reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_VALUETRACKING_H
#define LLVM_ANALYSIS_VALUETRACKING_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Intrinsics.h"
#include <cassert>
#include <cstdint>

namespace llvm {

class AddOperator;
class APInt;
class AssumptionCache;
class DominatorTree;
class GEPOperator;
class IntrinsicInst;
class WithOverflowInst;
struct KnownBits;
class Loop;
class LoopInfo;
class MDNode;
class OptimizationRemarkEmitter;
class StringRef;
class TargetLibraryInfo;
class Value;

  /// Determine which bits of V are known to be either zero or one and return
  /// them in the KnownZero/KnownOne bit sets.
  ///
  /// This function is defined on values with integer type, values with pointer
  /// type, and vectors of integers.  In the case
  /// where V is a vector, the known zero and known one values are the
  /// same width as the vector element, and the bit is set only if it is true
  /// for all of the elements in the vector.
  void computeKnownBits(const Value *V, KnownBits &Known,
                        const DataLayout &DL, unsigned Depth = 0,
                        AssumptionCache *AC = nullptr,
                        const Instruction *CxtI = nullptr,
                        const DominatorTree *DT = nullptr,
                        OptimizationRemarkEmitter *ORE = nullptr,
                        bool UseInstrInfo = true);

  /// Returns the known bits rather than passing by reference.
  KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
                             const Instruction *CxtI = nullptr,
                             const DominatorTree *DT = nullptr,
                             OptimizationRemarkEmitter *ORE = nullptr,
                             bool UseInstrInfo = true);

  /// Compute known bits from the range metadata.
  /// \p KnownZero the set of bits that are known to be zero
  /// \p KnownOne the set of bits that are known to be one
  void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
                                         KnownBits &Known);

  /// Return true if LHS and RHS have no common bits set.
  bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
                           const DataLayout &DL,
                           AssumptionCache *AC = nullptr,
                           const Instruction *CxtI = nullptr,
                           const DominatorTree *DT = nullptr,
                           bool UseInstrInfo = true);

  /// Return true if the given value is known to have exactly one bit set when
  /// defined. For vectors return true if every element is known to be a power
  /// of two when defined. Supports values with integer or pointer type and
  /// vectors of integers. If 'OrZero' is set, then return true if the given
  /// value is either a power of two or zero.
  bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
                              bool OrZero = false, unsigned Depth = 0,
                              AssumptionCache *AC = nullptr,
                              const Instruction *CxtI = nullptr,
                              const DominatorTree *DT = nullptr,
                              bool UseInstrInfo = true);

  bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);

  /// Return true if the given value is known to be non-zero when defined. For
  /// vectors, return true if every element is known to be non-zero when
  /// defined. For pointers, if the context instruction and dominator tree are
  /// specified, perform context-sensitive analysis and return true if the
  /// pointer couldn't possibly be null at the specified instruction.
  /// Supports values with integer or pointer type and vectors of integers.
  bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
                      AssumptionCache *AC = nullptr,
                      const Instruction *CxtI = nullptr,
                      const DominatorTree *DT = nullptr,
                      bool UseInstrInfo = true);

  /// Return true if the two given values are negation.
  /// Currently can recoginze Value pair:
  /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
  /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
  bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);

  /// Returns true if the give value is known to be non-negative.
  bool isKnownNonNegative(const Value *V, const DataLayout &DL,
                          unsigned Depth = 0,
                          AssumptionCache *AC = nullptr,
                          const Instruction *CxtI = nullptr,
                          const DominatorTree *DT = nullptr,
                          bool UseInstrInfo = true);

  /// Returns true if the given value is known be positive (i.e. non-negative
  /// and non-zero).
  bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
                       AssumptionCache *AC = nullptr,
                       const Instruction *CxtI = nullptr,
                       const DominatorTree *DT = nullptr,
                       bool UseInstrInfo = true);

