reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
//===- ForwardOpTree.h ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Move instructions between statements.
//
//===----------------------------------------------------------------------===//

#include "polly/ForwardOpTree.h"
#include "polly/Options.h"
#include "polly/ScopBuilder.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#include "polly/ZoneAlgo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/isl-noexceptions.h"
#include <cassert>
#include <memory>

#define DEBUG_TYPE "polly-optree"

using namespace llvm;
using namespace polly;

static cl::opt<bool>
    AnalyzeKnown("polly-optree-analyze-known",
                 cl::desc("Analyze array contents for load forwarding"),
                 cl::cat(PollyCategory), cl::init(true), cl::Hidden);

static cl::opt<bool>
    NormalizePHIs("polly-optree-normalize-phi",
                  cl::desc("Replace PHIs by their incoming values"),
                  cl::cat(PollyCategory), cl::init(false), cl::Hidden);

static cl::opt<unsigned>
    MaxOps("polly-optree-max-ops",
           cl::desc("Maximum number of ISL operations to invest for known "
                    "analysis; 0=no limit"),
           cl::init(1000000), cl::cat(PollyCategory), cl::Hidden);

STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(KnownOutOfQuota,
          "Analyses aborted because max_operations was reached");

STATISTIC(TotalInstructionsCopied, "Number of copied instructions");
STATISTIC(TotalKnownLoadsForwarded,
          "Number of forwarded loads because their value was known");
STATISTIC(TotalReloads, "Number of reloaded values");
STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses");
STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees");
STATISTIC(TotalModifiedStmts,
          "Number of statements with at least one forwarded tree");

STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree");

STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree");
STATISTIC(NumValueWritesInLoops,
          "Number of scalar value writes nested in affine loops after OpTree");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after OpTree");
STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after OpTree");

namespace {

/// The state of whether an operand tree was/can be forwarded.
///
/// The items apply to an instructions and its operand tree with the instruction
/// as the root element. If the value in question is not an instruction in the
/// SCoP, it can be a leaf of an instruction's operand tree.
enum ForwardingDecision {
  /// The root instruction or value cannot be forwarded at all.
  FD_CannotForward,

  /// The root instruction or value can be forwarded as a leaf of a larger
  /// operand tree.
  /// It does not make sense to move the value itself, it would just replace it
  /// by a use of itself. For instance, a constant "5" used in a statement can
  /// be forwarded, but it would just replace it by the same constant "5".
  /// However, it makes sense to move as an operand of
  ///
  ///   %add = add 5, 5
  ///
  /// where "5" is moved as part of a larger operand tree. "5" would be placed
  /// (disregarding for a moment that literal constants don't have a location
  /// and can be used anywhere) into the same statement as %add would.
  FD_CanForwardLeaf,

  /// The root instruction can be forwarded and doing so avoids a scalar
  /// dependency.
  ///
  /// This can be either because the operand tree can be moved to the target
  /// statement, or a memory access is redirected to read from a different
  /// location.
  FD_CanForwardProfitably,

  /// Used to indicate that a forwarding has be carried out successfully, and
  /// the forwarded memory access can be deleted.
  FD_DidForwardTree,

  /// Used to indicate that a forwarding has be carried out successfully, and
  /// the forwarded memory access is being reused.
  FD_DidForwardLeaf,

  /// A forwarding method cannot be applied to the operand tree.
  /// The difference to FD_CannotForward is that there might be other methods
  /// that can handle it.
  /// The conditions that make an operand tree applicable must be checked even
  /// with DoIt==true because a method following the one that returned
  /// FD_NotApplicable might have returned FD_CanForwardTree.
  FD_NotApplicable
};

/// Implementation of operand tree forwarding for a specific SCoP.
///
/// For a statement that requires a scalar value (through a value read
/// MemoryAccess), see if its operand can be moved into the statement. If so,
/// the MemoryAccess is removed and the all the operand tree instructions are
/// moved into the statement. All original instructions are left in the source
/// statements. The simplification pass can clean these up.
class ForwardOpTreeImpl : ZoneAlgorithm {
private:
  /// Scope guard to limit the number of isl operations for this pass.
  IslMaxOperationsGuard &MaxOpGuard;

  /// How many instructions have been copied to other statements.
  int NumInstructionsCopied = 0;

