reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
//===- llvm/CodeGen/AsmPrinter/DbgEntityHistoryCalculator.cpp -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/DbgEntityHistoryCalculator.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "dwarfdebug"

namespace {
using EntryIndex = DbgValueHistoryMap::EntryIndex;
}

// If @MI is a DBG_VALUE with debug value described by a
// defined register, returns the number of this register.
// In the other case, returns 0.
static Register isDescribedByReg(const MachineInstr &MI) {
  assert(MI.isDebugValue());
  assert(MI.getNumOperands() == 4);
  // If the location of variable is an entry value (DW_OP_LLVM_entry_value)
  // do not consider it as a register location.
  if (MI.getDebugExpression()->isEntryValue())
    return 0;
  // If location of variable is described using a register (directly or
  // indirectly), this register is always a first operand.
  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
}

bool DbgValueHistoryMap::startDbgValue(InlinedEntity Var,
                                       const MachineInstr &MI,
                                       EntryIndex &NewIndex) {
  // Instruction range should start with a DBG_VALUE instruction for the
  // variable.
  assert(MI.isDebugValue() && "not a DBG_VALUE");
  auto &Entries = VarEntries[Var];
  if (!Entries.empty() && Entries.back().isDbgValue() &&
      !Entries.back().isClosed() &&
      Entries.back().getInstr()->isIdenticalTo(MI)) {
    LLVM_DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
                      << "\t" << Entries.back().getInstr() << "\t" << MI
                      << "\n");
    return false;
  }
  Entries.emplace_back(&MI, Entry::DbgValue);
  NewIndex = Entries.size() - 1;
  return true;
}

EntryIndex DbgValueHistoryMap::startClobber(InlinedEntity Var,
                                            const MachineInstr &MI) {
  auto &Entries = VarEntries[Var];
  // If an instruction clobbers multiple registers that the variable is
  // described by, then we may have already created a clobbering instruction.
  if (Entries.back().isClobber() && Entries.back().getInstr() == &MI)
    return Entries.size() - 1;
  Entries.emplace_back(&MI, Entry::Clobber);
  return Entries.size() - 1;
}

void DbgValueHistoryMap::Entry::endEntry(EntryIndex Index) {
  // For now, instruction ranges are not allowed to cross basic block
  // boundaries.
  assert(isDbgValue() && "Setting end index for non-debug value");
  assert(!isClosed() && "End index has already been set");
  EndIndex = Index;
}

void DbgLabelInstrMap::addInstr(InlinedEntity Label, const MachineInstr &MI) {
  assert(MI.isDebugLabel() && "not a DBG_LABEL");
  LabelInstr[Label] = &MI;
}

namespace {

// Maps physreg numbers to the variables they describe.
using InlinedEntity = DbgValueHistoryMap::InlinedEntity;
using RegDescribedVarsMap = std::map<unsigned, SmallVector<InlinedEntity, 1>>;

// Keeps track of the debug value entries that are currently live for each
// inlined entity. As the history map entries are stored in a SmallVector, they
// may be moved at insertion of new entries, so store indices rather than
// pointers.
using DbgValueEntriesMap = std::map<InlinedEntity, SmallSet<EntryIndex, 1>>;

} // end anonymous namespace

// Claim that @Var is not described by @RegNo anymore.
static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
                                InlinedEntity Var) {
  const auto &I = RegVars.find(RegNo);
  assert(RegNo != 0U && I != RegVars.end());
  auto &VarSet = I->second;
  const auto &VarPos = llvm::find(VarSet, Var);
  assert(VarPos != VarSet.end());
  VarSet.erase(VarPos);
  // Don't keep empty sets in a map to keep it as small as possible.
  if (VarSet.empty())
    RegVars.erase(I);
}

// Claim that @Var is now described by @RegNo.
static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
                               InlinedEntity Var) {
  assert(RegNo != 0U);
  auto &VarSet = RegVars[RegNo];
  assert(!is_contained(VarSet, Var));
  VarSet.push_back(Var);
}

/// Create a clobbering entry and end all open debug value entries
/// for \p Var that are described by \p RegNo using that entry.
static void clobberRegEntries(InlinedEntity Var, unsigned RegNo,
                              const MachineInstr &ClobberingInstr,
                              DbgValueEntriesMap &LiveEntries,
                              DbgValueHistoryMap &HistMap) {
  EntryIndex ClobberIndex = HistMap.startClobber(Var, ClobberingInstr);

