reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H

#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"

namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;

  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType : unsigned {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// Bit scan forward.
      BSF,
      /// Bit scan reverse.
      BSR,

      /// Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      ///  Bitwise logical ANDNOT of floating point values. This
      /// corresponds to X86::ANDNPS or X86::ANDNPD.
      FANDN,

      /// These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      CALL,

      /// Same as call except it adds the NoTrack prefix.
      NT_CALL,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
      /// operand, usually produced by a CMP instruction.
      SETCC,

      /// X86 Select
      SELECTS,

      // Same as SETCC except it's materialized with a sbb and the value is all
      // one's or all zero's.
      SETCC_CARRY,  // R = carry_bit ? ~0 : 0

      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
      /// Operands are two FP values to compare; result is a mask of
      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
      FSETCC,

      /// X86 FP SETCC, similar to above, but with output as an i1 mask and
      /// and a version with SAE.
      FSETCCM, FSETCCM_SAE,

      /// X86 conditional moves. Operand 0 and operand 1 are the two values
      /// to select from. Operand 2 is the condition code, and operand 3 is the
      /// flag operand produced by a CMP or TEST instruction.
      CMOV,

      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
      /// is the block to branch if condition is true, operand 2 is the
      /// condition code, and operand 3 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
      /// operand 1 is the target address.
      NT_BRIND,

      /// Return with a flag operand. Operand 0 is the chain operand, operand
      /// 1 is the number of bytes of stack to pop.
      RET_FLAG,

      /// Return from interrupt. Operand 0 is the number of bytes to pop.
      IRET,

      /// Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// A wrapper node for TargetConstantPool, TargetJumpTable,
      /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
      /// MCSymbol and TargetBlockAddress.
      Wrapper,

      /// Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// Copies a 64-bit value from an MMX vector to the low word
      /// of an XMM vector, with the high word zero filled.
      MOVQ2DQ,

      /// Copies a 64-bit value from the low word of an XMM vector
      /// to an MMX vector.
      MOVDQ2Q,

      /// Copies a 32-bit value from the low word of a MMX
      /// vector to a GPR.
      MMX_MOVD2W,

      /// Copies a GPR into the low 32-bit word of a MMX vector
      /// and zero out the high word.
      MMX_MOVW2D,

      /// Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW,

      /// Shuffle 16 8-bit values within a vector.
      PSHUFB,

      /// Compute Sum of Absolute Differences.
      PSADBW,
      /// Compute Double Block Packed Sum-Absolute-Differences
      DBPSADBW,

      /// Bitwise Logical AND NOT of Packed FP values.
      ANDNP,

      /// Blend where the selector is an immediate.
      BLENDI,

      /// Dynamic (non-constant condition) vector blend where only the sign bits
      /// of the condition elements are used. This is used to enforce that the
      /// condition mask is not valid for generic VSELECT optimizations. This
      /// is also used to implement the intrinsics.
      /// Operands are in VSELECT order: MASK, TRUE, FALSE
      BLENDV,

      /// Combined add and sub on an FP vector.
      ADDSUB,

      //  FP vector ops with rounding mode.
      FADD_RND, FADDS, FADDS_RND,
      FSUB_RND, FSUBS, FSUBS_RND,
      FMUL_RND, FMULS, FMULS_RND,
      FDIV_RND, FDIVS, FDIVS_RND,
      FMAX_SAE, FMAXS_SAE,
      FMIN_SAE, FMINS_SAE,
      FSQRT_RND, FSQRTS, FSQRTS_RND,

      // FP vector get exponent.
      FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
      // Extract Normalized Mantissas.
      VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
      // FP Scale.
      SCALEF, SCALEF_RND,
      SCALEFS, SCALEFS_RND,