  /// Number of loads forwarded because their value was known.
  int NumKnownLoadsForwarded = 0;

  /// Number of values reloaded from known array elements.
  int NumReloads = 0;

  /// How many read-only accesses have been copied.
  int NumReadOnlyCopied = 0;

  /// How many operand trees have been forwarded.
  int NumForwardedTrees = 0;

  /// Number of statements with at least one forwarded operand tree.
  int NumModifiedStmts = 0;

  /// Whether we carried out at least one change to the SCoP.
  bool Modified = false;

  /// Contains the zones where array elements are known to contain a specific
  /// value.
  /// { [Element[] -> Zone[]] -> ValInst[] }
  /// @see computeKnown()
  isl::union_map Known;

  /// Translator for newly introduced ValInsts to already existing ValInsts such
  /// that new introduced load instructions can reuse the Known analysis of its
  /// original load. { ValInst[] -> ValInst[] }
  isl::union_map Translator;

  /// Get list of array elements that do contain the same ValInst[] at Domain[].
  ///
  /// @param ValInst { Domain[] -> ValInst[] }
  ///                The values for which we search for alternative locations,
  ///                per statement instance.
  ///
  /// @return { Domain[] -> Element[] }
  ///         For each statement instance, the array elements that contain the
  ///         same ValInst.
  isl::union_map findSameContentElements(isl::union_map ValInst) {
    assert(!ValInst.is_single_valued().is_false());

    // { Domain[] }
    isl::union_set Domain = ValInst.domain();

    // { Domain[] -> Scatter[] }
    isl::union_map Schedule = getScatterFor(Domain);

    // { Element[] -> [Scatter[] -> ValInst[]] }
    isl::union_map MustKnownCurried =
        convertZoneToTimepoints(Known, isl::dim::in, false, true).curry();

    // { [Domain[] -> ValInst[]] -> Scatter[] }
    isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule);

    // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] }
    isl::union_map SchedValDomVal =
        DomValSched.range_product(ValInst.range_map()).reverse();

    // { Element[] -> [Domain[] -> ValInst[]] }
    isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal);

    // { Domain[] -> Element[] }
    isl::union_map MustKnownMap =
        MustKnownInst.uncurry().domain().unwrap().reverse();
    simplify(MustKnownMap);

    return MustKnownMap;
  }

  /// Find a single array element for each statement instance, within a single
  /// array.
  ///
  /// @param MustKnown { Domain[] -> Element[] }
  ///                  Set of candidate array elements.
  /// @param Domain    { Domain[] }
  ///                  The statement instance for which we need elements for.
  ///
  /// @return { Domain[] -> Element[] }
  ///         For each statement instance, an array element out of @p MustKnown.
  ///         All array elements must be in the same array (Polly does not yet
  ///         support reading from different accesses using the same
  ///         MemoryAccess). If no mapping for all of @p Domain exists, returns
  ///         null.
  isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) {
    // { Domain[] -> Element[] }
    isl::map Result;

    // MemoryAccesses can read only elements from a single array
    // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }).
    // Look through all spaces until we find one that contains at least the
    // wanted statement instance.s
    for (isl::map Map : MustKnown.get_map_list()) {
      // Get the array this is accessing.
      isl::id ArrayId = Map.get_tuple_id(isl::dim::out);
      ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user());

      // No support for generation of indirect array accesses.
      if (SAI->getBasePtrOriginSAI())
        continue;

      // Determine whether this map contains all wanted values.
      isl::set MapDom = Map.domain();
      if (!Domain.is_subset(MapDom).is_true())
        continue;

      // There might be multiple array elements that contain the same value, but
      // choose only one of them. lexmin is used because it returns a one-value
      // mapping, we do not care about which one.
      // TODO: Get the simplest access function.
      Result = Map.lexmin();
      break;
    }

    return Result;
  }

public:
  ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard)
      : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {}

  /// Compute the zones of known array element contents.
  ///
  /// @return True if the computed #Known is usable.
  bool computeKnownValues() {
    isl::union_map MustKnown, KnownFromLoad, KnownFromInit;

    // Check that nothing strange occurs.
    collectCompatibleElts();

    {
      IslQuotaScope QuotaScope = MaxOpGuard.enter();

      computeCommon();
      if (NormalizePHIs)
        computeNormalizedPHIs();
      Known = computeKnown(true, true);