  // Close all entries whose values are described by the register.
  SmallVector<EntryIndex, 4> IndicesToErase;
  for (auto Index : LiveEntries[Var]) {
    auto &Entry = HistMap.getEntry(Var, Index);
    assert(Entry.isDbgValue() && "Not a DBG_VALUE in LiveEntries");
    if (isDescribedByReg(*Entry.getInstr()) == RegNo) {
      IndicesToErase.push_back(Index);
      Entry.endEntry(ClobberIndex);
    }
  }

  // Drop all entries that have ended.
  for (auto Index : IndicesToErase)
    LiveEntries[Var].erase(Index);
}

/// Add a new debug value for \p Var. Closes all overlapping debug values.
static void handleNewDebugValue(InlinedEntity Var, const MachineInstr &DV,
                                RegDescribedVarsMap &RegVars,
                                DbgValueEntriesMap &LiveEntries,
                                DbgValueHistoryMap &HistMap) {
  EntryIndex NewIndex;
  if (HistMap.startDbgValue(Var, DV, NewIndex)) {
    SmallDenseMap<unsigned, bool, 4> TrackedRegs;

    // If we have created a new debug value entry, close all preceding
    // live entries that overlap.
    SmallVector<EntryIndex, 4> IndicesToErase;
    const DIExpression *DIExpr = DV.getDebugExpression();
    for (auto Index : LiveEntries[Var]) {
      auto &Entry = HistMap.getEntry(Var, Index);
      assert(Entry.isDbgValue() && "Not a DBG_VALUE in LiveEntries");
      const MachineInstr &DV = *Entry.getInstr();
      bool Overlaps = DIExpr->fragmentsOverlap(DV.getDebugExpression());
      if (Overlaps) {
        IndicesToErase.push_back(Index);
        Entry.endEntry(NewIndex);
      }
      if (Register Reg = isDescribedByReg(DV))
        TrackedRegs[Reg] |= !Overlaps;
    }

    // If the new debug value is described by a register, add tracking of
    // that register if it is not already tracked.
    if (Register NewReg = isDescribedByReg(DV)) {
      if (!TrackedRegs.count(NewReg))
        addRegDescribedVar(RegVars, NewReg, Var);
      LiveEntries[Var].insert(NewIndex);
      TrackedRegs[NewReg] = true;
    }

    // Drop tracking of registers that are no longer used.
    for (auto I : TrackedRegs)
      if (!I.second)
        dropRegDescribedVar(RegVars, I.first, Var);

    // Drop all entries that have ended, and mark the new entry as live.
    for (auto Index : IndicesToErase)
      LiveEntries[Var].erase(Index);
    LiveEntries[Var].insert(NewIndex);
  }
}

// Terminate the location range for variables described by register at
// @I by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
                                RegDescribedVarsMap::iterator I,
                                DbgValueHistoryMap &HistMap,
                                DbgValueEntriesMap &LiveEntries,
                                const MachineInstr &ClobberingInstr) {
  // Iterate over all variables described by this register and add this
  // instruction to their history, clobbering it.
  for (const auto &Var : I->second)
    clobberRegEntries(Var, I->first, ClobberingInstr, LiveEntries, HistMap);
  RegVars.erase(I);
}

// Terminate the location range for variables described by register
// @RegNo by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
                                DbgValueHistoryMap &HistMap,
                                DbgValueEntriesMap &LiveEntries,
                                const MachineInstr &ClobberingInstr) {
  const auto &I = RegVars.find(RegNo);
  if (I == RegVars.end())
    return;
  clobberRegisterUses(RegVars, I, HistMap, LiveEntries, ClobberingInstr);
}

void llvm::calculateDbgEntityHistory(const MachineFunction *MF,
                                     const TargetRegisterInfo *TRI,
                                     DbgValueHistoryMap &DbgValues,
                                     DbgLabelInstrMap &DbgLabels) {
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
  Register FrameReg = TRI->getFrameRegister(*MF);
  RegDescribedVarsMap RegVars;
  DbgValueEntriesMap LiveEntries;
  for (const auto &MBB : *MF) {
    for (const auto &MI : MBB) {
      if (MI.isDebugValue()) {
        assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
        // Use the base variable (without any DW_OP_piece expressions)
        // as index into History. The full variables including the
        // piece expressions are attached to the MI.
        const DILocalVariable *RawVar = MI.getDebugVariable();
        assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
               "Expected inlined-at fields to agree");
        InlinedEntity Var(RawVar, MI.getDebugLoc()->getInlinedAt());

        handleNewDebugValue(Var, MI, RegVars, LiveEntries, DbgValues);
      } else if (MI.isDebugLabel()) {
        assert(MI.getNumOperands() == 1 && "Invalid DBG_LABEL instruction!");
        const DILabel *RawLabel = MI.getDebugLabel();
        assert(RawLabel->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
            "Expected inlined-at fields to agree");
        // When collecting debug information for labels, there is no MCSymbol
        // generated for it. So, we keep MachineInstr in DbgLabels in order
        // to query MCSymbol afterward.
        InlinedEntity L(RawLabel, MI.getDebugLoc()->getInlinedAt());
        DbgLabels.addInstr(L, MI);
      }

      if (MI.isDebugInstr())
        continue;

