reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "integer-division"

/// Generate code to compute the remainder of two signed integers. Returns the
/// remainder, which will have the sign of the dividend. Builder's insert point
/// should be pointing where the caller wants code generated, e.g. at the srem
/// instruction. This will generate a urem in the process, and Builder's insert
/// point will be pointing at the uren (if present, i.e. not folded), ready to
/// be expanded if the user wishes
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
                                          IRBuilder<> &Builder) {
  unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
  ConstantInt *Shift;

  if (BitWidth == 64) {
    Shift = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Shift = Builder.getInt32(31);
  }

  // Following instructions are generated for both i32 (shift 31) and
  // i64 (shift 63).

  // ;   %dividend_sgn = ashr i32 %dividend, 31
  // ;   %divisor_sgn  = ashr i32 %divisor, 31
  // ;   %dvd_xor      = xor i32 %dividend, %dividend_sgn
  // ;   %dvs_xor      = xor i32 %divisor, %divisor_sgn
  // ;   %u_dividend   = sub i32 %dvd_xor, %dividend_sgn
  // ;   %u_divisor    = sub i32 %dvs_xor, %divisor_sgn
  // ;   %urem         = urem i32 %dividend, %divisor
  // ;   %xored        = xor i32 %urem, %dividend_sgn
  // ;   %srem         = sub i32 %xored, %dividend_sgn
  Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
  Value *DivisorSign  = Builder.CreateAShr(Divisor, Shift);
  Value *DvdXor       = Builder.CreateXor(Dividend, DividendSign);
  Value *DvsXor       = Builder.CreateXor(Divisor, DivisorSign);
  Value *UDividend    = Builder.CreateSub(DvdXor, DividendSign);
  Value *UDivisor     = Builder.CreateSub(DvsXor, DivisorSign);
  Value *URem         = Builder.CreateURem(UDividend, UDivisor);
  Value *Xored        = Builder.CreateXor(URem, DividendSign);
  Value *SRem         = Builder.CreateSub(Xored, DividendSign);

  if (Instruction *URemInst = dyn_cast<Instruction>(URem))
    Builder.SetInsertPoint(URemInst);

  return SRem;
}


/// Generate code to compute the remainder of two unsigned integers. Returns the
/// remainder. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the urem instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
                                             IRBuilder<> &Builder) {
  // Remainder = Dividend - Quotient*Divisor

  // Following instructions are generated for both i32 and i64

  // ;   %quotient  = udiv i32 %dividend, %divisor
  // ;   %product   = mul i32 %divisor, %quotient
  // ;   %remainder = sub i32 %dividend, %product
  Value *Quotient  = Builder.CreateUDiv(Dividend, Divisor);
  Value *Product   = Builder.CreateMul(Divisor, Quotient);
  Value *Remainder = Builder.CreateSub(Dividend, Product);

  if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
    Builder.SetInsertPoint(UDiv);

  return Remainder;
}

/// Generate code to divide two signed integers. Returns the quotient, rounded
/// towards 0. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes.
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
                                         IRBuilder<> &Builder) {
  // Implementation taken from compiler-rt's __divsi3 and __divdi3

  unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
  ConstantInt *Shift;

  if (BitWidth == 64) {
    Shift = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Shift = Builder.getInt32(31);
  }

  // Following instructions are generated for both i32 (shift 31) and
  // i64 (shift 63).

  // ;   %tmp    = ashr i32 %dividend, 31
  // ;   %tmp1   = ashr i32 %divisor, 31
  // ;   %tmp2   = xor i32 %tmp, %dividend
  // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp
  // ;   %tmp3   = xor i32 %tmp1, %divisor
  // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1
  // ;   %q_sgn  = xor i32 %tmp1, %tmp
  // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr
  // ;   %tmp4   = xor i32 %q_mag, %q_sgn
  // ;   %q      = sub i32 %tmp4, %q_sgn
  Value *Tmp    = Builder.CreateAShr(Dividend, Shift);
  Value *Tmp1   = Builder.CreateAShr(Divisor, Shift);
  Value *Tmp2   = Builder.CreateXor(Tmp, Dividend);
  Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
  Value *Tmp3   = Builder.CreateXor(Tmp1, Divisor);
  Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
  Value *Q_Sgn  = Builder.CreateXor(Tmp1, Tmp);
  Value *Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
  Value *Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn);
  Value *Q      = Builder.CreateSub(Tmp4, Q_Sgn);