      // Unsigned Integer average.
      AVG,

      /// Integer horizontal add/sub.
      HADD,
      HSUB,

      /// Floating point horizontal add/sub.
      FHADD,
      FHSUB,

      // Detect Conflicts Within a Vector
      CONFLICT,

      /// Floating point max and min.
      FMAX, FMIN,

      /// Commutative FMIN and FMAX.
      FMAXC, FMINC,

      /// Scalar intrinsic floating point max and min.
      FMAXS, FMINS,

      /// Floating point reciprocal-sqrt and reciprocal approximation.
      /// Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // AVX-512 reciprocal approximations with a little more precision.
      RSQRT14, RSQRT14S, RCP14, RCP14S,

      // Thread Local Storage.
      TLSADDR,

      // Thread Local Storage. A call to get the start address
      // of the TLS block for the current module.
      TLSBASEADDR,

      // Thread Local Storage.  When calling to an OS provided
      // thunk at the address from an earlier relocation.
      TLSCALL,

      // Exception Handling helpers.
      EH_RETURN,

      // SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      // SjLj exception handling dispatch.
      EH_SJLJ_SETUP_DISPATCH,

      /// Tail call return. See X86TargetLowering::LowerCall for
      /// the list of operands.
      TC_RETURN,

      // Vector move to low scalar and zero higher vector elements.
      VZEXT_MOVL,

      // Vector integer truncate.
      VTRUNC,
      // Vector integer truncate with unsigned/signed saturation.
      VTRUNCUS, VTRUNCS,

      // Masked version of the above. Used when less than a 128-bit result is
      // produced since the mask only applies to the lower elements and can't
      // be represented by a select.
      // SRC, PASSTHRU, MASK
      VMTRUNC, VMTRUNCUS, VMTRUNCS,

      // Vector FP extend.
      VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,

      // Vector FP round.
      VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,

      // Masked version of above. Used for v2f64->v4f32.
      // SRC, PASSTHRU, MASK
      VMFPROUND,

      // 128-bit vector logical left / right shift
      VSHLDQ, VSRLDQ,

      // Vector shift elements
      VSHL, VSRL, VSRA,

      // Vector variable shift
      VSHLV, VSRLV, VSRAV,

      // Vector shift elements by immediate
      VSHLI, VSRLI, VSRAI,

      // Shifts of mask registers.
      KSHIFTL, KSHIFTR,

      // Bit rotate by immediate
      VROTLI, VROTRI,

      // Vector packed double/float comparison.
      CMPP,

      // Vector integer comparisons.
      PCMPEQ, PCMPGT,

      // v8i16 Horizontal minimum and position.
      PHMINPOS,

      MULTISHIFT,

      /// Vector comparison generating mask bits for fp and
      /// integer signed and unsigned data types.
      CMPM,
      // Vector comparison with SAE for FP values
      CMPM_SAE,

      // Arithmetic operations with FLAGS results.
      ADD, SUB, ADC, SBB, SMUL, UMUL,
      OR, XOR, AND,

      // Bit field extract.
      BEXTR,

      // Zero High Bits Starting with Specified Bit Position.
      BZHI,

      // X86-specific multiply by immediate.
      MUL_IMM,

      // Vector sign bit extraction.
      MOVMSK,

      // Vector bitwise comparisons.
      PTEST,

      // Vector packed fp sign bitwise comparisons.
      TESTP,

      // OR/AND test for masks.
      KORTEST,
      KTEST,

      // ADD for masks.
      KADD,

      // Several flavors of instructions with vector shuffle behaviors.
      // Saturated signed/unnsigned packing.
      PACKSS,
      PACKUS,
      // Intra-lane alignr.
      PALIGNR,
      // AVX512 inter-lane alignr.
      VALIGN,
      PSHUFD,
      PSHUFHW,
      PSHUFLW,
      SHUFP,
      // VBMI2 Concat & Shift.
      VSHLD,
      VSHRD,
      VSHLDV,
      VSHRDV,
      //Shuffle Packed Values at 128-bit granularity.
      SHUF128,
      MOVDDUP,
      MOVSHDUP,
      MOVSLDUP,
      MOVLHPS,
      MOVHLPS,
      MOVSD,
      MOVSS,
      UNPCKL,
      UNPCKH,
      VPERMILPV,
      VPERMILPI,
      VPERMI,
      VPERM2X128,