      // Preexisting ValInsts use the known content analysis of themselves.
      Translator = makeIdentityMap(Known.range(), false);
    }

    if (!Known || !Translator || !NormalizeMap) {
      assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota);
      Known = nullptr;
      Translator = nullptr;
      NormalizeMap = nullptr;
      LLVM_DEBUG(dbgs() << "Known analysis exceeded max_operations\n");
      return false;
    }

    KnownAnalyzed++;
    LLVM_DEBUG(dbgs() << "All known: " << Known << "\n");

    return true;
  }

  void printStatistics(raw_ostream &OS, int Indent = 0) {
    OS.indent(Indent) << "Statistics {\n";
    OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied
                          << '\n';
    OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded
                          << '\n';
    OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n';
    OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied
                          << '\n';
    OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees
                          << '\n';
    OS.indent(Indent + 4) << "Statements with forwarded operand trees: "
                          << NumModifiedStmts << '\n';
    OS.indent(Indent) << "}\n";
  }

  void printStatements(raw_ostream &OS, int Indent = 0) const {
    OS.indent(Indent) << "After statements {\n";
    for (auto &Stmt : *S) {
      OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
      for (auto *MA : Stmt)
        MA->print(OS);

      OS.indent(Indent + 12);
      Stmt.printInstructions(OS);
    }
    OS.indent(Indent) << "}\n";
  }

  /// Create a new MemoryAccess of type read and MemoryKind::Array.
  ///
  /// @param Stmt           The statement in which the access occurs.
  /// @param LI             The instruction that does the access.
  /// @param AccessRelation The array element that each statement instance
  ///                       accesses.
  ///
  /// @param The newly created access.
  MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI,
                                    isl::map AccessRelation) {
    isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out);
    ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user());

    // Create a dummy SCEV access, to be replaced anyway.
    SmallVector<const SCEV *, 4> Sizes;
    Sizes.reserve(SAI->getNumberOfDimensions());
    SmallVector<const SCEV *, 4> Subscripts;
    Subscripts.reserve(SAI->getNumberOfDimensions());
    for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) {
      Sizes.push_back(SAI->getDimensionSize(i));
      Subscripts.push_back(nullptr);
    }

    MemoryAccess *Access =
        new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(),
                         LI->getType(), true, {}, Sizes, LI, MemoryKind::Array);
    S->addAccessFunction(Access);
    Stmt->addAccess(Access, true);

    Access->setNewAccessRelation(AccessRelation);

    return Access;
  }

  /// Forward a load by reading from an array element that contains the same
  /// value. Typically the location it was loaded from.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param Inst        The (possibly speculatable) instruction to forward.
  /// @param UseStmt     The statement that uses @p Inst.
  /// @param UseLoop     The loop @p Inst is used in.
  /// @param DefStmt     The statement @p Inst is defined in.
  /// @param DefLoop     The loop which contains @p Inst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable  if @p Inst cannot be forwarded by creating a new
  ///                           load.
  ///         FD_CannotForward  if the pointer operand cannot be forwarded.
  ///         FD_CanForwardProfitably if @p Inst is forwardable.
  ///         FD_DidForwardTree if @p DoIt was true.
  ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst,
                                      ScopStmt *UseStmt, Loop *UseLoop,
                                      ScopStmt *DefStmt, Loop *DefLoop,
                                      bool DoIt) {
    // Cannot do anything without successful known analysis.
    if (Known.is_null() || Translator.is_null() ||
        MaxOpGuard.hasQuotaExceeded())
      return FD_NotApplicable;

    LoadInst *LI = dyn_cast<LoadInst>(Inst);
    if (!LI)
      return FD_NotApplicable;

    // If the load is already in the statement, no forwarding is necessary.
    // However, it might happen that the LoadInst is already present in the
    // statement's instruction list. In that case we do as follows:
    // - For the evaluation (DoIt==false), we can trivially forward it as it is
    //   benefit of forwarding an already present instruction.
    // - For the execution (DoIt==true), prepend the instruction (to make it
    //   available to all instructions following in the instruction list), but
    //   do not add another MemoryAccess.
    MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI);
    if (Access && !DoIt)
      return FD_CanForwardProfitably;

