reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
//   U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
//   A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
//   In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
//   Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
//  - Tiling of the innermost tilable bands
//  - Prevectorization - The choice of a possible outer loop that is strip-mined
//                       to the innermost level to enable inner-loop
//                       vectorization.
//  - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//

#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Simplify.h"
#include "polly/Support/ISLOStream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-opt-isl"

static cl::opt<std::string>
    OptimizeDeps("polly-opt-optimize-only",
                 cl::desc("Only a certain kind of dependences (all/raw)"),
                 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<std::string>
    SimplifyDeps("polly-opt-simplify-deps",
                 cl::desc("Dependences should be simplified (yes/no)"),
                 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<int> MaxConstantTerm(
    "polly-opt-max-constant-term",
    cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> MaxCoefficient(
    "polly-opt-max-coefficient",
    cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string> FusionStrategy(
    "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
    cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string>
    MaximizeBandDepth("polly-opt-maximize-bands",
                      cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
                      cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string> OuterCoincidence(
    "polly-opt-outer-coincidence",
    cl::desc("Try to construct schedules where the outer member of each band "
             "satisfies the coincidence constraints (yes/no)"),
    cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PrevectorWidth(
    "polly-prevect-width",
    cl::desc(
        "The number of loop iterations to strip-mine for pre-vectorization"),
    cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> FirstLevelTiling("polly-tiling",
                                      cl::desc("Enable loop tiling"),
                                      cl::init(true), cl::ZeroOrMore,
                                      cl::cat(PollyCategory));

static cl::opt<int> LatencyVectorFma(
    "polly-target-latency-vector-fma",
    cl::desc("The minimal number of cycles between issuing two "
             "dependent consecutive vector fused multiply-add "
             "instructions."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> ThroughputVectorFma(
    "polly-target-throughput-vector-fma",
    cl::desc("A throughput of the processor floating-point arithmetic units "
             "expressed in the number of vector fused multiply-add "
             "instructions per clock cycle."),
    cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));

// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified or not provided by the
// TargetTransformInfo.
static cl::opt<int> FirstCacheLevelAssociativity(
    "polly-target-1st-cache-level-associativity",
    cl::desc("The associativity of the first cache level."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelDefaultAssociativity(
    "polly-target-1st-cache-level-default-associativity",
    cl::desc("The default associativity of the first cache level"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelAssociativity(
    "polly-target-2nd-cache-level-associativity",
    cl::desc("The associativity of the second cache level."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelDefaultAssociativity(
    "polly-target-2nd-cache-level-default-associativity",
    cl::desc("The default associativity of the second cache level"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelSize(
    "polly-target-1st-cache-level-size",
    cl::desc("The size of the first cache level specified in bytes."),
    cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelDefaultSize(
    "polly-target-1st-cache-level-default-size",
    cl::desc("The default size of the first cache level specified in bytes"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelSize(
    "polly-target-2nd-cache-level-size",
    cl::desc("The size of the second level specified in bytes."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelDefaultSize(
    "polly-target-2nd-cache-level-default-size",
    cl::desc("The default size of the second cache level specified in bytes"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> VectorRegisterBitwidth(
    "polly-target-vector-register-bitwidth",
    cl::desc("The size in bits of a vector register (if not set, this "
             "information is taken from LLVM's target information."),
    cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstLevelDefaultTileSize(
    "polly-default-tile-size",
    cl::desc("The default tile size (if not enough were provided by"
             " --polly-tile-sizes)"),
    cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    FirstLevelTileSizes("polly-tile-sizes",
                        cl::desc("A tile size for each loop dimension, filled "
                                 "with --polly-default-tile-size"),
                        cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                        cl::cat(PollyCategory));

static cl::opt<bool>
    SecondLevelTiling("polly-2nd-level-tiling",
                      cl::desc("Enable a 2nd level loop of loop tiling"),
                      cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondLevelDefaultTileSize(
    "polly-2nd-level-default-tile-size",
    cl::desc("The default 2nd-level tile size (if not enough were provided by"
             " --polly-2nd-level-tile-sizes)"),
    cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    SecondLevelTileSizes("polly-2nd-level-tile-sizes",
                         cl::desc("A tile size for each loop dimension, filled "
                                  "with --polly-default-tile-size"),
                         cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                         cl::cat(PollyCategory));

static cl::opt<bool> RegisterTiling("polly-register-tiling",
                                    cl::desc("Enable register tiling"),
                                    cl::init(false), cl::ZeroOrMore,
                                    cl::cat(PollyCategory));

static cl::opt<int> RegisterDefaultTileSize(
    "polly-register-tiling-default-tile-size",
    cl::desc("The default register tile size (if not enough were provided by"
             " --polly-register-tile-sizes)"),
    cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PollyPatternMatchingNcQuotient(
    "polly-pattern-matching-nc-quotient",
    cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
             "macro-kernel, by Nr, the parameter of the micro-kernel"),
    cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    RegisterTileSizes("polly-register-tile-sizes",
                      cl::desc("A tile size for each loop dimension, filled "
                               "with --polly-register-tile-size"),
                      cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                      cl::cat(PollyCategory));

static cl::opt<bool>
    PMBasedOpts("polly-pattern-matching-based-opts",
                cl::desc("Perform optimizations based on pattern matching"),
                cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> OptimizedScops(
    "polly-optimized-scops",
    cl::desc("Polly - Dump polyhedral description of Scops optimized with "
             "the isl scheduling optimizer and the set of post-scheduling "
             "transformations is applied on the schedule tree"),
    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");

STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");

#define THREE_STATISTICS(VARNAME, DESC)                                        \
  static Statistic VARNAME[3] = {                                              \
      {DEBUG_TYPE, #VARNAME "0", DESC " (original)"},                          \
      {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"},                   \
      {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}

THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");

STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
          "Number of matrix multiplication patterns detected and optimized");

/// Create an isl::union_set, which describes the isolate option based on
/// IsolateDomain.
///
/// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
///                      belong to the current band node.
/// @param OutDimsNum    A number of dimensions that should belong to
///                      the current band node.
static isl::union_set getIsolateOptions(isl::set IsolateDomain,
                                        unsigned OutDimsNum) {
  unsigned Dims = IsolateDomain.dim(isl::dim::set);
  assert(OutDimsNum <= Dims &&
         "The isl::set IsolateDomain is used to describe the range of schedule "
         "dimensions values, which should be isolated. Consequently, the "
         "number of its dimensions should be greater than or equal to the "
         "number of the schedule dimensions.");
  isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
  IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
                                              Dims - OutDimsNum, OutDimsNum);
  isl::set IsolateOption = IsolateRelation.wrap();
  isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
  IsolateOption = IsolateOption.set_tuple_id(Id);
  return isl::union_set(IsolateOption);
}

namespace {
/// Create an isl::union_set, which describes the specified option for the
/// dimension of the current node.
///
/// @param Ctx    An isl::ctx, which is used to create the isl::union_set.
/// @param Option The name of the option.
isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
  isl::space Space(Ctx, 0, 1);
  auto DimOption = isl::set::universe(Space);
  auto Id = isl::id::alloc(Ctx, Option, nullptr);
  DimOption = DimOption.set_tuple_id(Id);
  return isl::union_set(DimOption);
}
} // namespace

/// Create an isl::union_set, which describes the option of the form
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
  isl::space Space = isl::space(Ctx, 0, 0, 1);
  isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
  isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
  isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
  UnrollIsolatedSetOption =
      UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
  UnrollIsolatedSetOption =
      UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
  return UnrollIsolatedSetOption.wrap();
}

/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
///
/// @param Set         A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
  unsigned Dims = Set.dim(isl::dim::set);
  isl::space Space = Set.get_space();
  isl::local_space LocalSpace = isl::local_space(Space);
  isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
  ExtConstr = ExtConstr.set_constant_si(0);
  ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
  Set = Set.add_constraint(ExtConstr);
  ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
  ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
  ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
  return Set.add_constraint(ExtConstr);
}

isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
  unsigned Dims = ScheduleRange.dim(isl::dim::set);
  isl::set LoopPrefixes =
      ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
  auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
  isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
  BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
  LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
  return LoopPrefixes.subtract(BadPrefixes);
}

isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
                                               int VectorWidth) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  Node = Node.child(0).child(0);
  isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
  isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
  isl::set ScheduleRange = ScheduleRelation.range();
  isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
  auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
  isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
  Node = Node.parent().parent();
  isl::union_set Options = IsolateOption.unite(AtomicOption);
  Node = Node.band_set_ast_build_options(Options);
  return Node;
}

isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
    isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);

  auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
  auto ScheduleDimensions = Space.dim(isl::dim::set);
  assert(DimToVectorize < ScheduleDimensions);

  if (DimToVectorize > 0) {
    Node = isl::manage(
        isl_schedule_node_band_split(Node.release(), DimToVectorize));
    Node = Node.child(0);
  }
  if (DimToVectorize < ScheduleDimensions - 1)
    Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
  Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
  auto Sizes = isl::multi_val::zero(Space);
  Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
  Node =
      isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
  Node = isolateFullPartialTiles(Node, VectorWidth);
  Node = Node.child(0);
  // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
  // we will have troubles to match it in the backend.
  Node = Node.band_set_ast_build_options(
      isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
  Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
  Node = Node.child(0);
  if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
    Node = Node.parent();
  auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
  PrevectOpts++;
  return Node.insert_mark(LoopMarker);
}

isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
                                                   const char *Identifier,
                                                   ArrayRef<int> TileSizes,
                                                   int DefaultTileSize) {
  auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
  auto Dims = Space.dim(isl::dim::set);
  auto Sizes = isl::multi_val::zero(Space);
  std::string IdentifierString(Identifier);
  for (unsigned i = 0; i < Dims; i++) {
    auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
    Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
  }
  auto TileLoopMarkerStr = IdentifierString + " - Tiles";
  auto TileLoopMarker =
      isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
  Node = Node.insert_mark(TileLoopMarker);
  Node = Node.child(0);
  Node =
      isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
  Node = Node.child(0);
  auto PointLoopMarkerStr = IdentifierString + " - Points";
  auto PointLoopMarker =
      isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
  Node = Node.insert_mark(PointLoopMarker);
  return Node.child(0);
}

isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
    isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
  Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
  auto Ctx = Node.get_ctx();
  return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
}

static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  assert(isl_schedule_node_n_children(Node.get()) == 1);

  auto ChildType = isl_schedule_node_get_type(Node.child(0).get());

  if (ChildType == isl_schedule_node_leaf)
    return true;

  if (ChildType != isl_schedule_node_sequence)
    return false;

  auto Sequence = Node.child(0);

  for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
       ++c) {
    auto Child = Sequence.child(c);
    if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
      return false;
    if (isl_schedule_node_get_type(Child.child(0).get()) !=
        isl_schedule_node_leaf)
      return false;
  }
  return true;
}

bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
  if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
    return false;

  if (isl_schedule_node_n_children(Node.get()) != 1)
    return false;

  if (!isl_schedule_node_band_get_permutable(Node.get()))
    return false;

  auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
  auto Dims = Space.dim(isl::dim::set);

  if (Dims <= 1)
    return false;

  return isSimpleInnermostBand(Node);
}

__isl_give isl::schedule_node
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
  if (FirstLevelTiling) {
    Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
                    FirstLevelDefaultTileSize);
    FirstLevelTileOpts++;
  }

  if (SecondLevelTiling) {
    Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
                    SecondLevelDefaultTileSize);
    SecondLevelTileOpts++;
  }

  if (RegisterTiling) {
    Node =
        applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
    RegisterTileOpts++;
  }

  if (PollyVectorizerChoice == VECTORIZER_NONE)
    return Node;

  auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
  auto Dims = Space.dim(isl::dim::set);

  for (int i = Dims - 1; i >= 0; i--)
    if (Node.band_member_get_coincident(i)) {
      Node = prevectSchedBand(Node, i, PrevectorWidth);
      break;
    }

  return Node;
}

/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map     The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos  The first dimension.
/// @param SrcPos  The second dimension.
/// @return        The modified map.
isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
                           unsigned SrcPos) {
  assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
  if (DstPos == SrcPos)
    return Map;
  isl::id DimId;
  if (Map.has_tuple_id(DimType))
    DimId = Map.get_tuple_id(DimType);
  auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
  isl::id FreeDimId;
  if (Map.has_tuple_id(FreeDim))
    FreeDimId = Map.get_tuple_id(FreeDim);
  auto MaxDim = std::max(DstPos, SrcPos);
  auto MinDim = std::min(DstPos, SrcPos);
  Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
  Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
  Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
  Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
  if (DimId)
    Map = Map.set_tuple_id(DimType, DimId);
  if (FreeDimId)
    Map = Map.set_tuple_id(FreeDim, FreeDimId);
  return Map;
}

/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap    The access relation to be checked.
/// @param FirstPos  The index of the input dimension that is mapped to
///                  the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
///                  second output dimension.
/// @return          True in case @p AccMap has the expected form and false,
///                  otherwise.
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
                               int &SecondPos) {
  isl::space Space = AccMap.get_space();
  isl::map Universe = isl::map::universe(Space);

  if (Space.dim(isl::dim::out) != 2)
    return false;

  // MatMul has the form:
  // for (i = 0; i < N; i++)
  //   for (j = 0; j < M; j++)
  //     for (k = 0; k < P; k++)
  //       C[i, j] += A[i, k] * B[k, j]
  //
  // Permutation of three outer loops: 3! = 6 possibilities.
  int FirstDims[] = {0, 0, 1, 1, 2, 2};
  int SecondDims[] = {1, 2, 2, 0, 0, 1};
  for (int i = 0; i < 6; i += 1) {
    auto PossibleMatMul =
        Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
            .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);

    AccMap = AccMap.intersect_domain(Domain);
    PossibleMatMul = PossibleMatMul.intersect_domain(Domain);