      // Not a DBG_VALUE instruction. It may clobber registers which describe
      // some variables.
      for (const MachineOperand &MO : MI.operands()) {
        if (MO.isReg() && MO.isDef() && MO.getReg()) {
          // Ignore call instructions that claim to clobber SP. The AArch64
          // backend does this for aggregate function arguments.
          if (MI.isCall() && MO.getReg() == SP)
            continue;
          // If this is a virtual register, only clobber it since it doesn't
          // have aliases.
          if (Register::isVirtualRegister(MO.getReg()))
            clobberRegisterUses(RegVars, MO.getReg(), DbgValues, LiveEntries,
                                MI);
          // If this is a register def operand, it may end a debug value
          // range. Ignore frame-register defs in the epilogue and prologue,
          // we expect debuggers to understand that stack-locations are
          // invalid outside of the function body.
          else if (MO.getReg() != FrameReg ||
                   (!MI.getFlag(MachineInstr::FrameDestroy) &&
                   !MI.getFlag(MachineInstr::FrameSetup))) {
            for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
                 ++AI)
              clobberRegisterUses(RegVars, *AI, DbgValues, LiveEntries, MI);
          }
        } else if (MO.isRegMask()) {
          // If this is a register mask operand, clobber all debug values in
          // non-CSRs.
          SmallVector<unsigned, 32> RegsToClobber;
          // Don't consider SP to be clobbered by register masks.
          for (auto It : RegVars) {
            unsigned int Reg = It.first;
            if (Reg != SP && Register::isPhysicalRegister(Reg) &&
                MO.clobbersPhysReg(Reg))
              RegsToClobber.push_back(Reg);
          }

          for (unsigned Reg : RegsToClobber) {
            clobberRegisterUses(RegVars, Reg, DbgValues, LiveEntries, MI);
          }
        }
      } // End MO loop.
    }   // End instr loop.

    // Make sure locations for all variables are valid only until the end of
    // the basic block (unless it's the last basic block, in which case let
    // their liveness run off to the end of the function).
    if (!MBB.empty() && &MBB != &MF->back()) {
      // Iterate over all variables that have open debug values.
      for (auto &Pair : LiveEntries) {
        if (Pair.second.empty())
          continue;

        // Create a clobbering entry.
        EntryIndex ClobIdx = DbgValues.startClobber(Pair.first, MBB.back());

        // End all entries.
        for (EntryIndex Idx : Pair.second) {
          DbgValueHistoryMap::Entry &Ent = DbgValues.getEntry(Pair.first, Idx);
          assert(Ent.isDbgValue() && !Ent.isClosed());
          Ent.endEntry(ClobIdx);
        }
      }

      LiveEntries.clear();
      RegVars.clear();
    }
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void DbgValueHistoryMap::dump() const {
  dbgs() << "DbgValueHistoryMap:\n";
  for (const auto &VarRangePair : *this) {
    const InlinedEntity &Var = VarRangePair.first;
    const Entries &Entries = VarRangePair.second;

    const DILocalVariable *LocalVar = cast<DILocalVariable>(Var.first);
    const DILocation *Location = Var.second;

    dbgs() << " - " << LocalVar->getName() << " at ";

    if (Location)
      dbgs() << Location->getFilename() << ":" << Location->getLine() << ":"
             << Location->getColumn();
    else
      dbgs() << "<unknown location>";

    dbgs() << " --\n";

    for (const auto &E : enumerate(Entries)) {
      const auto &Entry = E.value();
      dbgs() << "  Entry[" << E.index() << "]: ";
      if (Entry.isDbgValue())
        dbgs() << "Debug value\n";
      else
        dbgs() << "Clobber\n";
      dbgs() << "   Instr: " << *Entry.getInstr();
      if (Entry.isDbgValue()) {
        if (Entry.getEndIndex() == NoEntry)
          dbgs() << "   - Valid until end of function\n";
        else
          dbgs() << "   - Closed by Entry[" << Entry.getEndIndex() << "]\n";
      }
      dbgs() << "\n";
    }
  }
}
#endif