    ForwardingDecision OpDecision = forwardTree(
        TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, DoIt);
    switch (OpDecision) {
    case FD_CannotForward:
      assert(!DoIt);
      return OpDecision;

    case FD_CanForwardLeaf:
    case FD_CanForwardProfitably:
      assert(!DoIt);
      break;

    case FD_DidForwardLeaf:
    case FD_DidForwardTree:
      assert(DoIt);
      break;

    default:
      llvm_unreachable("Shouldn't return this");
    }

    IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);

    // { DomainDef[] -> ValInst[] }
    isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop);
    assert(!isNormalized(ExpectedVal).is_false() &&
           "LoadInsts are always normalized");

    // { DomainUse[] -> DomainTarget[] }
    isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);

    // { DomainTarget[] -> ValInst[] }
    isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
    isl::union_map TranslatedExpectedVal =
        isl::union_map(TargetExpectedVal).apply_range(Translator);

    // { DomainTarget[] -> Element[] }
    isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);

    isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
    if (!SameVal)
      return FD_NotApplicable;

    if (DoIt)
      TargetStmt->prependInstruction(LI);

    if (!DoIt)
      return FD_CanForwardProfitably;

    if (Access) {
      LLVM_DEBUG(
          dbgs() << "    forwarded known load with preexisting MemoryAccess"
                 << Access << "\n");
    } else {
      Access = makeReadArrayAccess(TargetStmt, LI, SameVal);
      LLVM_DEBUG(dbgs() << "    forwarded known load with new MemoryAccess"
                        << Access << "\n");

      // { ValInst[] }
      isl::space ValInstSpace = ExpectedVal.get_space().range();

      // After adding a new load to the SCoP, also update the Known content
      // about it. The new load will have a known ValInst of
      // { [DomainTarget[] -> Value[]] }
      // but which -- because it is a copy of it -- has same value as the
      // { [DomainDef[] -> Value[]] }
      // that it replicates. Instead of  cloning the known content of
      // [DomainDef[] -> Value[]]
      // for DomainTarget[], we add a 'translator' that maps
      // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]]
      // before comparing to the known content.
      // TODO: 'Translator' could also be used to map PHINodes to their incoming
      // ValInsts.
      if (ValInstSpace.is_wrapping()) {
        // { DefDomain[] -> Value[] }
        isl::map ValInsts = ExpectedVal.range().unwrap();

        // { DefDomain[] }
        isl::set DefDomain = ValInsts.domain();

        // { Value[] }
        isl::space ValSpace = ValInstSpace.unwrap().range();

        // { Value[] -> Value[] }
        isl::map ValToVal =
            isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace));

        // { DomainDef[] -> DomainTarget[] }
        isl::map DefToTarget = getDefToTarget(DefStmt, TargetStmt);

        // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] }
        isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal);

        Translator = Translator.add_map(LocalTranslator);
        LLVM_DEBUG(dbgs() << "      local translator is " << LocalTranslator
                          << "\n");
      }
    }
    LLVM_DEBUG(dbgs() << "      expected values where " << TargetExpectedVal
                      << "\n");
    LLVM_DEBUG(dbgs() << "      candidate elements where " << Candidates
                      << "\n");
    assert(Access);

    NumKnownLoadsForwarded++;
    TotalKnownLoadsForwarded++;
    return FD_DidForwardTree;
  }

  /// Forward a scalar by redirecting the access to an array element that stores
  /// the same value.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param Inst        The scalar to forward.
  /// @param UseStmt     The statement that uses @p Inst.
  /// @param UseLoop     The loop @p Inst is used in.
  /// @param DefStmt     The statement @p Inst is defined in.
  /// @param DefLoop     The loop which contains @p Inst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable        if @p Inst cannot be reloaded.
  ///         FD_CanForwardLeaf       if @p Inst can be reloaded.
  ///         FD_CanForwardProfitably if @p Inst has been reloaded.
  ///         FD_DidForwardLeaf       if @p DoIt was true.
  ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst,
                                        ScopStmt *UseStmt, Loop *UseLoop,
                                        ScopStmt *DefStmt, Loop *DefLoop,
                                        bool DoIt) {
    // Cannot do anything without successful known analysis.
    if (Known.is_null() || Translator.is_null() ||
        MaxOpGuard.hasQuotaExceeded())
      return FD_NotApplicable;

    MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst);
    if (Access && Access->isLatestArrayKind()) {
      if (DoIt)
        return FD_DidForwardLeaf;
      return FD_CanForwardLeaf;
    }

    // Don't spend too much time analyzing whether it can be reloaded. When
    // carrying-out the forwarding, we cannot bail-out in the middle of the
    // transformation. It also shouldn't take as long because some results are
    // cached.
    IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);

    // { DomainDef[] -> ValInst[] }
    isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop);

    // { DomainUse[] -> DomainTarget[] }
    isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);

    // { DomainTarget[] -> ValInst[] }
    isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
    isl::union_map TranslatedExpectedVal =
        TargetExpectedVal.apply_range(Translator);

    // { DomainTarget[] -> Element[] }
    isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);

    isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
    if (!SameVal)
      return FD_NotApplicable;

    if (!DoIt)
      return FD_CanForwardProfitably;

    if (!Access)
      Access = TargetStmt->ensureValueRead(Inst);

    simplify(SameVal);
    Access->setNewAccessRelation(SameVal);

    TotalReloads++;
    NumReloads++;
    return FD_DidForwardLeaf;
  }

  /// Forwards a speculatively executable instruction.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param UseInst     The (possibly speculatable) instruction to forward.
  /// @param DefStmt     The statement @p UseInst is defined in.
  /// @param DefLoop     The loop which contains @p UseInst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable  if @p UseInst is not speculatable.
  ///         FD_CannotForward  if one of @p UseInst's operands is not
  ///                           forwardable.
  ///         FD_CanForwardTree if @p UseInst is forwardable.
  ///         FD_DidForward     if @p DoIt was true.
  ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt,
                                         Instruction *UseInst,
                                         ScopStmt *DefStmt, Loop *DefLoop,
                                         bool DoIt) {
    // PHIs, unless synthesizable, are not yet supported.
    if (isa<PHINode>(UseInst))
      return FD_NotApplicable;

    // Compatible instructions must satisfy the following conditions:
    // 1. Idempotent (instruction will be copied, not moved; although its
    //    original instance might be removed by simplification)
    // 2. Not access memory (There might be memory writes between)
    // 3. Not cause undefined behaviour (we might copy to a location when the
    //    original instruction was no executed; this is currently not possible
    //    because we do not forward PHINodes)
    // 4. Not leak memory if executed multiple times (i.e. malloc)
    //
    // Instruction::mayHaveSideEffects is not sufficient because it considers
    // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is
    // not sufficient because it allows memory accesses.
    if (mayBeMemoryDependent(*UseInst))
      return FD_NotApplicable;

    if (DoIt) {
      // To ensure the right order, prepend this instruction before its
      // operands. This ensures that its operands are inserted before the
      // instruction using them.
      // TODO: The operand tree is not really a tree, but a DAG. We should be
      // able to handle DAGs without duplication.
      TargetStmt->prependInstruction(UseInst);
      NumInstructionsCopied++;
      TotalInstructionsCopied++;
    }

    for (Value *OpVal : UseInst->operand_values()) {
      ForwardingDecision OpDecision =
          forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DoIt);
      switch (OpDecision) {
      case FD_CannotForward:
        assert(!DoIt);
        return FD_CannotForward;

      case FD_CanForwardLeaf:
      case FD_CanForwardProfitably:
        assert(!DoIt);
        break;

      case FD_DidForwardLeaf:
      case FD_DidForwardTree:
        assert(DoIt);
        break;

      case FD_NotApplicable:
        llvm_unreachable("forwardTree should never return FD_NotApplicable");
      }
    }

    if (DoIt)
      return FD_DidForwardTree;
    return FD_CanForwardProfitably;
  }

  /// Determines whether an operand tree can be forwarded or carries out a
  /// forwarding, depending on the @p DoIt flag.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param UseVal      The value (usually an instruction) which is root of an
  ///                    operand tree.
  /// @param UseStmt     The statement that uses @p UseVal.
  /// @param UseLoop     The loop @p UseVal is used in.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return If DoIt==false, return whether the operand tree can be forwarded.
  ///         If DoIt==true, return FD_DidForward.
  ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal,
                                 ScopStmt *UseStmt, Loop *UseLoop, bool DoIt) {
    ScopStmt *DefStmt = nullptr;
    Loop *DefLoop = nullptr;

