const;

  /// This method returns true if this is an array of \p CharSize integers.
  bool isString(unsigned CharSize = 8) const;

  /// This method returns true if the array "isString", ends with a null byte,
  /// and does not contains any other null bytes.
  bool isCString() const;

  /// If this array is isString(), then this method returns the array as a
  /// StringRef. Otherwise, it asserts out.
  StringRef getAsString() const {
    assert(isString() && "Not a string");
    return getRawDataValues();
  }

  /// If this array is isCString(), then this method returns the array (without
  /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
  StringRef getAsCString() const {
    assert(isCString() && "Isn't a C string");
    StringRef Str = getAsString();
    return Str.substr(0, Str.size()-1);
  }

  /// Return the raw, underlying, bytes of this data. Note that this is an
  /// extremely tricky thing to work with, as it exposes the host endianness of
  /// the data elements.
  StringRef getRawDataValues() const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataArrayVal ||
           V->getValueID() == ConstantDataVectorVal;
  }

private:
  const char *getElementPointer(unsigned Elt) const;
};

//===----------------------------------------------------------------------===//
/// An array constant whose element type is a simple 1/2/4/8-byte integer or
/// float/double, and whose elements are just simple data values
/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
/// stores all of the elements of the constant as densely packed data, instead
/// of as Value*'s.
class ConstantDataArray final : public ConstantDataSequential {
  friend class ConstantDataSequential;

  explicit ConstantDataArray(Type *ty, const char *Data)
      : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}

public:
  ConstantDataArray(const ConstantDataArray &) = delete;

  /// get() constructor - Return a constant with array type with an element
  /// count and element type matching the ArrayRef passed in.  Note that this
  /// can return a ConstantAggregateZero object.
  template <typename ElementTy>
  static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
    const char *Data = reinterpret_cast<const char *>(Elts.data());
    return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
                  Type::getScalarTy<ElementTy>(Context));
  }

  /// get() constructor - ArrayTy needs to be compatible with
  /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
  template <typename ArrayTy>
  static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
    return ConstantDataArray::get(Context, makeArrayRef(Elts));
  }

  /// get() constructor - Return a constant with array type with an element
  /// count and element type matching the NumElements and ElementTy parameters
  /// passed in. Note that this can return a ConstantAggregateZero object.
  /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the
  /// buffer containing the elements. Be careful to make sure Data uses the
  /// right endianness, the buffer will be used as-is.
  static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) {
    Type *Ty = ArrayType::get(ElementTy, NumElements);
    return getImpl(Data, Ty);
  }

  /// getFP() constructors - Return a constant with array type with an element
  /// count and element type of float with precision matching the number of
  /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
  /// double for 64bits) Note that this can return a ConstantAggregateZero
  /// object.
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);

  /// This method constructs a CDS and initializes it with a text string.
  /// The default behavior (AddNull==true) causes a null terminator to
  /// be placed at the end of the array (increasing the length of the string by
  /// one more than the StringRef would normally indicate.  Pass AddNull=false
  /// to disable this behavior.
  static Constant *getString(LLVMContext &Context, StringRef Initializer,
                             bool AddNull = true);

  /// Specialize the getType() method to always return an ArrayType,
  /// which reduces the amount of casting needed in parts of the compiler.
  inline ArrayType *getType() const {
    return cast<ArrayType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataArrayVal;
  }
};

//===----------------------------------------------------------------------===//
/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
/// float/double, and whose elements are just simple data values
/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
/// stores all of the elements of the constant as densely packed data, instead
/// of as Value*'s.
class ConstantDataVector final : public ConstantDataSequential {
  friend class ConstantDataSequential;

  explicit ConstantDataVector(Type *ty, const char *Data)
      : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}

public:
  ConstantDataVector(const ConstantDataVector &) = delete;

  /// get() constructors - Return a constant with vector type with an element
  /// count and element type matching the ArrayRef passed in.  Note that this
  /// can return a ConstantAggregateZero object.
  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);

