reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
//===- BasicValueFactory.cpp - Basic values for Path Sens analysis --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines BasicValueFactory, a class that manages the lifetime
//  of APSInt objects and symbolic constraints used by ExprEngine
//  and related classes.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/ADT/STLExtras.h"
#include <cassert>
#include <cstdint>
#include <utility>

using namespace clang;
using namespace ento;

void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
                              llvm::ImmutableList<SVal> L) {
  T.Profile(ID);
  ID.AddPointer(L.getInternalPointer());
}

void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
                                  const StoreRef &store,
                                  const TypedValueRegion *region) {
  ID.AddPointer(store.getStore());
  ID.AddPointer(region);
}

void PointerToMemberData::Profile(
    llvm::FoldingSetNodeID& ID, const DeclaratorDecl *D,
    llvm::ImmutableList<const CXXBaseSpecifier *> L) {
  ID.AddPointer(D);
  ID.AddPointer(L.getInternalPointer());
}

using SValData = std::pair<SVal, uintptr_t>;
using SValPair = std::pair<SVal, SVal>;

namespace llvm {

template<> struct FoldingSetTrait<SValData> {
  static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
    X.first.Profile(ID);
    ID.AddPointer( (void*) X.second);
  }
};

template<> struct FoldingSetTrait<SValPair> {
  static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
    X.first.Profile(ID);
    X.second.Profile(ID);
  }
};

} // namespace llvm

using PersistentSValsTy =
    llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData>>;

using PersistentSValPairsTy =
    llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair>>;

BasicValueFactory::~BasicValueFactory() {
  // Note that the dstor for the contents of APSIntSet will never be called,
  // so we iterate over the set and invoke the dstor for each APSInt.  This
  // frees an aux. memory allocated to represent very large constants.
  for (const auto &I : APSIntSet)
    I.getValue().~APSInt();

  delete (PersistentSValsTy*) PersistentSVals;
  delete (PersistentSValPairsTy*) PersistentSValPairs;
}

const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
  llvm::FoldingSetNodeID ID;
  void *InsertPos;

  using FoldNodeTy = llvm::FoldingSetNodeWrapper<llvm::APSInt>;

  X.Profile(ID);
  FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);

  if (!P) {
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
    new (P) FoldNodeTy(X);
    APSIntSet.InsertNode(P, InsertPos);
  }

  return *P;
}

const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
                                                bool isUnsigned) {
  llvm::APSInt V(X, isUnsigned);
  return getValue(V);
}

const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
                                           bool isUnsigned) {
  llvm::APSInt V(BitWidth, isUnsigned);
  V = X;
  return getValue(V);
}

const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
  return getValue(getAPSIntType(T).getValue(X));
}

const CompoundValData*
BasicValueFactory::getCompoundValData(QualType T,
                                      llvm::ImmutableList<SVal> Vals) {
  llvm::FoldingSetNodeID ID;
  CompoundValData::Profile(ID, T, Vals);
  void *InsertPos;

  CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);

  if (!D) {
    D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
    new (D) CompoundValData(T, Vals);
    CompoundValDataSet.InsertNode(D, InsertPos);
  }

  return D;
}

const LazyCompoundValData*
BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
                                          const TypedValueRegion *region) {
  llvm::FoldingSetNodeID ID;
  LazyCompoundValData::Profile(ID, store, region);
  void *InsertPos;

  LazyCompoundValData *D =
    LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);

  if (!D) {
    D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
    new (D) LazyCompoundValData(store, region);
    LazyCompoundValDataSet.InsertNode(D, InsertPos);
  }

  return D;
}

const PointerToMemberData *BasicValueFactory::getPointerToMemberData(
    const DeclaratorDecl *DD, llvm::ImmutableList<const CXXBaseSpecifier *> L) {
  llvm::FoldingSetNodeID ID;
  PointerToMemberData::Profile(ID, DD, L);
  void *InsertPos;