    // If AccMap spans entire domain (Non-partial write),
    // compute FirstPos and SecondPos.
    // If AccMap != PossibleMatMul here (the two maps have been gisted at
    // this point), it means that the writes are not complete, or in other
    // words, it is a Partial write and Partial writes must be rejected.
    if (AccMap.is_equal(PossibleMatMul)) {
      if (FirstPos != -1 && FirstPos != FirstDims[i])
        continue;
      FirstPos = FirstDims[i];
      if (SecondPos != -1 && SecondPos != SecondDims[i])
        continue;
      SecondPos = SecondDims[i];
      return true;
    }
  }

  return false;
}

/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI       Parameters of the matrix multiplication operands.
/// @return          True in case the memory access represents the read access
///                  to a non-scalar operand of the matrix multiplication and
///                  false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
                                        MatMulInfoTy &MMI) {
  if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
    return false;
  auto AccMap = MemAccess->getLatestAccessRelation();
  isl::set StmtDomain = MemAccess->getStatement()->getDomain();
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
    MMI.ReadFromC = MemAccess;
    return true;
  }
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
    MMI.A = MemAccess;
    return true;
  }
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
    MMI.B = MemAccess;
    return true;
  }
  return false;
}

/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param  PartialSchedule The partial schedule of the SCoP statement.
/// @param  MMI             Parameters of the matrix multiplication operands.
/// @return                 True in case the corresponding SCoP statement
///                         represents matrix multiplication and false,
///                         otherwise.
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
                                    MatMulInfoTy &MMI) {
  auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
  auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
  unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
  assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
                          "and, consequently, the corresponding scheduling "
                          "functions have at least three dimensions.");
  auto MapI =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
  auto MapJ =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
  auto MapK =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);

  auto Accesses = getAccessesInOrder(*Stmt);
  for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
    auto *MemAccessPtr = *MemA;
    if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
        !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
        !(MemAccessPtr->isStrideZero(MapI)) &&
        MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
      return false;
  }
  return true;
}

/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param  Schedule The schedule of the SCoP statement.
/// @param  D The SCoP dependencies.
/// @param  Pos The parameter to describe an acceptable true dependence.
///             In case it has a negative value, try to determine its
///             acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
///         and false, otherwise.
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
                                  int &Pos) {
  isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
  isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
  if (Red)
    Dep = Dep.unite(Red);
  auto DomainSpace = Schedule.get_space().domain();
  auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
  auto Deltas = Dep.extract_map(Space).deltas();
  int DeltasDimNum = Deltas.dim(isl::dim::set);
  for (int i = 0; i < DeltasDimNum; i++) {
    auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
    Pos = Pos < 0 && Val.is_one() ? i : Pos;
    if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
      return false;
  }
  if (DeltasDimNum == 0 || Pos < 0)
    return false;
  return true;
}

/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
///    memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
///    S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
///    under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
///    form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
///    loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
///    reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
///    S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
///    and all memory accesses of the SCoP that are different from MA1, MA2,
///    MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
///    of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
///        to check.
/// @D     The SCoP dependencies.
/// @MMI   Parameters of the matrix multiplication operands.
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
                             MatMulInfoTy &MMI) {
  auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
  auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
  if (Stmt->size() <= 1)
    return false;

  auto Accesses = getAccessesInOrder(*Stmt);
  for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
    auto *MemAccessPtr = *MemA;
    if (!MemAccessPtr->isLatestArrayKind())
      continue;
    if (!MemAccessPtr->isWrite())
      return false;
    auto AccMap = MemAccessPtr->getLatestAccessRelation();
    if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
      return false;
    MMI.WriteToC = MemAccessPtr;
    break;
  }

  if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
    return false;

  if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
    return false;

  if (!MMI.A || !MMI.B || !MMI.ReadFromC)
    return false;
  return true;
}

/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
                                                    unsigned FirstDim,
                                                    unsigned SecondDim) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
         isl_schedule_node_band_n_member(Node.get()) >
             std::max(FirstDim, SecondDim));
  auto PartialSchedule =
      isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
  auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
  auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
  PartialSchedule =
      PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
  PartialSchedule =
      PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
  Node = isl::manage(isl_schedule_node_delete(Node.release()));
  return Node.insert_partial_schedule(PartialSchedule);
}

isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
    isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
  Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
                             1);
  Node = Node.parent().parent();
  return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
}

isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
    isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
      MacroKernelParams.Kc == 1)
    return Node;
  int DimOutNum = isl_schedule_node_band_n_member(Node.get());
  std::vector<int> TileSizes(DimOutNum, 1);
  TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
  TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
  TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
  Node = tileNode(Node, "1st level tiling", TileSizes, 1);
  Node = Node.parent().parent();
  Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
  Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);

  // Mark the outermost loop as parallelizable.
  Node = Node.band_member_set_coincident(0, true);

  return Node.child(0).child(0);
}

/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
///         in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
  auto *S = MMI.A->getStatement()->getParent();
  auto &DL = S->getFunction().getParent()->getDataLayout();
  auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
  auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
  auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
  return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}

/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
///         in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
  auto *S = MMI.A->getStatement()->getParent();
  auto &DL = S->getFunction().getParent()->getDataLayout();
  auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
  auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
  auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
  return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}

/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static struct MicroKernelParamsTy
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
  assert(TTI && "The target transform info should be provided.");