  /// getFP() constructors - Return a constant with vector type with an element
  /// count and element type of float with the precision matching the number of
  /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
  /// double for 64bits) Note that this can return a ConstantAggregateZero
  /// object.
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);

  /// Return a ConstantVector with the specified constant in each element.
  /// The specified constant has to be a of a compatible type (i8/i16/
  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
  static Constant *getSplat(unsigned NumElts, Constant *Elt);

  /// Returns true if this is a splat constant, meaning that all elements have
  /// the same value.
  bool isSplat() const;

  /// If this is a splat constant, meaning that all of the elements have the
  /// same value, return that value. Otherwise return NULL.
  Constant *getSplatValue() const;

  /// Specialize the getType() method to always return a VectorType,
  /// which reduces the amount of casting needed in parts of the compiler.
  inline VectorType *getType() const {
    return cast<VectorType>(Value::getType());
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantDataVectorVal;
  }
};

//===----------------------------------------------------------------------===//
/// A constant token which is empty
///
class ConstantTokenNone final : public ConstantData {
  friend class Constant;

  explicit ConstantTokenNone(LLVMContext &Context)
      : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}

  void destroyConstantImpl();

public:
  ConstantTokenNone(const ConstantTokenNone &) = delete;

  /// Return the ConstantTokenNone.
  static ConstantTokenNone *get(LLVMContext &Context);

  /// Methods to support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantTokenNoneVal;
  }
};

/// The address of a basic block.
///
class BlockAddress final : public Constant {
  friend class Constant;

  BlockAddress(Function *F, BasicBlock *BB);

  void *operator new(size_t s) { return User::operator new(s, 2); }

  void destroyConstantImpl();
  Value *handleOperandChangeImpl(Value *From, Value *To);

public:
  /// Return a BlockAddress for the specified function and basic block.
  static BlockAddress *get(Function *F, BasicBlock *BB);

  /// Return a BlockAddress for the specified basic block.  The basic
  /// block must be embedded into a function.
  static BlockAddress *get(BasicBlock *BB);

  /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
  ///
  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
  static BlockAddress *lookup(const BasicBlock *BB);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  Function *getFunction() const { return (Function*)Op<0>().get(); }
  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == BlockAddressVal;
  }
};

template <>
struct OperandTraits<BlockAddress> :
  public FixedNumOperandTraits<BlockAddress, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)

//===----------------------------------------------------------------------===//
/// A constant value that is initialized with an expression using
/// other constant values.
///
/// This class uses the standard Instruction opcodes to define the various
/// constant expressions.  The Opcode field for the ConstantExpr class is
/// maintained in the Value::SubclassData field.
class ConstantExpr : public Constant {
  friend struct ConstantExprKeyType;
  friend class Constant;

  void destroyConstantImpl();
  Value *handleOperandChangeImpl(Value *From, Value *To);

protected:
  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
      : Constant(ty, ConstantExprVal, Ops, NumOps) {
    // Operation type (an Instruction opcode) is stored as the SubclassData.
    setValueSubclassData(Opcode);
  }

public:
  // Static methods to construct a ConstantExpr of different kinds.  Note that
  // these methods may return a object that is not an instance of the
  // ConstantExpr class, because they will attempt to fold the constant
  // expression into something simpler if possible.

  /// getAlignOf constant expr - computes the alignment of a type in a target
  /// independent way (Note: the return type is an i64).
  static Constant *getAlignOf(Type *Ty);

  /// getSizeOf constant expr - computes the (alloc) size of a type (in
  /// address-units, not bits) in a target independent way (Note: the return
  /// type is an i64).
  ///
  static Constant *getSizeOf(Type *Ty);

  /// getOffsetOf constant expr - computes the offset of a struct field in a
  /// target independent way (Note: the return type is an i64).
  ///
  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);

  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
  /// which supports any aggregate type, and any Constant index.
  ///
  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);