  PointerToMemberData *D =
      PointerToMemberDataSet.FindNodeOrInsertPos(ID, InsertPos);

  if (!D) {
    D = (PointerToMemberData*) BPAlloc.Allocate<PointerToMemberData>();
    new (D) PointerToMemberData(DD, L);
    PointerToMemberDataSet.InsertNode(D, InsertPos);
  }

  return D;
}

const PointerToMemberData *BasicValueFactory::accumCXXBase(
    llvm::iterator_range<CastExpr::path_const_iterator> PathRange,
    const nonloc::PointerToMember &PTM) {
  nonloc::PointerToMember::PTMDataType PTMDT = PTM.getPTMData();
  const DeclaratorDecl *DD = nullptr;
  llvm::ImmutableList<const CXXBaseSpecifier *> PathList;

  if (PTMDT.isNull() || PTMDT.is<const DeclaratorDecl *>()) {
    if (PTMDT.is<const DeclaratorDecl *>())
      DD = PTMDT.get<const DeclaratorDecl *>();

    PathList = CXXBaseListFactory.getEmptyList();
  } else { // const PointerToMemberData *
    const PointerToMemberData *PTMD =
        PTMDT.get<const PointerToMemberData *>();
    DD = PTMD->getDeclaratorDecl();

    PathList = PTMD->getCXXBaseList();
  }

  for (const auto &I : llvm::reverse(PathRange))
    PathList = prependCXXBase(I, PathList);
  return getPointerToMemberData(DD, PathList);
}

const llvm::APSInt*
BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
                             const llvm::APSInt& V1, const llvm::APSInt& V2) {
  switch (Op) {
    default:
      llvm_unreachable("Invalid Opcode.");

    case BO_Mul:
      return &getValue( V1 * V2 );

    case BO_Div:
      if (V2 == 0) // Avoid division by zero
        return nullptr;
      return &getValue( V1 / V2 );

    case BO_Rem:
      if (V2 == 0) // Avoid division by zero
        return nullptr;
      return &getValue( V1 % V2 );

    case BO_Add:
      return &getValue( V1 + V2 );

    case BO_Sub:
      return &getValue( V1 - V2 );

    case BO_Shl: {
      // FIXME: This logic should probably go higher up, where we can
      // test these conditions symbolically.

      if (V2.isSigned() && V2.isNegative())
        return nullptr;

      uint64_t Amt = V2.getZExtValue();

      if (Amt >= V1.getBitWidth())
        return nullptr;

      if (!Ctx.getLangOpts().CPlusPlus2a) {
        if (V1.isSigned() && V1.isNegative())
          return nullptr;

        if (V1.isSigned() && Amt > V1.countLeadingZeros())
          return nullptr;
      }

      return &getValue( V1.operator<<( (unsigned) Amt ));
    }

    case BO_Shr: {
      // FIXME: This logic should probably go higher up, where we can
      // test these conditions symbolically.

      if (V2.isSigned() && V2.isNegative())
        return nullptr;

      uint64_t Amt = V2.getZExtValue();

      if (Amt >= V1.getBitWidth())
        return nullptr;

      return &getValue( V1.operator>>( (unsigned) Amt ));
    }

    case BO_LT:
      return &getTruthValue( V1 < V2 );

    case BO_GT:
      return &getTruthValue( V1 > V2 );

    case BO_LE:
      return &getTruthValue( V1 <= V2 );

    case BO_GE:
      return &getTruthValue( V1 >= V2 );

    case BO_EQ:
      return &getTruthValue( V1 == V2 );

    case BO_NE:
      return &getTruthValue( V1 != V2 );

      // Note: LAnd, LOr, Comma are handled specially by higher-level logic.

    case BO_And:
      return &getValue( V1 & V2 );

    case BO_Or:
      return &getValue( V1 | V2 );

    case BO_Xor:
      return &getValue( V1 ^ V2 );
  }
}

const std::pair<SVal, uintptr_t>&
BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
  // Lazily create the folding set.
  if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();

  llvm::FoldingSetNodeID ID;
  void *InsertPos;
  V.Profile(ID);
  ID.AddPointer((void*) Data);

  PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);

  using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValData>;

  FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);

  if (!P) {
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
    new (P) FoldNodeTy(std::make_pair(V, Data));
    Map.InsertNode(P, InsertPos);
  }

  return P->getValue();
}

const std::pair<SVal, SVal>&
BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
  // Lazily create the folding set.
  if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();

  llvm::FoldingSetNodeID ID;
  void *InsertPos;
  V1.Profile(ID);
  V2.Profile(ID);

  PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);

  using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValPair>;

  FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);

  if (!P) {
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
    new (P) FoldNodeTy(std::make_pair(V1, V2));
    Map.InsertNode(P, InsertPos);
  }

  return P->getValue();
}

const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
  return &getPersistentSValWithData(X, 0).first;
}