  if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
    Builder.SetInsertPoint(UDiv);

  return Q;
}

/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
/// Returns the quotient, rounded towards 0. Builder's insert point should
/// point where the caller wants code generated, e.g. at the udiv instruction.
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
                                           IRBuilder<> &Builder) {
  // The basic algorithm can be found in the compiler-rt project's
  // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
  // that's been hand-tuned to lessen the amount of control flow involved.

  // Some helper values
  IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
  unsigned BitWidth = DivTy->getBitWidth();

  ConstantInt *Zero;
  ConstantInt *One;
  ConstantInt *NegOne;
  ConstantInt *MSB;

  if (BitWidth == 64) {
    Zero      = Builder.getInt64(0);
    One       = Builder.getInt64(1);
    NegOne    = ConstantInt::getSigned(DivTy, -1);
    MSB       = Builder.getInt64(63);
  } else {
    assert(BitWidth == 32 && "Unexpected bit width");
    Zero      = Builder.getInt32(0);
    One       = Builder.getInt32(1);
    NegOne    = ConstantInt::getSigned(DivTy, -1);
    MSB       = Builder.getInt32(31);
  }

  ConstantInt *True = Builder.getTrue();

  BasicBlock *IBB = Builder.GetInsertBlock();
  Function *F = IBB->getParent();
  Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
                                             DivTy);

  // Our CFG is going to look like:
  // +---------------------+
  // | special-cases       |
  // |   ...               |
  // +---------------------+
  //  |       |
  //  |   +----------+
  //  |   |  bb1     |
  //  |   |  ...     |
  //  |   +----------+
  //  |    |      |
  //  |    |  +------------+
  //  |    |  |  preheader |
  //  |    |  |  ...       |
  //  |    |  +------------+
  //  |    |      |
  //  |    |      |      +---+
  //  |    |      |      |   |
  //  |    |  +------------+ |
  //  |    |  |  do-while  | |
  //  |    |  |  ...       | |
  //  |    |  +------------+ |
  //  |    |      |      |   |
  //  |   +-----------+  +---+
  //  |   | loop-exit |
  //  |   |  ...      |
  //  |   +-----------+
  //  |     |
  // +-------+
  // | ...   |
  // | end   |
  // +-------+
  BasicBlock *SpecialCases = Builder.GetInsertBlock();
  SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
  BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
                                                  "udiv-end");
  BasicBlock *LoopExit  = BasicBlock::Create(Builder.getContext(),
                                             "udiv-loop-exit", F, End);
  BasicBlock *DoWhile   = BasicBlock::Create(Builder.getContext(),
                                             "udiv-do-while", F, End);
  BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
                                             "udiv-preheader", F, End);
  BasicBlock *BB1       = BasicBlock::Create(Builder.getContext(),
                                             "udiv-bb1", F, End);

  // We'll be overwriting the terminator to insert our extra blocks
  SpecialCases->getTerminator()->eraseFromParent();

  // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).

  // First off, check for special cases: dividend or divisor is zero, divisor
  // is greater than dividend, and divisor is 1.
  // ; special-cases:
  // ;   %ret0_1      = icmp eq i32 %divisor, 0
  // ;   %ret0_2      = icmp eq i32 %dividend, 0
  // ;   %ret0_3      = or i1 %ret0_1, %ret0_2
  // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
  // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
  // ;   %sr          = sub nsw i32 %tmp0, %tmp1
  // ;   %ret0_4      = icmp ugt i32 %sr, 31
  // ;   %ret0        = or i1 %ret0_3, %ret0_4
  // ;   %retDividend = icmp eq i32 %sr, 31
  // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend
  // ;   %earlyRet    = or i1 %ret0, %retDividend
  // ;   br i1 %earlyRet, label %end, label %bb1
  Builder.SetInsertPoint(SpecialCases);
  Value *Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero);
  Value *Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero);
  Value *Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2);
  Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
  Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
  Value *SR          = Builder.CreateSub(Tmp0, Tmp1);
  Value *Ret0_4      = Builder.CreateICmpUGT(SR, MSB);
  Value *Ret0        = Builder.CreateOr(Ret0_3, Ret0_4);
  Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
  Value *RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend);
  Value *EarlyRet    = Builder.CreateOr(Ret0, RetDividend);
  Builder.CreateCondBr(EarlyRet, End, BB1);