      // Variable Permute (VPERM).
      // Res = VPERMV MaskV, V0
      VPERMV,

      // 3-op Variable Permute (VPERMT2).
      // Res = VPERMV3 V0, MaskV, V1
      VPERMV3,

      // Bitwise ternary logic.
      VPTERNLOG,
      // Fix Up Special Packed Float32/64 values.
      VFIXUPIMM, VFIXUPIMM_SAE,
      VFIXUPIMMS, VFIXUPIMMS_SAE,
      // Range Restriction Calculation For Packed Pairs of Float32/64 values.
      VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
      // Reduce - Perform Reduction Transformation on scalar\packed FP.
      VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
      // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
      // Also used by the legacy (V)ROUND intrinsics where we mask out the
      // scaling part of the immediate.
      VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
      // Tests Types Of a FP Values for packed types.
      VFPCLASS,
      // Tests Types Of a FP Values for scalar types.
      VFPCLASSS,

      // Broadcast (splat) scalar or element 0 of a vector. If the operand is
      // a vector, this node may change the vector length as part of the splat.
      VBROADCAST,
      // Broadcast mask to vector.
      VBROADCASTM,
      // Broadcast subvector to vector.
      SUBV_BROADCAST,

      /// SSE4A Extraction and Insertion.
      EXTRQI, INSERTQI,

      // XOP arithmetic/logical shifts.
      VPSHA, VPSHL,
      // XOP signed/unsigned integer comparisons.
      VPCOM, VPCOMU,
      // XOP packed permute bytes.
      VPPERM,
      // XOP two source permutation.
      VPERMIL2,

      // Vector multiply packed unsigned doubleword integers.
      PMULUDQ,
      // Vector multiply packed signed doubleword integers.
      PMULDQ,
      // Vector Multiply Packed UnsignedIntegers with Round and Scale.
      MULHRS,

      // Multiply and Add Packed Integers.
      VPMADDUBSW, VPMADDWD,

      // AVX512IFMA multiply and add.
      // NOTE: These are different than the instruction and perform
      // op0 x op1 + op2.
      VPMADD52L, VPMADD52H,

      // VNNI
      VPDPBUSD,
      VPDPBUSDS,
      VPDPWSSD,
      VPDPWSSDS,

      // FMA nodes.
      // We use the target independent ISD::FMA for the non-inverted case.
      FNMADD,
      FMSUB,
      FNMSUB,
      FMADDSUB,
      FMSUBADD,

      // FMA with rounding mode.
      FMADD_RND,
      FNMADD_RND,
      FMSUB_RND,
      FNMSUB_RND,
      FMADDSUB_RND,
      FMSUBADD_RND,

      // Compress and expand.
      COMPRESS,
      EXPAND,

      // Bits shuffle
      VPSHUFBITQMB,

      // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
      SINT_TO_FP_RND, UINT_TO_FP_RND,
      SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
      SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,

      // Vector float/double to signed/unsigned integer.
      CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
      // Scalar float/double to signed/unsigned integer.
      CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,

      // Vector float/double to signed/unsigned integer with truncation.
      CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
      // Scalar float/double to signed/unsigned integer with truncation.
      CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,

      // Vector signed/unsigned integer to float/double.
      CVTSI2P, CVTUI2P,

      // Masked versions of above. Used for v2f64->v4f32.
      // SRC, PASSTHRU, MASK
      MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
      MCVTSI2P, MCVTUI2P,

      // Vector float to bfloat16.
      // Convert TWO packed single data to one packed BF16 data
      CVTNE2PS2BF16, 
      // Convert packed single data to packed BF16 data
      CVTNEPS2BF16,
      // Masked version of above.
      // SRC, PASSTHRU, MASK
      MCVTNEPS2BF16,

      // Dot product of BF16 pairs to accumulated into
      // packed single precision.
      DPBF16PS,

      // Save xmm argument registers to the stack, according to %al. An operator
      // is needed so that this can be expanded with control flow.
      VASTART_SAVE_XMM_REGS,