  /// Returns true if the given value is known be negative (i.e. non-positive
  /// and non-zero).
  bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
                       AssumptionCache *AC = nullptr,
                       const Instruction *CxtI = nullptr,
                       const DominatorTree *DT = nullptr,
                       bool UseInstrInfo = true);

  /// Return true if the given values are known to be non-equal when defined.
  /// Supports scalar integer types only.
  bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
                       AssumptionCache *AC = nullptr,
                       const Instruction *CxtI = nullptr,
                       const DominatorTree *DT = nullptr,
                       bool UseInstrInfo = true);

  /// Return true if 'V & Mask' is known to be zero. We use this predicate to
  /// simplify operations downstream. Mask is known to be zero for bits that V
  /// cannot have.
  ///
  /// This function is defined on values with integer type, values with pointer
  /// type, and vectors of integers.  In the case
  /// where V is a vector, the mask, known zero, and known one values are the
  /// same width as the vector element, and the bit is set only if it is true
  /// for all of the elements in the vector.
  bool MaskedValueIsZero(const Value *V, const APInt &Mask,
                         const DataLayout &DL,
                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
                         const Instruction *CxtI = nullptr,
                         const DominatorTree *DT = nullptr,
                         bool UseInstrInfo = true);

  /// Return the number of times the sign bit of the register is replicated into
  /// the other bits. We know that at least 1 bit is always equal to the sign
  /// bit (itself), but other cases can give us information. For example,
  /// immediately after an "ashr X, 2", we know that the top 3 bits are all
  /// equal to each other, so we return 3. For vectors, return the number of
  /// sign bits for the vector element with the mininum number of known sign
  /// bits.
  unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
                              const Instruction *CxtI = nullptr,
                              const DominatorTree *DT = nullptr,
                              bool UseInstrInfo = true);

  /// This function computes the integer multiple of Base that equals V. If
  /// successful, it returns true and returns the multiple in Multiple. If
  /// unsuccessful, it returns false. Also, if V can be simplified to an
  /// integer, then the simplified V is returned in Val. Look through sext only
  /// if LookThroughSExt=true.
  bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
                       bool LookThroughSExt = false,
                       unsigned Depth = 0);

  /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
  /// intrinsics are treated as-if they were intrinsics.
  Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
                                        const TargetLibraryInfo *TLI);

  /// Return true if we can prove that the specified FP value is never equal to
  /// -0.0.
  bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
                            unsigned Depth = 0);

  /// Return true if we can prove that the specified FP value is either NaN or
  /// never less than -0.0.
  ///
  ///      NaN --> true
  ///       +0 --> true
  ///       -0 --> true
  ///   x > +0 --> true
  ///   x < -0 --> false
  bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);

  /// Return true if the floating-point scalar value is not a NaN or if the
  /// floating-point vector value has no NaN elements. Return false if a value
  /// could ever be NaN.
  bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
                       unsigned Depth = 0);

  /// Return true if we can prove that the specified FP value's sign bit is 0.
  ///
  ///      NaN --> true/false (depending on the NaN's sign bit)
  ///       +0 --> true
  ///       -0 --> false
  ///   x > +0 --> true
  ///   x < -0 --> false
  bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);

  /// If the specified value can be set by repeating the same byte in memory,
  /// return the i8 value that it is represented with. This is true for all i8
  /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
  /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
  /// i16 0x1234), return null. If the value is entirely undef and padding,
  /// return undef.
  Value *isBytewiseValue(Value *V, const DataLayout &DL);

  /// Given an aggregrate and an sequence of indices, see if the scalar value
  /// indexed is already around as a register, for example if it were inserted
  /// directly into the aggregrate.
  ///
  /// If InsertBefore is not null, this function will duplicate (modified)
  /// insertvalues when a part of a nested struct is extracted.
  Value *FindInsertedValue(Value *V,
                           ArrayRef<unsigned> idx_range,
                           Instruction *InsertBefore = nullptr);