  // ; bb1:                                             ; preds = %special-cases
  // ;   %sr_1     = add i32 %sr, 1
  // ;   %tmp2     = sub i32 31, %sr
  // ;   %q        = shl i32 %dividend, %tmp2
  // ;   %skipLoop = icmp eq i32 %sr_1, 0
  // ;   br i1 %skipLoop, label %loop-exit, label %preheader
  Builder.SetInsertPoint(BB1);
  Value *SR_1     = Builder.CreateAdd(SR, One);
  Value *Tmp2     = Builder.CreateSub(MSB, SR);
  Value *Q        = Builder.CreateShl(Dividend, Tmp2);
  Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
  Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);

  // ; preheader:                                           ; preds = %bb1
  // ;   %tmp3 = lshr i32 %dividend, %sr_1
  // ;   %tmp4 = add i32 %divisor, -1
  // ;   br label %do-while
  Builder.SetInsertPoint(Preheader);
  Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
  Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
  Builder.CreateBr(DoWhile);

  // ; do-while:                                 ; preds = %do-while, %preheader
  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
  // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
  // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
  // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
  // ;   %tmp5  = shl i32 %r_1, 1
  // ;   %tmp6  = lshr i32 %q_2, 31
  // ;   %tmp7  = or i32 %tmp5, %tmp6
  // ;   %tmp8  = shl i32 %q_2, 1
  // ;   %q_1   = or i32 %carry_1, %tmp8
  // ;   %tmp9  = sub i32 %tmp4, %tmp7
  // ;   %tmp10 = ashr i32 %tmp9, 31
  // ;   %carry = and i32 %tmp10, 1
  // ;   %tmp11 = and i32 %tmp10, %divisor
  // ;   %r     = sub i32 %tmp7, %tmp11
  // ;   %sr_2  = add i32 %sr_3, -1
  // ;   %tmp12 = icmp eq i32 %sr_2, 0
  // ;   br i1 %tmp12, label %loop-exit, label %do-while
  Builder.SetInsertPoint(DoWhile);
  PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
  PHINode *SR_3    = Builder.CreatePHI(DivTy, 2);
  PHINode *R_1     = Builder.CreatePHI(DivTy, 2);
  PHINode *Q_2     = Builder.CreatePHI(DivTy, 2);
  Value *Tmp5  = Builder.CreateShl(R_1, One);
  Value *Tmp6  = Builder.CreateLShr(Q_2, MSB);
  Value *Tmp7  = Builder.CreateOr(Tmp5, Tmp6);
  Value *Tmp8  = Builder.CreateShl(Q_2, One);
  Value *Q_1   = Builder.CreateOr(Carry_1, Tmp8);
  Value *Tmp9  = Builder.CreateSub(Tmp4, Tmp7);
  Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
  Value *Carry = Builder.CreateAnd(Tmp10, One);
  Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
  Value *R     = Builder.CreateSub(Tmp7, Tmp11);
  Value *SR_2  = Builder.CreateAdd(SR_3, NegOne);
  Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
  Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);

  // ; loop-exit:                                      ; preds = %do-while, %bb1
  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
  // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
  // ;   %tmp13 = shl i32 %q_3, 1
  // ;   %q_4   = or i32 %carry_2, %tmp13
  // ;   br label %end
  Builder.SetInsertPoint(LoopExit);
  PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
  PHINode *Q_3     = Builder.CreatePHI(DivTy, 2);
  Value *Tmp13 = Builder.CreateShl(Q_3, One);
  Value *Q_4   = Builder.CreateOr(Carry_2, Tmp13);
  Builder.CreateBr(End);