    // { DefDomain[] -> TargetDomain[] }
    isl::map DefToTarget;

    VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true);
    switch (VUse.getKind()) {
    case VirtualUse::Constant:
    case VirtualUse::Block:
    case VirtualUse::Hoisted:
      // These can be used anywhere without special considerations.
      if (DoIt)
        return FD_DidForwardTree;
      return FD_CanForwardLeaf;

    case VirtualUse::Synthesizable: {
      // ScopExpander will take care for of generating the code at the new
      // location.
      if (DoIt)
        return FD_DidForwardTree;

      // Check if the value is synthesizable at the new location as well. This
      // might be possible when leaving a loop for which ScalarEvolution is
      // unable to derive the exit value for.
      // TODO: If there is a LCSSA PHI at the loop exit, use that one.
      // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we
      // do not forward past its loop header. This would require us to use a
      // previous loop induction variable instead the current one. We currently
      // do not allow forwarding PHI nodes, thus this should never occur (the
      // only exception where no phi is necessary being an unreachable loop
      // without edge from the outside).
      VirtualUse TargetUse = VirtualUse::create(
          S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true);
      if (TargetUse.getKind() == VirtualUse::Synthesizable)
        return FD_CanForwardLeaf;

      LLVM_DEBUG(
          dbgs() << "    Synthesizable would not be synthesizable anymore: "
                 << *UseVal << "\n");
      return FD_CannotForward;
    }

    case VirtualUse::ReadOnly:
      // Note that we cannot return FD_CanForwardTree here. With a operand tree
      // depth of 0, UseVal is the use in TargetStmt that we try to replace.
      // With -polly-analyze-read-only-scalars=true we would ensure the
      // existence of a MemoryAccess (which already exists for a leaf) and be
      // removed again by tryForwardTree because it's goal is to remove this
      // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission
      // to do so.
      if (!DoIt)
        return FD_CanForwardLeaf;

      // If we model read-only scalars, we need to create a MemoryAccess for it.
      if (ModelReadOnlyScalars)
        TargetStmt->ensureValueRead(UseVal);

      NumReadOnlyCopied++;
      TotalReadOnlyCopied++;
      return FD_DidForwardLeaf;

    case VirtualUse::Intra:
      // Knowing that UseStmt and DefStmt are the same statement instance, just
      // reuse the information about UseStmt for DefStmt
      DefStmt = UseStmt;

      LLVM_FALLTHROUGH;
    case VirtualUse::Inter:
      Instruction *Inst = cast<Instruction>(UseVal);

      if (!DefStmt) {
        DefStmt = S->getStmtFor(Inst);
        if (!DefStmt)
          return FD_CannotForward;
      }

      DefLoop = LI->getLoopFor(Inst->getParent());

      ForwardingDecision SpeculativeResult =
          forwardSpeculatable(TargetStmt, Inst, DefStmt, DefLoop, DoIt);
      if (SpeculativeResult != FD_NotApplicable)
        return SpeculativeResult;

      ForwardingDecision KnownResult = forwardKnownLoad(
          TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
      if (KnownResult != FD_NotApplicable)
        return KnownResult;

      ForwardingDecision ReloadResult = reloadKnownContent(
          TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
      if (ReloadResult != FD_NotApplicable)
        return ReloadResult;

      // When no method is found to forward the operand tree, we effectively
      // cannot handle it.
      LLVM_DEBUG(dbgs() << "    Cannot forward instruction: " << *Inst << "\n");
      return FD_CannotForward;
    }

    llvm_unreachable("Case unhandled");
  }

  /// Try to forward an operand tree rooted in @p RA.
  bool tryForwardTree(MemoryAccess *RA) {
    assert(RA->isLatestScalarKind());
    LLVM_DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n");

    ScopStmt *Stmt = RA->getStatement();
    Loop *InLoop = Stmt->getSurroundingLoop();

    isl::map TargetToUse;
    if (!Known.is_null()) {
      isl::space DomSpace = Stmt->getDomainSpace();
      TargetToUse =
          isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace));
    }

    ForwardingDecision Assessment =
        forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, false);
    assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf);
    if (Assessment != FD_CanForwardProfitably)
      return false;