      // Windows's _chkstk call to do stack probing.
      WIN_ALLOCA,

      // For allocating variable amounts of stack space when using
      // segmented stacks. Check if the current stacklet has enough space, and
      // falls back to heap allocation if not.
      SEG_ALLOCA,

      // Memory barriers.
      MEMBARRIER,
      MFENCE,

      // Store FP status word into i16 register.
      FNSTSW16r,

      // Store contents of %ah into %eflags.
      SAHF,

      // Get a random integer and indicate whether it is valid in CF.
      RDRAND,

      // Get a NIST SP800-90B & C compliant random integer and
      // indicate whether it is valid in CF.
      RDSEED,

      // Protection keys
      // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
      // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
      // value for ECX.
      RDPKRU, WRPKRU,

      // SSE42 string comparisons.
      // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
      // will emit one or two instructions based on which results are used. If
      // flags and index/mask this allows us to use a single instruction since
      // we won't have to pick and opcode for flags. Instead we can rely on the
      // DAG to CSE everything and decide at isel.
      PCMPISTR,
      PCMPESTR,

      // Test if in transactional execution.
      XTEST,

      // ERI instructions.
      RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
      RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,

      // Conversions between float and half-float.
      CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,

      // Masked version of above.
      // SRC, RND, PASSTHRU, MASK
      MCVTPS2PH,

      // Galois Field Arithmetic Instructions
      GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,

      // LWP insert record.
      LWPINS,

      // User level wait
      UMWAIT, TPAUSE,

      // Enqueue Stores Instructions
      ENQCMD, ENQCMDS,

      // For avx512-vp2intersect
      VP2INTERSECT,

      // Compare and swap.
      LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
      LCMPXCHG8_DAG,
      LCMPXCHG16_DAG,
      LCMPXCHG8_SAVE_EBX_DAG,
      LCMPXCHG16_SAVE_RBX_DAG,

      /// LOCK-prefixed arithmetic read-modify-write instructions.
      /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
      LADD, LSUB, LOR, LXOR, LAND,

      // Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // extract_vector_elt, store.
      VEXTRACT_STORE,

      // scalar broadcast from memory
      VBROADCAST_LOAD,

      // Store FP control world into i16 memory.
      FNSTCW16m,

      /// This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain). Memory VT specifies the type to store to.
      FP_TO_INT_IN_MEM,

      /// This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has two inputs (token chain and address)
      /// and two outputs (FP value and token chain). FILD_FLAG also produces a
      /// flag). The integer source type is specified by the memory VT.
      FILD,
      FILD_FLAG,

      /// This instruction implements a fp->int store from FP stack
      /// slots. This corresponds to the fist instruction. It takes a
      /// chain operand, value to store, address, and glue. The memory VT
      /// specifies the type to store as.
      FIST,

      /// This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, and ptr to load from. The memory VT specifies the type to
      /// load from.
      FLD,

      /// This instruction implements a truncating store from FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and glue. The memory VT
      /// specifies the type to store as.
      FST,

      /// This instruction grabs the address of the next argument
      /// from a va_list. (reads and modifies the va_list in memory)
      VAARG_64,

      // Vector truncating store with unsigned/signed saturation
      VTRUNCSTOREUS, VTRUNCSTORES,
      // Vector truncating masked store with unsigned/signed saturation
      VMTRUNCSTOREUS, VMTRUNCSTORES,

      // X86 specific gather and scatter
      MGATHER, MSCATTER,

      // WARNING: Do not add anything in the end unless you want the node to
      // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
      // opcodes will be thought as target memory ops!
    };
  } // end namespace X86ISD

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement = true);

    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);

    /// If Op is a constant whose elements are all the same constant or
    /// undefined, return true and return the constant value in \p SplatVal.
    bool isConstantSplat(SDValue Op, APInt &SplatVal);
  } // end namespace X86

  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);

    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;

    void markLibCallAttributes(MachineFunction *MF, unsigned CC,
                               ArgListTy &Args) const override;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
      return MVT::i8;
    }