  /// Analyze the specified pointer to see if it can be expressed as a base
  /// pointer plus a constant offset. Return the base and offset to the caller.
  ///
  /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
  /// creates and later unpacks the required APInt.
  inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
                                                 const DataLayout &DL,
                                                 bool AllowNonInbounds = true) {
    APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
    Value *Base =
        Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);

    Offset = OffsetAPInt.getSExtValue();
    return Base;
  }
  inline const Value *
  GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
                                   const DataLayout &DL,
                                   bool AllowNonInbounds = true) {
    return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
                                            AllowNonInbounds);
  }

  /// Returns true if the GEP is based on a pointer to a string (array of
  // \p CharSize integers) and is indexing into this string.
  bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
                                   unsigned CharSize = 8);

  /// Represents offset+length into a ConstantDataArray.
  struct ConstantDataArraySlice {
    /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
    /// initializer, it just doesn't fit the ConstantDataArray interface).
    const ConstantDataArray *Array;

    /// Slice starts at this Offset.
    uint64_t Offset;

    /// Length of the slice.
    uint64_t Length;

    /// Moves the Offset and adjusts Length accordingly.
    void move(uint64_t Delta) {
      assert(Delta < Length);
      Offset += Delta;
      Length -= Delta;
    }

    /// Convenience accessor for elements in the slice.
    uint64_t operator[](unsigned I) const {
      return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
    }
  };

  /// Returns true if the value \p V is a pointer into a ConstantDataArray.
  /// If successful \p Slice will point to a ConstantDataArray info object
  /// with an appropriate offset.
  bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
                                unsigned ElementSize, uint64_t Offset = 0);

  /// This function computes the length of a null-terminated C string pointed to
  /// by V. If successful, it returns true and returns the string in Str. If
  /// unsuccessful, it returns false. This does not include the trailing null
  /// character by default. If TrimAtNul is set to false, then this returns any
  /// trailing null characters as well as any other characters that come after
  /// it.
  bool getConstantStringInfo(const Value *V, StringRef &Str,
                             uint64_t Offset = 0, bool TrimAtNul = true);

  /// If we can compute the length of the string pointed to by the specified
  /// pointer, return 'len+1'.  If we can't, return 0.
  uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);

  /// This function returns call pointer argument that is considered the same by
  /// aliasing rules. You CAN'T use it to replace one value with another. If
  /// \p MustPreserveNullness is true, the call must preserve the nullness of
  /// the pointer.
  const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
                                                    bool MustPreserveNullness);
  inline Value *
  getArgumentAliasingToReturnedPointer(CallBase *Call,
                                       bool MustPreserveNullness) {
    return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
        const_cast<const CallBase *>(Call), MustPreserveNullness));
  }

  /// {launder,strip}.invariant.group returns pointer that aliases its argument,
  /// and it only captures pointer by returning it.
  /// These intrinsics are not marked as nocapture, because returning is
  /// considered as capture. The arguments are not marked as returned neither,
  /// because it would make it useless. If \p MustPreserveNullness is true,
  /// the intrinsic must preserve the nullness of the pointer.
  bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
      const CallBase *Call, bool MustPreserveNullness);

  /// This method strips off any GEP address adjustments and pointer casts from
  /// the specified value, returning the original object being addressed. Note
  /// that the returned value has pointer type if the specified value does. If
  /// the MaxLookup value is non-zero, it limits the number of instructions to
  /// be stripped off.
  Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
                             unsigned MaxLookup = 6);
  inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
                                          unsigned MaxLookup = 6) {
    return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
  }