  // Nvec - Number of double-precision floating-point numbers that can be hold
  // by a vector register. Use 2 by default.
  long RegisterBitwidth = VectorRegisterBitwidth;

  if (RegisterBitwidth == -1)
    RegisterBitwidth = TTI->getRegisterBitWidth(true);
  auto ElementSize = getMatMulTypeSize(MMI);
  assert(ElementSize > 0 && "The element size of the matrix multiplication "
                            "operands should be greater than zero.");
  auto Nvec = RegisterBitwidth / ElementSize;
  if (Nvec == 0)
    Nvec = 2;
  int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
                Nvec) *
           Nvec;
  int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
  return {Mr, Nr};
}

namespace {
/// Determine parameters of the target cache.
///
/// @param TTI Target Transform Info.
void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
  auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
  auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
  if (FirstCacheLevelSize == -1) {
    if (TTI->getCacheSize(L1DCache).hasValue())
      FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
    else
      FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
  }
  if (SecondCacheLevelSize == -1) {
    if (TTI->getCacheSize(L2DCache).hasValue())
      SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
    else
      SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
  }
  if (FirstCacheLevelAssociativity == -1) {
    if (TTI->getCacheAssociativity(L1DCache).hasValue())
      FirstCacheLevelAssociativity =
          TTI->getCacheAssociativity(L1DCache).getValue();
    else
      FirstCacheLevelAssociativity =
          static_cast<int>(FirstCacheLevelDefaultAssociativity);
  }
  if (SecondCacheLevelAssociativity == -1) {
    if (TTI->getCacheAssociativity(L2DCache).hasValue())
      SecondCacheLevelAssociativity =
          TTI->getCacheAssociativity(L2DCache).getValue();
    else
      SecondCacheLevelAssociativity =
          static_cast<int>(SecondCacheLevelDefaultAssociativity);
  }
}
} // namespace

/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param TTI Target Transform Info.
/// @param MicroKernelParams Parameters of the micro-kernel
///                          to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static struct MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
                     const MicroKernelParamsTy &MicroKernelParams,
                     MatMulInfoTy MMI) {
  getTargetCacheParameters(TTI);
  // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
  // it requires information about the first two levels of a cache to determine
  // all the parameters of a macro-kernel. It also checks that an associativity
  // degree of a cache level is greater than two. Otherwise, another algorithm
  // for determination of the parameters should be used.
  if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
        FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
        FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
    return {1, 1, 1};
  // The quotient should be greater than zero.
  if (PollyPatternMatchingNcQuotient <= 0)
    return {1, 1, 1};
  int Car = floor(
      (FirstCacheLevelAssociativity - 1) /
      (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));

  // Car can be computed to be zero since it is floor to int.
  // On Mac OS, division by 0 does not raise a signal. This causes negative
  // tile sizes to be computed. Prevent division by Cac==0 by early returning
  // if this happens.
  if (Car == 0)
    return {1, 1, 1};

  auto ElementSize = getMatMulAlignTypeSize(MMI);
  assert(ElementSize > 0 && "The element size of the matrix multiplication "
                            "operands should be greater than zero.");
  int Kc = (Car * FirstCacheLevelSize) /
           (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
  double Cac =
      static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
      SecondCacheLevelSize;
  int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
  int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;

  assert(Mc > 0 && Nc > 0 && Kc > 0 &&
         "Matrix block sizes should be  greater than zero");
  return {Mc, Nc, Kc};
}

/// Create an access relation that is specific to
///        the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
///                     to the ones, which are produced by schedule
///                     transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
///        the specified access relation.
/// @return The specified access relation.
isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
                         unsigned SecondDim) {
  auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
  auto AccessRel = isl::map::universe(AccessRelSpace);
  AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
  AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
  AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
  return MapOldIndVar.apply_range(AccessRel);
}

isl::schedule_node createExtensionNode(isl::schedule_node Node,
                                       isl::map ExtensionMap) {
  auto Extension = isl::union_map(ExtensionMap);
  auto NewNode = isl::schedule_node::from_extension(Extension);
  return Node.graft_before(NewNode);
}

/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
///                     to the ones, which are produced by schedule
///                     transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
///                                 to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
                                 MicroKernelParamsTy MicroParams,
                                 MacroKernelParamsTy MacroParams,
                                 MatMulInfoTy &MMI) {
  auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
  auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());

  // Create a copy statement that corresponds to the memory access to the
  // matrix B, the second operand of the matrix multiplication.
  Node = Node.parent().parent().parent().parent().parent().parent();
  Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
  auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
  unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
  unsigned SecondDimSize = MacroParams.Kc;
  unsigned ThirdDimSize = MicroParams.Nr;
  auto *SAI = Stmt->getParent()->createScopArrayInfo(
      MMI.B->getElementType(), "Packed_B",
      {FirstDimSize, SecondDimSize, ThirdDimSize});
  AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
  auto OldAcc = MMI.B->getLatestAccessRelation();
  MMI.B->setNewAccessRelation(AccRel);
  auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
                                         MapOldIndVar.dim(isl::dim::out) - 2);
  ExtMap = ExtMap.reverse();
  ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
  auto Domain = Stmt->getDomain();