    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;

    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                            bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                            const AttributeList &FuncAttributes) const override;

    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;

    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
                                        MachineMemOperand::Flags Flags,
                                        bool *Fast) const override;

    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// Places new result values for the node in Results (their number
    /// and types must exactly match those of the original return values of
    /// the node), or leaves Results empty, which indicates that the node is not
    /// to be custom lowered after all.
    void LowerOperationWrapper(SDNode *N,
                               SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const override;

    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    // Return true if it is profitable to combine a BUILD_VECTOR with a
    // stride-pattern to a shuffle and a truncate.
    // Example of such a combine:
    // v4i32 build_vector((extract_elt V, 1),
    //                    (extract_elt V, 3),
    //                    (extract_elt V, 5),
    //                    (extract_elt V, 7))
    //  -->
    // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
    // v4i64)
    bool isDesirableToCombineBuildVectorToShuffleTruncate(
        ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;

    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;

    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;

    /// Return 1 if we can compute the negated form of the specified expression
    /// for the same cost as the expression itself, or 2 if we can compute the
    /// negated form more cheaply than the expression itself. Else return 0.
    char isNegatibleForFree(SDValue Op, SelectionDAG &DAG, bool LegalOperations,
                            bool ForCodeSize, unsigned Depth) const override;

    /// If isNegatibleForFree returns true, return the newly negated expression.
    SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
                                 bool LegalOperations, bool ForCodeSize,
                                 unsigned Depth) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;

    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    /// Do not merge vector stores after legalization because that may conflict
    /// with x86-specific store splitting optimizations.
    bool mergeStoresAfterLegalization(EVT MemVT) const override {
      return !MemVT.isVector();
    }

    bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                          const SelectionDAG &DAG) const override;

    bool isCheapToSpeculateCttz() const override;

    bool isCheapToSpeculateCtlz() const override;

    bool isCtlzFast() const override;

    bool hasBitPreservingFPLogic(EVT VT) const override {
      return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
    }

    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }

    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

    bool hasAndNotCompare(SDValue Y) const override;

    bool hasAndNot(SDValue Y) const override;

    bool hasBitTest(SDValue X, SDValue Y) const override;

    bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const override;

    bool shouldFoldConstantShiftPairToMask(const SDNode *N,
                                           CombineLevel Level) const override;

    bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;

    bool
    shouldTransformSignedTruncationCheck(EVT XVT,
                                         unsigned KeptBits) const override {
      // For vectors, we don't have a preference..
      if (XVT.isVector())
        return false;

      auto VTIsOk = [](EVT VT) -> bool {
        return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
               VT == MVT::i64;
      };

      // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
      // XVT will be larger than KeptBitsVT.
      MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
      return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
    }

    bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;

    bool shouldSplatInsEltVarIndex(EVT VT) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
    MVT hasFastEqualityCompare(unsigned NumBits) const override;

    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
                                      TargetLoweringOpt &TLO) const override;

    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const APInt &DemandedElts,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;

    bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
                                                 const APInt &DemandedElts,
                                                 APInt &KnownUndef,
                                                 APInt &KnownZero,
                                                 TargetLoweringOpt &TLO,
                                                 unsigned Depth) const override;

    bool SimplifyDemandedBitsForTargetNode(SDValue Op,
                                           const APInt &DemandedBits,
                                           const APInt &DemandedElts,
                                           KnownBits &Known,
                                           TargetLoweringOpt &TLO,
                                           unsigned Depth) const override;

    SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
        SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
        SelectionDAG &DAG, unsigned Depth) const override;

    const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;

    SDValue unwrapAddress(SDValue N) const override;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    bool ExpandInlineAsm(CallInst *CI) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                     const char *constraint) const override;

    const char *LowerXConstraint(EVT ConstraintVT) const override;

    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "i")
        return InlineAsm::Constraint_i;
      else if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "v")
        return InlineAsm::Constraint_v;
      else if (ConstraintCode == "X")
        return InlineAsm::Constraint_X;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// Handle Lowering flag assembly outputs.
    SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
                                        const AsmOperandInfo &Constraint,
                                        SelectionDAG &DAG) const override;