  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
  static Constant *getFNeg(Constant *C);
  static Constant *getNot(Constant *C);
  static Constant *getAdd(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFAdd(Constant *C1, Constant *C2);
  static Constant *getSub(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFSub(Constant *C1, Constant *C2);
  static Constant *getMul(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getFMul(Constant *C1, Constant *C2);
  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getFDiv(Constant *C1, Constant *C2);
  static Constant *getURem(Constant *C1, Constant *C2);
  static Constant *getSRem(Constant *C1, Constant *C2);
  static Constant *getFRem(Constant *C1, Constant *C2);
  static Constant *getAnd(Constant *C1, Constant *C2);
  static Constant *getOr(Constant *C1, Constant *C2);
  static Constant *getXor(Constant *C1, Constant *C2);
  static Constant *getShl(Constant *C1, Constant *C2,
                          bool HasNUW = false, bool HasNSW = false);
  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getFPTrunc(Constant *C, Type *Ty,
                              bool OnlyIfReduced = false);
  static Constant *getFPExtend(Constant *C, Type *Ty,
                               bool OnlyIfReduced = false);
  static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
  static Constant *getPtrToInt(Constant *C, Type *Ty,
                               bool OnlyIfReduced = false);
  static Constant *getIntToPtr(Constant *C, Type *Ty,
                               bool OnlyIfReduced = false);
  static Constant *getBitCast(Constant *C, Type *Ty,
                              bool OnlyIfReduced = false);
  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
                                    bool OnlyIfReduced = false);

  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }

  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
    return getAdd(C1, C2, false, true);
  }

  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
    return getAdd(C1, C2, true, false);
  }

  static Constant *getNSWSub(Constant *C1, Constant *C2) {
    return getSub(C1, C2, false, true);
  }

  static Constant *getNUWSub(Constant *C1, Constant *C2) {
    return getSub(C1, C2, true, false);
  }

  static Constant *getNSWMul(Constant *C1, Constant *C2) {
    return getMul(C1, C2, false, true);
  }

  static Constant *getNUWMul(Constant *C1, Constant *C2) {
    return getMul(C1, C2, true, false);
  }

  static Constant *getNSWShl(Constant *C1, Constant *C2) {
    return getShl(C1, C2, false, true);
  }

  static Constant *getNUWShl(Constant *C1, Constant *C2) {
    return getShl(C1, C2, true, false);
  }

  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
    return getSDiv(C1, C2, true);
  }

  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
    return getUDiv(C1, C2, true);
  }

  static Constant *getExactAShr(Constant *C1, Constant *C2) {
    return getAShr(C1, C2, true);
  }

  static Constant *getExactLShr(Constant *C1, Constant *C2) {
    return getLShr(C1, C2, true);
  }

  /// Return the identity constant for a binary opcode.
  /// The identity constant C is defined as X op C = X and C op X = X for every
  /// X when the binary operation is commutative. If the binop is not
  /// commutative, callers can acquire the operand 1 identity constant by
  /// setting AllowRHSConstant to true. For example, any shift has a zero
  /// identity constant for operand 1: X shift 0 = X.
  /// Return nullptr if the operator does not have an identity constant.
  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
                                    bool AllowRHSConstant = false);

  /// Return the absorbing element for the given binary
  /// operation, i.e. a constant C such that X op C = C and C op X = C for
  /// every X.  For example, this returns zero for integer multiplication.
  /// It returns null if the operator doesn't have an absorbing element.
  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);

  /// Convenience function for getting a Cast operation.
  ///
  /// \param ops The opcode for the conversion
  /// \param C  The constant to be converted
  /// \param Ty The type to which the constant is converted
  /// \param OnlyIfReduced see \a getWithOperands() docs.
  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
                           bool OnlyIfReduced = false);

  // Create a ZExt or BitCast cast constant expression
  static Constant *getZExtOrBitCast(
    Constant *C,   ///< The constant to zext or bitcast
    Type *Ty ///< The type to zext or bitcast C to
  );