  // Restrict the domains of the copy statements to only execute when also its
  // originating statement is executed.
  auto DomainId = Domain.get_tuple_id();
  auto *NewStmt = Stmt->getParent()->addScopStmt(
      OldAcc, MMI.B->getLatestAccessRelation(), Domain);
  ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
  ExtMap = ExtMap.intersect_range(Domain);
  ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
  Node = createExtensionNode(Node, ExtMap);

  // Create a copy statement that corresponds to the memory access
  // to the matrix A, the first operand of the matrix multiplication.
  Node = Node.child(0);
  AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
  FirstDimSize = MacroParams.Mc / MicroParams.Mr;
  ThirdDimSize = MicroParams.Mr;
  SAI = Stmt->getParent()->createScopArrayInfo(
      MMI.A->getElementType(), "Packed_A",
      {FirstDimSize, SecondDimSize, ThirdDimSize});
  AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
  OldAcc = MMI.A->getLatestAccessRelation();
  MMI.A->setNewAccessRelation(AccRel);
  ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
                                    MapOldIndVar.dim(isl::dim::out) - 3);
  ExtMap = ExtMap.reverse();
  ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
  NewStmt = Stmt->getParent()->addScopStmt(
      OldAcc, MMI.A->getLatestAccessRelation(), Domain);

  // Restrict the domains of the copy statements to only execute when also its
  // originating statement is executed.
  ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
  ExtMap = ExtMap.intersect_range(Domain);
  ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
  Node = createExtensionNode(Node, ExtMap);
  return Node.child(0).child(0).child(0).child(0).child(0);
}

/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
///        of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
///                                             to be taken into account.
/// @return  The relation mapping original induction variables to the ones
///          produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,
                                  MicroKernelParamsTy MicroKernelParams,
                                  MacroKernelParamsTy MacroKernelParams) {
  auto Child = Node.child(0);
  auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
  auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
  if (MapOldIndVar.dim(isl::dim::out) > 9)
    return MapOldIndVar.project_out(isl::dim::out, 0,
                                    MapOldIndVar.dim(isl::dim::out) - 9);
  return MapOldIndVar;
}

/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
///
/// @param Node              The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
///                          to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
                                 struct MicroKernelParamsTy MicroKernelParams) {
  isl::schedule_node Child = Node.get_child(0);
  isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
  isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
  unsigned Dims = Prefix.dim(isl::dim::set);
  Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
  Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
  Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);

  isl::union_set IsolateOption =
      getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
  isl::ctx Ctx = Node.get_ctx();
  auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
  Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
  Node = Node.band_set_ast_build_options(Options);
  Node = Node.parent().parent().parent();
  IsolateOption = getIsolateOptions(Prefix, 3);
  Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
  Node = Node.band_set_ast_build_options(Options);
  Node = Node.child(0).child(0).child(0);
  return Node;
}

/// Mark @p BasePtr with "Inter iteration alias-free" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @param BasePtr The pointer to be marked.
/// @return The modified isl_schedule_node.
static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
                                                      Value *BasePtr) {
  if (!BasePtr)
    return Node;

  auto Id =
      isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
  return Node.insert_mark(Id).child(0);
}

/// Insert "Loop Vectorizer Disabled" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @return The modified isl_schedule_node.
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
  auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
  return Node.insert_mark(Id).child(0);
}

/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
    return Node;
  auto Domain = Node.get_universe_domain();
  assert(isl_union_set_n_set(Domain.get()) == 1);
  if (Node.get_schedule_depth() != 0 ||
      (isl::set(Domain).dim(isl::dim::set) !=
       isl_schedule_node_band_n_member(Node.get())))
    return Node;
  Node = isl::manage(isl_schedule_node_delete(Node.copy()));
  auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
  auto PartialScheduleMultiPwAff =
      isl::multi_union_pw_aff(PartialSchedulePwAff);
  PartialScheduleMultiPwAff =
      PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
  return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
}

isl::schedule_node
ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
                                             const TargetTransformInfo *TTI,
                                             MatMulInfoTy &MMI) {
  assert(TTI && "The target transform info should be provided.");
  Node = markInterIterationAliasFree(
      Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
  int DimOutNum = isl_schedule_node_band_n_member(Node.get());
  assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
                          "and, consequently, the corresponding scheduling "
                          "functions have at least three dimensions.");
  Node = getBandNodeWithOriginDimOrder(Node);
  Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
  int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
  int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
  Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
  NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
  Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
  auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
  auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
  Node = createMacroKernel(Node, MacroKernelParams);
  Node = createMicroKernel(Node, MicroKernelParams);
  if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
      MacroKernelParams.Kc == 1)
    return Node;
  auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
                                                        MacroKernelParams);
  if (!MapOldIndVar)
    return Node;
  Node = markLoopVectorizerDisabled(Node.parent()).child(0);
  Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
  return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
                                          MacroKernelParams, MMI);
}

bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
                                              const Dependences *D,
                                              MatMulInfoTy &MMI) {
  auto PartialSchedule = isl::manage(
      isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
  Node = Node.child(0);
  auto LeafType = isl_schedule_node_get_type(Node.get());
  Node = Node.parent();
  if (LeafType != isl_schedule_node_leaf ||
      isl_schedule_node_band_n_member(Node.get()) < 3 ||
      Node.get_schedule_depth() != 0 ||
      isl_union_map_n_map(PartialSchedule.get()) != 1)
    return false;
  auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
  if (containsMatrMult(NewPartialSchedule, D, MMI))
    return true;
  return false;
}

__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
                                    void *User) {
  if (!isTileableBandNode(isl::manage_copy(Node)))
    return Node;

  const OptimizerAdditionalInfoTy *OAI =
      static_cast<const OptimizerAdditionalInfoTy *>(User);

  MatMulInfoTy MMI;
  if (PMBasedOpts && User &&
      isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
    LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
    MatMulOpts++;
    return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
  }

  return standardBandOpts(isl::manage(Node), User).release();
}

isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
                                        const OptimizerAdditionalInfoTy *OAI) {
  auto Root = Schedule.get_root();
  Root = optimizeScheduleNode(Root, OAI);
  return Root.get_schedule();
}

isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
    isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
  Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
      Node.release(), optimizeBand,
      const_cast<void *>(static_cast<const void *>(OAI))));
  return Node;
}

bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
                                                 isl::schedule NewSchedule) {
  // To understand if the schedule has been optimized we check if the schedule
  // has changed at all.
  // TODO: We can improve this by tracking if any necessarily beneficial
  // transformations have been performed. This can e.g. be tiling, loop
  // interchange, or ...) We can track this either at the place where the
  // transformation has been performed or, in case of automatic ILP based
  // optimizations, by comparing (yet to be defined) performance metrics
  // before/after the scheduling optimizer
  // (e.g., #stride-one accesses)
  auto NewScheduleMap = NewSchedule.get_map();
  auto OldSchedule = S.getSchedule();
  assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
                        "that make Scop::getSchedule() return nullptr.");
  bool changed = !OldSchedule.is_equal(NewScheduleMap);
  return changed;
}

namespace {

class IslScheduleOptimizer : public ScopPass {
public:
  static char ID;

  explicit IslScheduleOptimizer() : ScopPass(ID) {}

  ~IslScheduleOptimizer() override { isl_schedule_free(LastSchedule); }

  /// Optimize the schedule of the SCoP @p S.
  bool runOnScop(Scop &S) override;

  /// Print the new schedule for the SCoP @p S.
  void printScop(raw_ostream &OS, Scop &S) const override;

  /// Register all analyses and transformation required.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Release the internal memory.
  void releaseMemory() override {
    isl_schedule_free(LastSchedule);
    LastSchedule = nullptr;
  }

private:
  isl_schedule *LastSchedule = nullptr;
};
} // namespace

char IslScheduleOptimizer::ID = 0;

/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version  The version of the schedule tree that is analyzed.
///                 0 for the original schedule tree before any transformation.
///                 1 for the schedule tree after isl's rescheduling.
///                 2 for the schedule tree after optimizations are applied
///                 (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
  auto Root = Schedule.get_root();
  if (!Root)
    return;

  isl_schedule_node_foreach_descendant_top_down(
      Root.get(),
      [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
        isl::schedule_node Node = isl::manage_copy(nodeptr);
        int Version = *static_cast<int *>(user);

        switch (isl_schedule_node_get_type(Node.get())) {
        case isl_schedule_node_band: {
          NumBands[Version]++;
          if (isl_schedule_node_band_get_permutable(Node.get()) ==
              isl_bool_true)
            NumPermutable[Version]++;

          int CountMembers = isl_schedule_node_band_n_member(Node.get());
          NumBandMembers[Version] += CountMembers;
          for (int i = 0; i < CountMembers; i += 1) {
            if (Node.band_member_get_coincident(i))
              NumCoincident[Version]++;
          }
          break;
        }

        case isl_schedule_node_filter:
          NumFilters[Version]++;
          break;

        case isl_schedule_node_extension:
          NumExtension[Version]++;
          break;

        default:
          break;
        }

        return isl_bool_true;
      },
      &Version);
}

bool IslScheduleOptimizer::runOnScop(Scop &S) {
  // Skip SCoPs in case they're already optimised by PPCGCodeGeneration
  if (S.isToBeSkipped())
    return false;