    ForwardingDecision Execution =
        forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, true);
    assert(((Execution == FD_DidForwardTree) ||
            (Execution == FD_DidForwardLeaf)) &&
           "A previous positive assessment must also be executable");

    if (Execution == FD_DidForwardTree)
      Stmt->removeSingleMemoryAccess(RA);
    return true;
  }

  /// Return which SCoP this instance is processing.
  Scop *getScop() const { return S; }

  /// Run the algorithm: Use value read accesses as operand tree roots and try
  /// to forward them into the statement.
  bool forwardOperandTrees() {
    for (ScopStmt &Stmt : *S) {
      bool StmtModified = false;

      // Because we are modifying the MemoryAccess list, collect them first to
      // avoid iterator invalidation.
      SmallVector<MemoryAccess *, 16> Accs;
      for (MemoryAccess *RA : Stmt) {
        if (!RA->isRead())
          continue;
        if (!RA->isLatestScalarKind())
          continue;

        Accs.push_back(RA);
      }

      for (MemoryAccess *RA : Accs) {
        if (tryForwardTree(RA)) {
          Modified = true;
          StmtModified = true;
          NumForwardedTrees++;
          TotalForwardedTrees++;
        }
      }

      if (StmtModified) {
        NumModifiedStmts++;
        TotalModifiedStmts++;
      }
    }

    if (Modified)
      ScopsModified++;
    return Modified;
  }

  /// Print the pass result, performed transformations and the SCoP after the
  /// transformation.
  void print(raw_ostream &OS, int Indent = 0) {
    printStatistics(OS, Indent);

    if (!Modified) {
      // This line can easily be checked in regression tests.
      OS << "ForwardOpTree executed, but did not modify anything\n";
      return;
    }

    printStatements(OS, Indent);
  }
};

/// Pass that redirects scalar reads to array elements that are known to contain
/// the same value.
///
/// This reduces the number of scalar accesses and therefore potentially
/// increases the freedom of the scheduler. In the ideal case, all reads of a
/// scalar definition are redirected (We currently do not care about removing
/// the write in this case).  This is also useful for the main DeLICM pass as
/// there are less scalars to be mapped.
class ForwardOpTree : public ScopPass {
private:
  /// The pass implementation, also holding per-scop data.
  std::unique_ptr<ForwardOpTreeImpl> Impl;

public:
  static char ID;

  explicit ForwardOpTree() : ScopPass(ID) {}
  ForwardOpTree(const ForwardOpTree &) = delete;
  ForwardOpTree &operator=(const ForwardOpTree &) = delete;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredTransitive<ScopInfoRegionPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
  }

  bool runOnScop(Scop &S) override {
    // Free resources for previous SCoP's computation, if not yet done.
    releaseMemory();

    LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

    {
      IslMaxOperationsGuard MaxOpGuard(S.getIslCtx().get(), MaxOps, false);
      Impl = std::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard);

      if (AnalyzeKnown) {
        LLVM_DEBUG(dbgs() << "Prepare forwarders...\n");
        Impl->computeKnownValues();
      }

      LLVM_DEBUG(dbgs() << "Forwarding operand trees...\n");
      Impl->forwardOperandTrees();

      if (MaxOpGuard.hasQuotaExceeded()) {
        LLVM_DEBUG(dbgs() << "Not all operations completed because of "
                             "max_operations exceeded\n");
        KnownOutOfQuota++;
      }
    }

    LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
    LLVM_DEBUG(dbgs() << S);

    // Update statistics
    auto ScopStats = S.getStatistics();
    NumValueWrites += ScopStats.NumValueWrites;
    NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
    NumPHIWrites += ScopStats.NumPHIWrites;
    NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
    NumSingletonWrites += ScopStats.NumSingletonWrites;
    NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;

    return false;
  }

  void printScop(raw_ostream &OS, Scop &S) const override {
    if (!Impl)
      return;

    assert(Impl->getScop() == &S);
    Impl->print(OS);
  }

  void releaseMemory() override { Impl.reset(); }
}; // class ForwardOpTree

char ForwardOpTree::ID;
} // namespace

ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); }

INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree",
                      "Polly - Forward operand tree", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(ForwardOpTree, "polly-optree",
                    "Polly - Forward operand tree", false, false)