  // Create a SExt or BitCast cast constant expression
  static Constant *getSExtOrBitCast(
    Constant *C,   ///< The constant to sext or bitcast
    Type *Ty ///< The type to sext or bitcast C to
  );

  // Create a Trunc or BitCast cast constant expression
  static Constant *getTruncOrBitCast(
    Constant *C,   ///< The constant to trunc or bitcast
    Type *Ty ///< The type to trunc or bitcast C to
  );

  /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
  /// expression.
  static Constant *getPointerCast(
    Constant *C,   ///< The pointer value to be casted (operand 0)
    Type *Ty ///< The type to which cast should be made
  );

  /// Create a BitCast or AddrSpaceCast for a pointer type depending on
  /// the address space.
  static Constant *getPointerBitCastOrAddrSpaceCast(
    Constant *C,   ///< The constant to addrspacecast or bitcast
    Type *Ty ///< The type to bitcast or addrspacecast C to
  );

  /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
  static Constant *getIntegerCast(
    Constant *C,    ///< The integer constant to be casted
    Type *Ty, ///< The integer type to cast to
    bool isSigned   ///< Whether C should be treated as signed or not
  );

  /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
  static Constant *getFPCast(
    Constant *C,    ///< The integer constant to be casted
    Type *Ty ///< The integer type to cast to
  );

  /// Return true if this is a convert constant expression
  bool isCast() const;

  /// Return true if this is a compare constant expression
  bool isCompare() const;

  /// Return true if this is an insertvalue or extractvalue expression,
  /// and the getIndices() method may be used.
  bool hasIndices() const;

  /// Return true if this is a getelementptr expression and all
  /// the index operands are compile-time known integers within the
  /// corresponding notional static array extents. Note that this is
  /// not equivalant to, a subset of, or a superset of the "inbounds"
  /// property.
  bool isGEPWithNoNotionalOverIndexing() const;

  /// Select constant expr
  ///
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
                             Type *OnlyIfReducedTy = nullptr);

  /// get - Return a unary operator constant expression,
  /// folding if possible.
  ///
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
  static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0, 
                       Type *OnlyIfReducedTy = nullptr);

  /// get - Return a binary or shift operator constant expression,
  /// folding if possible.
  ///
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);

  /// Return an ICmp or FCmp comparison operator constant expression.
  ///
  /// \param OnlyIfReduced see \a getWithOperands() docs.
  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
                              bool OnlyIfReduced = false);

  /// get* - Return some common constants without having to
  /// specify the full Instruction::OPCODE identifier.
  ///
  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
                           bool OnlyIfReduced = false);
  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
                           bool OnlyIfReduced = false);

  /// Getelementptr form.  Value* is only accepted for convenience;
  /// all elements must be Constants.
  ///
  /// \param InRangeIndex the inrange index if present or None.
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
  static Constant *getGetElementPtr(Type *Ty, Constant *C,
                                    ArrayRef<Constant *> IdxList,
                                    bool InBounds = false,
                                    Optional<unsigned> InRangeIndex = None,
                                    Type *OnlyIfReducedTy = nullptr) {
    return getGetElementPtr(
        Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
        InBounds, InRangeIndex, OnlyIfReducedTy);
  }
  static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
                                    bool InBounds = false,
                                    Optional<unsigned> InRangeIndex = None,
                                    Type *OnlyIfReducedTy = nullptr) {
    // This form of the function only exists to avoid ambiguous overload
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
    // ArrayRef<Value *>.
    return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
                            OnlyIfReducedTy);
  }
  static Constant *getGetElementPtr(Type *Ty, Constant *C,
                                    ArrayRef<Value *> IdxList,
                                    bool InBounds = false,
                                    Optional<unsigned> InRangeIndex = None,
                                    Type *OnlyIfReducedTy = nullptr);