    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    bool isLegalStoreImmediate(int64_t Imm) const override;

    /// Return the cost of the scaling factor used in the addressing
    /// mode represented by AM for this target, for a load/store
    /// of the specified type.
    /// If the AM is supported, the return value must be >= 0.
    /// If the AM is not supported, it returns a negative value.
    int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS) const override;

    bool isVectorShiftByScalarCheap(Type *Ty) const override;

    /// Add x86-specific opcodes to the default list.
    bool isBinOp(unsigned Opcode) const override;

    /// Returns true if the opcode is a commutative binary operation.
    bool isCommutativeBinOp(unsigned Opcode) const override;

    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;

    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;

    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;

    /// Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;

    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
    /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
    /// constant pool entry.
    bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Returns true if lowering to a jump table is allowed.
    bool areJTsAllowed(const Function *Fn) const override;

    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
             (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override;

    bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
                                SDValue C) const override;

    bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
                                  bool IsSigned) const override;

    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                 unsigned Index) const override;

    /// Scalar ops always have equal or better analysis/performance/power than
    /// the vector equivalent, so this always makes sense if the scalar op is
    /// supported.
    bool shouldScalarizeBinop(SDValue) const override;

    /// Extract of a scalar FP value from index 0 of a vector is free.
    bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
      EVT EltVT = VT.getScalarType();
      return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
    }

    /// Overflow nodes should get combined/lowered to optimal instructions
    /// (they should allow eliminating explicit compares by getting flags from
    /// math ops).
    bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;

    bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
                                      unsigned AddrSpace) const override {
      // If we can replace more than 2 scalar stores, there will be a reduction
      // in instructions even after we add a vector constant load.
      return NumElem > 2;
    }

    bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
                                 const SelectionDAG &DAG,
                                 const MachineMemOperand &MMO) const override;

    /// Intel processors have a unified instruction and data cache
    const char * getClearCacheBuiltinName() const override {
      return nullptr; // nothing to do, move along.
    }

    Register getRegisterByName(const char* RegName, EVT VT,
                               const MachineFunction &MF) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    virtual bool needsFixedCatchObjects() const override;

    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;

    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilder<> &IRB) const override;

    bool useLoadStackGuardNode() const override;
    bool useStackGuardXorFP() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Function *getSSPStackGuardCheck(const Module &M) const override;
    SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
                                const SDLoc &DL) const override;


    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
                      SelectionDAG &DAG) const;

    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;

    /// Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;

    MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
                                      EVT VT) const override;

    unsigned getNumRegistersForCallingConv(LLVMContext &Context,
                                           CallingConv::ID CC,
                                           EVT VT) const override;

    unsigned getVectorTypeBreakdownForCallingConv(
        LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
        unsigned &NumIntermediates, MVT &RegisterVT) const override;

    bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

    bool supportSwiftError() const override;

    StringRef getStackProbeSymbolName(MachineFunction &MF) const override;

    unsigned getStackProbeSize(MachineFunction &MF) const;

    bool hasVectorBlend() const override { return true; }

    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

    /// Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;

    /// Lower interleaved store(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                               unsigned Factor) const override;

    SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
                                   SDValue Addr, SelectionDAG &DAG)
                                   const override;

  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;

  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;

    /// Select between SSE or x87 floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            uint32_t *RegMask) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const;

    // Call lowering helpers.