  /// This method is similar to GetUnderlyingObject except that it can
  /// look through phi and select instructions and return multiple objects.
  ///
  /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
  /// accesses different objects in each iteration, we don't look through the
  /// phi node. E.g. consider this loop nest:
  ///
  ///   int **A;
  ///   for (i)
  ///     for (j) {
  ///        A[i][j] = A[i-1][j] * B[j]
  ///     }
  ///
  /// This is transformed by Load-PRE to stash away A[i] for the next iteration
  /// of the outer loop:
  ///
  ///   Curr = A[0];          // Prev_0
  ///   for (i: 1..N) {
  ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
  ///     Curr = A[i];
  ///     for (j: 0..N) {
  ///        Curr[j] = Prev[j] * B[j]
  ///     }
  ///   }
  ///
  /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
  /// should not assume that Curr and Prev share the same underlying object thus
  /// it shouldn't look through the phi above.
  void GetUnderlyingObjects(const Value *V,
                            SmallVectorImpl<const Value *> &Objects,
                            const DataLayout &DL, LoopInfo *LI = nullptr,
                            unsigned MaxLookup = 6);

  /// This is a wrapper around GetUnderlyingObjects and adds support for basic
  /// ptrtoint+arithmetic+inttoptr sequences.
  bool getUnderlyingObjectsForCodeGen(const Value *V,
                            SmallVectorImpl<Value *> &Objects,
                            const DataLayout &DL);

  /// Return true if the only users of this pointer are lifetime markers.
  bool onlyUsedByLifetimeMarkers(const Value *V);

  /// Return true if speculation of the given load must be suppressed to avoid
  /// ordering or interfering with an active sanitizer.  If not suppressed,
  /// dereferenceability and alignment must be proven separately.  Note: This
  /// is only needed for raw reasoning; if you use the interface below
  /// (isSafeToSpeculativelyExecute), this is handled internally.
  bool mustSuppressSpeculation(const LoadInst &LI);

  /// Return true if the instruction does not have any effects besides
  /// calculating the result and does not have undefined behavior.
  ///
  /// This method never returns true for an instruction that returns true for
  /// mayHaveSideEffects; however, this method also does some other checks in
  /// addition. It checks for undefined behavior, like dividing by zero or
  /// loading from an invalid pointer (but not for undefined results, like a
  /// shift with a shift amount larger than the width of the result). It checks
  /// for malloc and alloca because speculatively executing them might cause a
  /// memory leak. It also returns false for instructions related to control
  /// flow, specifically terminators and PHI nodes.
  ///
  /// If the CtxI is specified this method performs context-sensitive analysis
  /// and returns true if it is safe to execute the instruction immediately
  /// before the CtxI.
  ///
  /// If the CtxI is NOT specified this method only looks at the instruction
  /// itself and its operands, so if this method returns true, it is safe to
  /// move the instruction as long as the correct dominance relationships for
  /// the operands and users hold.
  ///
  /// This method can return true for instructions that read memory;
  /// for such instructions, moving them may change the resulting value.
  bool isSafeToSpeculativelyExecute(const Value *V,
                                    const Instruction *CtxI = nullptr,
                                    const DominatorTree *DT = nullptr);

  /// Returns true if the result or effects of the given instructions \p I
  /// depend on or influence global memory.
  /// Memory dependence arises for example if the instruction reads from
  /// memory or may produce effects or undefined behaviour. Memory dependent
  /// instructions generally cannot be reorderd with respect to other memory
  /// dependent instructions or moved into non-dominated basic blocks.
  /// Instructions which just compute a value based on the values of their
  /// operands are not memory dependent.
  bool mayBeMemoryDependent(const Instruction &I);

  /// Return true if it is an intrinsic that cannot be speculated but also
  /// cannot trap.
  bool isAssumeLikeIntrinsic(const Instruction *I);

  /// Return true if it is valid to use the assumptions provided by an
  /// assume intrinsic, I, at the point in the control-flow identified by the
  /// context instruction, CxtI.
  bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
                               const DominatorTree *DT = nullptr);

  enum class OverflowResult {
    /// Always overflows in the direction of signed/unsigned min value.
    AlwaysOverflowsLow,
    /// Always overflows in the direction of signed/unsigned max value.
    AlwaysOverflowsHigh,
    /// May or may not overflow.
    MayOverflow,
    /// Never overflows.
    NeverOverflows,
  };

