1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
| //===- BasicValueFactory.cpp - Basic values for Path Sens analysis --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines BasicValueFactory, a class that manages the lifetime
// of APSInt objects and symbolic constraints used by ExprEngine
// and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/ADT/STLExtras.h"
#include <cassert>
#include <cstdint>
#include <utility>
using namespace clang;
using namespace ento;
void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
llvm::ImmutableList<SVal> L) {
T.Profile(ID);
ID.AddPointer(L.getInternalPointer());
}
void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
const StoreRef &store,
const TypedValueRegion *region) {
ID.AddPointer(store.getStore());
ID.AddPointer(region);
}
void PointerToMemberData::Profile(
llvm::FoldingSetNodeID& ID, const DeclaratorDecl *D,
llvm::ImmutableList<const CXXBaseSpecifier *> L) {
ID.AddPointer(D);
ID.AddPointer(L.getInternalPointer());
}
using SValData = std::pair<SVal, uintptr_t>;
using SValPair = std::pair<SVal, SVal>;
namespace llvm {
template<> struct FoldingSetTrait<SValData> {
static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
X.first.Profile(ID);
ID.AddPointer( (void*) X.second);
}
};
template<> struct FoldingSetTrait<SValPair> {
static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
X.first.Profile(ID);
X.second.Profile(ID);
}
};
} // namespace llvm
using PersistentSValsTy =
llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData>>;
using PersistentSValPairsTy =
llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair>>;
BasicValueFactory::~BasicValueFactory() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (const auto &I : APSIntSet)
I.getValue().~APSInt();
delete (PersistentSValsTy*) PersistentSVals;
delete (PersistentSValPairsTy*) PersistentSValPairs;
}
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
llvm::FoldingSetNodeID ID;
void *InsertPos;
using FoldNodeTy = llvm::FoldingSetNodeWrapper<llvm::APSInt>;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
bool isUnsigned) {
llvm::APSInt V(X, isUnsigned);
return getValue(V);
}
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
bool isUnsigned) {
llvm::APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
return getValue(getAPSIntType(T).getValue(X));
}
const CompoundValData*
BasicValueFactory::getCompoundValData(QualType T,
llvm::ImmutableList<SVal> Vals) {
llvm::FoldingSetNodeID ID;
CompoundValData::Profile(ID, T, Vals);
void *InsertPos;
CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!D) {
D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
new (D) CompoundValData(T, Vals);
CompoundValDataSet.InsertNode(D, InsertPos);
}
return D;
}
const LazyCompoundValData*
BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
const TypedValueRegion *region) {
llvm::FoldingSetNodeID ID;
LazyCompoundValData::Profile(ID, store, region);
void *InsertPos;
LazyCompoundValData *D =
LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!D) {
D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
new (D) LazyCompoundValData(store, region);
LazyCompoundValDataSet.InsertNode(D, InsertPos);
}
return D;
}
const PointerToMemberData *BasicValueFactory::getPointerToMemberData(
const DeclaratorDecl *DD, llvm::ImmutableList<const CXXBaseSpecifier *> L) {
llvm::FoldingSetNodeID ID;
PointerToMemberData::Profile(ID, DD, L);
void *InsertPos;
PointerToMemberData *D =
PointerToMemberDataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!D) {
D = (PointerToMemberData*) BPAlloc.Allocate<PointerToMemberData>();
new (D) PointerToMemberData(DD, L);
PointerToMemberDataSet.InsertNode(D, InsertPos);
}
return D;
}
const PointerToMemberData *BasicValueFactory::accumCXXBase(
llvm::iterator_range<CastExpr::path_const_iterator> PathRange,
const nonloc::PointerToMember &PTM) {
nonloc::PointerToMember::PTMDataType PTMDT = PTM.getPTMData();
const DeclaratorDecl *DD = nullptr;
llvm::ImmutableList<const CXXBaseSpecifier *> PathList;
if (PTMDT.isNull() || PTMDT.is<const DeclaratorDecl *>()) {
if (PTMDT.is<const DeclaratorDecl *>())
DD = PTMDT.get<const DeclaratorDecl *>();
PathList = CXXBaseListFactory.getEmptyList();
} else { // const PointerToMemberData *
const PointerToMemberData *PTMD =
PTMDT.get<const PointerToMemberData *>();
DD = PTMD->getDeclaratorDecl();
PathList = PTMD->getCXXBaseList();
}
for (const auto &I : llvm::reverse(PathRange))
PathList = prependCXXBase(I, PathList);
return getPointerToMemberData(DD, PathList);
}
const llvm::APSInt*
BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
const llvm::APSInt& V1, const llvm::APSInt& V2) {
switch (Op) {
default:
llvm_unreachable("Invalid Opcode.");
case BO_Mul:
return &getValue( V1 * V2 );
case BO_Div:
if (V2 == 0) // Avoid division by zero
return nullptr;
return &getValue( V1 / V2 );
case BO_Rem:
if (V2 == 0) // Avoid division by zero
return nullptr;
return &getValue( V1 % V2 );
case BO_Add:
return &getValue( V1 + V2 );
case BO_Sub:
return &getValue( V1 - V2 );
case BO_Shl: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
if (V2.isSigned() && V2.isNegative())
return nullptr;
uint64_t Amt = V2.getZExtValue();
if (Amt >= V1.getBitWidth())
return nullptr;
if (!Ctx.getLangOpts().CPlusPlus2a) {
if (V1.isSigned() && V1.isNegative())
return nullptr;
if (V1.isSigned() && Amt > V1.countLeadingZeros())
return nullptr;
}
return &getValue( V1.operator<<( (unsigned) Amt ));
}
case BO_Shr: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
if (V2.isSigned() && V2.isNegative())
return nullptr;
uint64_t Amt = V2.getZExtValue();
if (Amt >= V1.getBitWidth())
return nullptr;
return &getValue( V1.operator>>( (unsigned) Amt ));
}
case BO_LT:
return &getTruthValue( V1 < V2 );
case BO_GT:
return &getTruthValue( V1 > V2 );
case BO_LE:
return &getTruthValue( V1 <= V2 );
case BO_GE:
return &getTruthValue( V1 >= V2 );
case BO_EQ:
return &getTruthValue( V1 == V2 );
case BO_NE:
return &getTruthValue( V1 != V2 );
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
case BO_And:
return &getValue( V1 & V2 );
case BO_Or:
return &getValue( V1 | V2 );
case BO_Xor:
return &getValue( V1 ^ V2 );
}
}
const std::pair<SVal, uintptr_t>&
BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
// Lazily create the folding set.
if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
llvm::FoldingSetNodeID ID;
void *InsertPos;
V.Profile(ID);
ID.AddPointer((void*) Data);
PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValData>;
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(std::make_pair(V, Data));
Map.InsertNode(P, InsertPos);
}
return P->getValue();
}
const std::pair<SVal, SVal>&
BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
// Lazily create the folding set.
if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
llvm::FoldingSetNodeID ID;
void *InsertPos;
V1.Profile(ID);
V2.Profile(ID);
PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValPair>;
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(std::make_pair(V1, V2));
Map.InsertNode(P, InsertPos);
}
return P->getValue();
}
const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
return &getPersistentSValWithData(X, 0).first;
}
|