    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    unsigned getAddressSpace(void) const;

    SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;

    unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
                                  const unsigned char OpFlags = 0) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;

    /// Creates target global address or external symbol nodes for calls or
    /// other uses.
    SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
                                  bool ForCall) const;

    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
                          RTLIB::Libcall Call) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;

    bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override;
    bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override;

    bool needsCmpXchgNb(Type *MemType) const;

    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARG64WithCustomInserter(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *
    EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
                                             MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
                                                 MachineInstr &MI2,
                                                 MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    void emitSetJmpShadowStackFix(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
                                                 MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
                                     MachineBasicBlock *MBB) const;

    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;

    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
                    SelectionDAG &DAG) const;

    /// Convert a comparison if required by the subtarget.
    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;

    /// Emit flags for the given setcc condition and operands. Also returns the
    /// corresponding X86 condition code constant in X86CC.
    SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
                              ISD::CondCode CC, const SDLoc &dl,
                              SelectionDAG &DAG,
                              SDValue &X86CC) const;

    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;

    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;

    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;

    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;

    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86

  // Base class for all X86 non-masked store operations.
  class X86StoreSDNode : public MemSDNode {
  public:
    X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
                   SDVTList VTs, EVT MemVT,
                   MachineMemOperand *MMO)
      :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
    const SDValue &getValue() const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES ||
        N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // Base class for all X86 masked store operations.
  // The class has the same order of operands as MaskedStoreSDNode for
  // convenience.
  class X86MaskedStoreSDNode : public MemSDNode {
  public:
    X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getValue()   const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }
    const SDValue &getMask()    const { return getOperand(3); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
        N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 Truncating Store with Signed saturation.
  class TruncSStoreSDNode : public X86StoreSDNode {
  public:
    TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
                        SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES;
    }
  };

  // X86 Truncating Store with Unsigned saturation.
  class TruncUSStoreSDNode : public X86StoreSDNode {
  public:
    TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // X86 Truncating Masked Store with Signed saturation.
  class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncSStoreSDNode(unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES;
    }
  };

  // X86 Truncating Masked Store with Unsigned saturation.
  class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncUSStoreSDNode(unsigned Order,
                            const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                            MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 specific Gather/Scatter nodes.
  // The class has the same order of operands as MaskedGatherScatterSDNode for
  // convenience.
  class X86MaskedGatherScatterSDNode : public MemSDNode {
  public:
    X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
                                 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                                 MachineMemOperand *MMO)
        : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getBasePtr() const { return getOperand(3); }
    const SDValue &getIndex()   const { return getOperand(4); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getScale()   const { return getOperand(5); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER ||
             N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                          EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
                                       MMO) {}

    const SDValue &getPassThru() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER;
    }
  };

  class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                           EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
                                       MMO) {}

    const SDValue &getValue() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  /// Generate unpacklo/unpackhi shuffle mask.
  template <typename T = int>
  void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
                               bool Unary) {
    assert(Mask.empty() && "Expected an empty shuffle mask vector");
    int NumElts = VT.getVectorNumElements();
    int NumEltsInLane = 128 / VT.getScalarSizeInBits();
    for (int i = 0; i < NumElts; ++i) {
      unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
      int Pos = (i % NumEltsInLane) / 2 + LaneStart;
      Pos += (Unary ? 0 : NumElts * (i % 2));
      Pos += (Lo ? 0 : NumEltsInLane / 2);
      Mask.push_back(Pos);
    }
  }

  /// Helper function to scale a shuffle or target shuffle mask, replacing each
  /// mask index with the scaled sequential indices for an equivalent narrowed
  /// mask. This is the reverse process to canWidenShuffleElements, but can
  /// always succeed.
  template <typename T>
  void scaleShuffleMask(size_t Scale, ArrayRef<T> Mask,
                        SmallVectorImpl<T> &ScaledMask) {
    assert(0 < Scale && "Unexpected scaling factor");
    size_t NumElts = Mask.size();
    ScaledMask.assign(NumElts * Scale, -1);

    for (size_t i = 0; i != NumElts; ++i) {
      int M = Mask[i];

      // Repeat sentinel values in every mask element.
      if (M < 0) {
        for (size_t s = 0; s != Scale; ++s)
          ScaledMask[(Scale * i) + s] = M;
        continue;
      }

      // Scale mask element and increment across each mask element.
      for (size_t s = 0; s != Scale; ++s)
        ScaledMask[(Scale * i) + s] = (Scale * M) + s;
    }
  }
} // end namespace llvm

#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H