  // ; end:                                 ; preds = %loop-exit, %special-cases
  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
  // ;   ret i32 %q_5
  Builder.SetInsertPoint(End, End->begin());
  PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);

  // Populate the Phis, since all values have now been created. Our Phis were:
  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
  Carry_1->addIncoming(Zero, Preheader);
  Carry_1->addIncoming(Carry, DoWhile);
  // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
  SR_3->addIncoming(SR_1, Preheader);
  SR_3->addIncoming(SR_2, DoWhile);
  // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
  R_1->addIncoming(Tmp3, Preheader);
  R_1->addIncoming(R, DoWhile);
  // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
  Q_2->addIncoming(Q, Preheader);
  Q_2->addIncoming(Q_1, DoWhile);
  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
  Carry_2->addIncoming(Zero, BB1);
  Carry_2->addIncoming(Carry, DoWhile);
  // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
  Q_3->addIncoming(Q, BB1);
  Q_3->addIncoming(Q_1, DoWhile);
  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
  Q_5->addIncoming(Q_4, LoopExit);
  Q_5->addIncoming(RetVal, SpecialCases);

  return Q_5;
}

/// Generate code to calculate the remainder of two integers, replacing Rem with
/// the generated code. This currently generates code using the udiv expansion,
/// but future work includes generating more specialized code, e.g. when more
/// information about the operands are known. Implements both 32bit and 64bit
/// scalar division.
///
/// Replace Rem with generated code.
bool llvm::expandRemainder(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
         "Trying to expand remainder from a non-remainder function");

  IRBuilder<> Builder(Rem);

  assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
  assert((Rem->getType()->getIntegerBitWidth() == 32 ||
          Rem->getType()->getIntegerBitWidth() == 64) &&
         "Div of bitwidth other than 32 or 64 not supported");

  // First prepare the sign if it's a signed remainder
  if (Rem->getOpcode() == Instruction::SRem) {
    Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
                                                   Rem->getOperand(1), Builder);

    // Check whether this is the insert point while Rem is still valid.
    bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
    Rem->replaceAllUsesWith(Remainder);
    Rem->dropAllReferences();
    Rem->eraseFromParent();

    // If we didn't actually generate an urem instruction, we're done
    // This happens for example if the input were constant. In this case the
    // Builder insertion point was unchanged
    if (IsInsertPoint)
      return true;

    BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
    Rem = BO;
  }

  Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
                                                    Rem->getOperand(1),
                                                    Builder);

  Rem->replaceAllUsesWith(Remainder);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  // Expand the udiv
  if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
    assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
    expandDivision(UDiv);
  }

  return true;
}


/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// Replace Div with generated code.
bool llvm::expandDivision(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
         "Trying to expand division from a non-division function");

  IRBuilder<> Builder(Div);

  assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
  assert((Div->getType()->getIntegerBitWidth() == 32 ||
          Div->getType()->getIntegerBitWidth() == 64) &&
         "Div of bitwidth other than 32 or 64 not supported");

  // First prepare the sign if it's a signed division
  if (Div->getOpcode() == Instruction::SDiv) {
    // Lower the code to unsigned division, and reset Div to point to the udiv.
    Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
                                                 Div->getOperand(1), Builder);

    // Check whether this is the insert point while Div is still valid.
    bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
    Div->replaceAllUsesWith(Quotient);
    Div->dropAllReferences();
    Div->eraseFromParent();

    // If we didn't actually generate an udiv instruction, we're done
    // This happens for example if the input were constant. In this case the
    // Builder insertion point was unchanged
    if (IsInsertPoint)
      return true;

    BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
    Div = BO;
  }

  // Insert the unsigned division code
  Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
                                                 Div->getOperand(1),
                                                 Builder);
  Div->replaceAllUsesWith(Quotient);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return true;
}

/// Generate code to compute the remainder of two integers of bitwidth up to
/// 32 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 32 bits; that is, these routines are good for targets
/// that have no or very little suppport for smaller than 32 bit integer
/// arithmetic.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
          "Trying to expand remainder from a non-remainder function");