  /// Create an "inbounds" getelementptr. See the documentation for the
  /// "inbounds" flag in LangRef.html for details.
  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
                                            ArrayRef<Constant *> IdxList) {
    return getGetElementPtr(Ty, C, IdxList, true);
  }
  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
                                            Constant *Idx) {
    // This form of the function only exists to avoid ambiguous overload
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
    // ArrayRef<Value *>.
    return getGetElementPtr(Ty, C, Idx, true);
  }
  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
                                            ArrayRef<Value *> IdxList) {
    return getGetElementPtr(Ty, C, IdxList, true);
  }

  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
                                     Type *OnlyIfReducedTy = nullptr);
  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
                                    Type *OnlyIfReducedTy = nullptr);
  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
                                    Type *OnlyIfReducedTy = nullptr);
  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
                                   Type *OnlyIfReducedTy = nullptr);
  static Constant *getInsertValue(Constant *Agg, Constant *Val,
                                  ArrayRef<unsigned> Idxs,
                                  Type *OnlyIfReducedTy = nullptr);

  /// Return the opcode at the root of this constant expression
  unsigned getOpcode() const { return getSubclassDataFromValue(); }

  /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
  /// FCMP constant expression.
  unsigned getPredicate() const;

  /// Assert that this is an insertvalue or exactvalue
  /// expression and return the list of indices.
  ArrayRef<unsigned> getIndices() const;

  /// Return a string representation for an opcode.
  const char *getOpcodeName() const;

  /// Return a constant expression identical to this one, but with the specified
  /// operand set to the specified value.
  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;

  /// This returns the current constant expression with the operands replaced
  /// with the specified values. The specified array must have the same number
  /// of operands as our current one.
  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
    return getWithOperands(Ops, getType());
  }

  /// Get the current expression with the operands replaced.
  ///
  /// Return the current constant expression with the operands replaced with \c
  /// Ops and the type with \c Ty.  The new operands must have the same number
  /// as the current ones.
  ///
  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
  /// gets constant-folded, the type changes, or the expression is otherwise
  /// canonicalized.  This parameter should almost always be \c false.
  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
                            bool OnlyIfReduced = false,
                            Type *SrcTy = nullptr) const;

  /// Returns an Instruction which implements the same operation as this
  /// ConstantExpr. The instruction is not linked to any basic block.
  ///
  /// A better approach to this could be to have a constructor for Instruction
  /// which would take a ConstantExpr parameter, but that would have spread
  /// implementation details of ConstantExpr outside of Constants.cpp, which
  /// would make it harder to remove ConstantExprs altogether.
  Instruction *getAsInstruction();

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == ConstantExprVal;
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

template <>
struct OperandTraits<ConstantExpr> :
  public VariadicOperandTraits<ConstantExpr, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)

//===----------------------------------------------------------------------===//
/// 'undef' values are things that do not have specified contents.
/// These are used for a variety of purposes, including global variable
/// initializers and operands to instructions.  'undef' values can occur with
/// any first-class type.
///
/// Undef values aren't exactly constants; if they have multiple uses, they
/// can appear to have different bit patterns at each use. See
/// LangRef.html#undefvalues for details.
///
class UndefValue final : public ConstantData {
  friend class Constant;

  explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}

  void destroyConstantImpl();

public:
  UndefValue(const UndefValue &) = delete;

  /// Static factory methods - Return an 'undef' object of the specified type.
  static UndefValue *get(Type *T);

  /// If this Undef has array or vector type, return a undef with the right
  /// element type.
  UndefValue *getSequentialElement() const;

  /// If this undef has struct type, return a undef with the right element type
  /// for the specified element.
  UndefValue *getStructElement(unsigned Elt) const;

  /// Return an undef of the right value for the specified GEP index if we can,
  /// otherwise return null (e.g. if C is a ConstantExpr).
  UndefValue *getElementValue(Constant *C) const;

  /// Return an undef of the right value for the specified GEP index.
  UndefValue *getElementValue(unsigned Idx) const;

  /// Return the number of elements in the array, vector, or struct.
  unsigned getNumElements() const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == UndefValueVal;
  }
};

} // end namespace llvm

#endif // LLVM_IR_CONSTANTS_H