  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
                                               const Value *RHS,
                                               const DataLayout &DL,
                                               AssumptionCache *AC,
                                               const Instruction *CxtI,
                                               const DominatorTree *DT,
                                               bool UseInstrInfo = true);
  OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
                                             const DataLayout &DL,
                                             AssumptionCache *AC,
                                             const Instruction *CxtI,
                                             const DominatorTree *DT,
                                             bool UseInstrInfo = true);
  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
                                               const Value *RHS,
                                               const DataLayout &DL,
                                               AssumptionCache *AC,
                                               const Instruction *CxtI,
                                               const DominatorTree *DT,
                                               bool UseInstrInfo = true);
  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
                                             const DataLayout &DL,
                                             AssumptionCache *AC = nullptr,
                                             const Instruction *CxtI = nullptr,
                                             const DominatorTree *DT = nullptr);
  /// This version also leverages the sign bit of Add if known.
  OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
                                             const DataLayout &DL,
                                             AssumptionCache *AC = nullptr,
                                             const Instruction *CxtI = nullptr,
                                             const DominatorTree *DT = nullptr);
  OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
                                               const DataLayout &DL,
                                               AssumptionCache *AC,
                                               const Instruction *CxtI,
                                               const DominatorTree *DT);
  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
                                             const DataLayout &DL,
                                             AssumptionCache *AC,
                                             const Instruction *CxtI,
                                             const DominatorTree *DT);

  /// Returns true if the arithmetic part of the \p WO 's result is
  /// used only along the paths control dependent on the computation
  /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
  bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
                                 const DominatorTree &DT);


  /// Determine the possible constant range of an integer or vector of integer
  /// value. This is intended as a cheap, non-recursive check.
  ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true);

  /// Return true if this function can prove that the instruction I will
  /// always transfer execution to one of its successors (including the next
  /// instruction that follows within a basic block). E.g. this is not
  /// guaranteed for function calls that could loop infinitely.
  ///
  /// In other words, this function returns false for instructions that may
  /// transfer execution or fail to transfer execution in a way that is not
  /// captured in the CFG nor in the sequence of instructions within a basic
  /// block.
  ///
  /// Undefined behavior is assumed not to happen, so e.g. division is
  /// guaranteed to transfer execution to the following instruction even
  /// though division by zero might cause undefined behavior.
  bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);

  /// Returns true if this block does not contain a potential implicit exit.
  /// This is equivelent to saying that all instructions within the basic block
  /// are guaranteed to transfer execution to their successor within the basic
  /// block. This has the same assumptions w.r.t. undefined behavior as the
  /// instruction variant of this function.
  bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);

  /// Return true if this function can prove that the instruction I
  /// is executed for every iteration of the loop L.
  ///
  /// Note that this currently only considers the loop header.
  bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
                                              const Loop *L);

  /// Return true if this function can prove that I is guaranteed to yield
  /// full-poison (all bits poison) if at least one of its operands are
  /// full-poison (all bits poison).
  ///
  /// The exact rules for how poison propagates through instructions have
  /// not been settled as of 2015-07-10, so this function is conservative
  /// and only considers poison to be propagated in uncontroversial
  /// cases. There is no attempt to track values that may be only partially
  /// poison.
  bool propagatesFullPoison(const Instruction *I);

  /// Return either nullptr or an operand of I such that I will trigger
  /// undefined behavior if I is executed and that operand has a full-poison
  /// value (all bits poison).
  const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);

  /// Return true if the given instruction must trigger undefined behavior.
  /// when I is executed with any operands which appear in KnownPoison holding
  /// a full-poison value at the point of execution.
  bool mustTriggerUB(const Instruction *I,
                     const SmallSet<const Value *, 16>& KnownPoison);

  /// Return true if this function can prove that if PoisonI is executed
  /// and yields a full-poison value (all bits poison), then that will
  /// trigger undefined behavior.
  ///
  /// Note that this currently only considers the basic block that is
  /// the parent of I.
  bool programUndefinedIfFullPoison(const Instruction *PoisonI);