  Type *RemTy = Rem->getType();
  assert(!RemTy->isVectorTy() && "Div over vectors not supported");

  unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();

  assert(RemTyBitWidth <= 32 &&
         "Div of bitwidth greater than 32 not supported");

  if (RemTyBitWidth == 32)
    return expandRemainder(Rem);

  // If bitwidth smaller than 32 extend inputs, extend output and proceed
  // with 32 bit division.
  IRBuilder<> Builder(Rem);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtRem;
  Value *Trunc;
  Type *Int32Ty = Builder.getInt32Ty();

  if (Rem->getOpcode() == Instruction::SRem) {
    ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
    ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
    ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtRem, RemTy);

  Rem->replaceAllUsesWith(Trunc);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  return expandRemainder(cast<BinaryOperator>(ExtRem));
}

/// Generate code to compute the remainder of two integers of bitwidth up to
/// 64 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 64 bits.
///
/// Replace Rem with emulation code.
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
  assert((Rem->getOpcode() == Instruction::SRem ||
          Rem->getOpcode() == Instruction::URem) &&
          "Trying to expand remainder from a non-remainder function");

  Type *RemTy = Rem->getType();
  assert(!RemTy->isVectorTy() && "Div over vectors not supported");

  unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();

  assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");

  if (RemTyBitWidth == 64)
    return expandRemainder(Rem);

  // If bitwidth smaller than 64 extend inputs, extend output and proceed
  // with 64 bit division.
  IRBuilder<> Builder(Rem);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtRem;
  Value *Trunc;
  Type *Int64Ty = Builder.getInt64Ty();

  if (Rem->getOpcode() == Instruction::SRem) {
    ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
    ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
    ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtRem, RemTy);

  Rem->replaceAllUsesWith(Trunc);
  Rem->dropAllReferences();
  Rem->eraseFromParent();

  return expandRemainder(cast<BinaryOperator>(ExtRem));
}

/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 32 bits; that is, these routines are good for targets that have no
/// or very little support for smaller than 32 bit integer arithmetic.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
          "Trying to expand division from a non-division function");

  Type *DivTy = Div->getType();
  assert(!DivTy->isVectorTy() && "Div over vectors not supported");

  unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();

  assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");

  if (DivTyBitWidth == 32)
    return expandDivision(Div);

  // If bitwidth smaller than 32 extend inputs, extend output and proceed
  // with 32 bit division.
  IRBuilder<> Builder(Div);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtDiv;
  Value *Trunc;
  Type *Int32Ty = Builder.getInt32Ty();

  if (Div->getOpcode() == Instruction::SDiv) {
    ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
    ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
    ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
    ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtDiv, DivTy);

  Div->replaceAllUsesWith(Trunc);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return expandDivision(cast<BinaryOperator>(ExtDiv));
}

/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 64 bits.
///
/// Replace Div with emulation code.
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
  assert((Div->getOpcode() == Instruction::SDiv ||
          Div->getOpcode() == Instruction::UDiv) &&
          "Trying to expand division from a non-division function");

  Type *DivTy = Div->getType();
  assert(!DivTy->isVectorTy() && "Div over vectors not supported");

  unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();

  assert(DivTyBitWidth <= 64 &&
         "Div of bitwidth greater than 64 not supported");

  if (DivTyBitWidth == 64)
    return expandDivision(Div);

  // If bitwidth smaller than 64 extend inputs, extend output and proceed
  // with 64 bit division.
  IRBuilder<> Builder(Div);

  Value *ExtDividend;
  Value *ExtDivisor;
  Value *ExtDiv;
  Value *Trunc;
  Type *Int64Ty = Builder.getInt64Ty();

  if (Div->getOpcode() == Instruction::SDiv) {
    ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
    ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
  } else {
    ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
    ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
    ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
  }
  Trunc = Builder.CreateTrunc(ExtDiv, DivTy);

  Div->replaceAllUsesWith(Trunc);
  Div->dropAllReferences();
  Div->eraseFromParent();

  return expandDivision(cast<BinaryOperator>(ExtDiv));
}