  /// Specific patterns of select instructions we can match.
  enum SelectPatternFlavor {
    SPF_UNKNOWN = 0,
    SPF_SMIN,                   /// Signed minimum
    SPF_UMIN,                   /// Unsigned minimum
    SPF_SMAX,                   /// Signed maximum
    SPF_UMAX,                   /// Unsigned maximum
    SPF_FMINNUM,                /// Floating point minnum
    SPF_FMAXNUM,                /// Floating point maxnum
    SPF_ABS,                    /// Absolute value
    SPF_NABS                    /// Negated absolute value
  };

  /// Behavior when a floating point min/max is given one NaN and one
  /// non-NaN as input.
  enum SelectPatternNaNBehavior {
    SPNB_NA = 0,                /// NaN behavior not applicable.
    SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
    SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
    SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
                                /// it has been determined that no operands can
                                /// be NaN).
  };

  struct SelectPatternResult {
    SelectPatternFlavor Flavor;
    SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
                                          /// SPF_FMINNUM or SPF_FMAXNUM.
    bool Ordered;               /// When implementing this min/max pattern as
                                /// fcmp; select, does the fcmp have to be
                                /// ordered?

    /// Return true if \p SPF is a min or a max pattern.
    static bool isMinOrMax(SelectPatternFlavor SPF) {
      return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
    }
  };

  /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
  /// and providing the out parameter results if we successfully match.
  ///
  /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
  /// the negation instruction from the idiom.
  ///
  /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
  /// not match that of the original select. If this is the case, the cast
  /// operation (one of Trunc,SExt,Zext) that must be done to transform the
  /// type of LHS and RHS into the type of V is returned in CastOp.
  ///
  /// For example:
  ///   %1 = icmp slt i32 %a, i32 4
  ///   %2 = sext i32 %a to i64
  ///   %3 = select i1 %1, i64 %2, i64 4
  ///
  /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
  ///
  SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
                                         Instruction::CastOps *CastOp = nullptr,
                                         unsigned Depth = 0);

  inline SelectPatternResult
  matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
    Value *L = const_cast<Value *>(LHS);
    Value *R = const_cast<Value *>(RHS);
    auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
    LHS = L;
    RHS = R;
    return Result;
  }

  /// Determine the pattern that a select with the given compare as its
  /// predicate and given values as its true/false operands would match.
  SelectPatternResult matchDecomposedSelectPattern(
      CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
      Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);

  /// Return the canonical comparison predicate for the specified
  /// minimum/maximum flavor.
  CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
                                   bool Ordered = false);

  /// Return the inverse minimum/maximum flavor of the specified flavor.
  /// For example, signed minimum is the inverse of signed maximum.
  SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);

  /// Return the canonical inverse comparison predicate for the specified
  /// minimum/maximum flavor.
  CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);

  /// Return true if RHS is known to be implied true by LHS.  Return false if
  /// RHS is known to be implied false by LHS.  Otherwise, return None if no
  /// implication can be made.
  /// A & B must be i1 (boolean) values or a vector of such values. Note that
  /// the truth table for implication is the same as <=u on i1 values (but not
  /// <=s!).  The truth table for both is:
  ///    | T | F (B)
  ///  T | T | F
  ///  F | T | T
  /// (A)
  Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
                                    const DataLayout &DL, bool LHSIsTrue = true,
                                    unsigned Depth = 0);

  /// Return the boolean condition value in the context of the given instruction
  /// if it is known based on dominating conditions.
  Optional<bool> isImpliedByDomCondition(const Value *Cond,
                                         const Instruction *ContextI,
                                         const DataLayout &DL);

  /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
  /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
  /// this case offset would be -8.
  Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
                                    const DataLayout &DL);
} // end namespace llvm

#endif // LLVM_ANALYSIS_VALUETRACKING_H