  // Skip empty SCoPs but still allow code generation as it will delete the
  // loops present but not needed.
  if (S.getSize() == 0) {
    S.markAsOptimized();
    return false;
  }

  const Dependences &D =
      getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);

  if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
    LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
    return false;
  }

  if (!D.hasValidDependences())
    return false;

  isl_schedule_free(LastSchedule);
  LastSchedule = nullptr;

  // Build input data.
  int ValidityKinds =
      Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  int ProximityKinds;

  if (OptimizeDeps == "all")
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  else if (OptimizeDeps == "raw")
    ProximityKinds = Dependences::TYPE_RAW;
  else {
    errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
           << " Falling back to optimizing all dependences.\n";
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  }

  isl::union_set Domain = S.getDomains();

  if (!Domain)
    return false;

  ScopsProcessed++;
  walkScheduleTreeForStatistics(S.getScheduleTree(), 0);

  isl::union_map Validity = D.getDependences(ValidityKinds);
  isl::union_map Proximity = D.getDependences(ProximityKinds);

  // Simplify the dependences by removing the constraints introduced by the
  // domains. This can speed up the scheduling time significantly, as large
  // constant coefficients will be removed from the dependences. The
  // introduction of some additional dependences reduces the possible
  // transformations, but in most cases, such transformation do not seem to be
  // interesting anyway. In some cases this option may stop the scheduler to
  // find any schedule.
  if (SimplifyDeps == "yes") {
    Validity = Validity.gist_domain(Domain);
    Validity = Validity.gist_range(Domain);
    Proximity = Proximity.gist_domain(Domain);
    Proximity = Proximity.gist_range(Domain);
  } else if (SimplifyDeps != "no") {
    errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
              "or 'no'. Falling back to default: 'yes'\n";
  }

  LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
  LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
  LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
  LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");

  unsigned IslSerializeSCCs;

  if (FusionStrategy == "max") {
    IslSerializeSCCs = 0;
  } else if (FusionStrategy == "min") {
    IslSerializeSCCs = 1;
  } else {
    errs() << "warning: Unknown fusion strategy. Falling back to maximal "
              "fusion.\n";
    IslSerializeSCCs = 0;
  }

  int IslMaximizeBands;

  if (MaximizeBandDepth == "yes") {
    IslMaximizeBands = 1;
  } else if (MaximizeBandDepth == "no") {
    IslMaximizeBands = 0;
  } else {
    errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
              " or 'no'. Falling back to default: 'yes'\n";
    IslMaximizeBands = 1;
  }

  int IslOuterCoincidence;

  if (OuterCoincidence == "yes") {
    IslOuterCoincidence = 1;
  } else if (OuterCoincidence == "no") {
    IslOuterCoincidence = 0;
  } else {
    errs() << "warning: Option -polly-opt-outer-coincidence should either be "
              "'yes' or 'no'. Falling back to default: 'no'\n";
    IslOuterCoincidence = 0;
  }

  isl_ctx *Ctx = S.getIslCtx().get();

  isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
  isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
  isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
  isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
  isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
  isl_options_set_tile_scale_tile_loops(Ctx, 0);

  auto OnErrorStatus = isl_options_get_on_error(Ctx);
  isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);

  auto SC = isl::schedule_constraints::on_domain(Domain);
  SC = SC.set_proximity(Proximity);
  SC = SC.set_validity(Validity);
  SC = SC.set_coincidence(Validity);
  auto Schedule = SC.compute_schedule();
  isl_options_set_on_error(Ctx, OnErrorStatus);

  walkScheduleTreeForStatistics(Schedule, 1);

  // In cases the scheduler is not able to optimize the code, we just do not
  // touch the schedule.
  if (!Schedule)
    return false;

  ScopsRescheduled++;

  LLVM_DEBUG({
    auto *P = isl_printer_to_str(Ctx);
    P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
    P = isl_printer_print_schedule(P, Schedule.get());
    auto *str = isl_printer_get_str(P);
    dbgs() << "NewScheduleTree: \n" << str << "\n";
    free(str);
    isl_printer_free(P);
  });

  Function &F = S.getFunction();
  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
  auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
  NewSchedule = hoistExtensionNodes(NewSchedule);
  walkScheduleTreeForStatistics(NewSchedule, 2);

  if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
    return false;

  auto ScopStats = S.getStatistics();
  ScopsOptimized++;
  NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
  NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;

  S.setScheduleTree(NewSchedule);
  S.markAsOptimized();

  if (OptimizedScops)
    errs() << S;

  return false;
}

void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
  isl_printer *p;
  char *ScheduleStr;

  OS << "Calculated schedule:\n";

  if (!LastSchedule) {
    OS << "n/a\n";
    return;
  }

  p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
  p = isl_printer_print_schedule(p, LastSchedule);
  ScheduleStr = isl_printer_get_str(p);
  isl_printer_free(p);

  OS << ScheduleStr << "\n";
}

void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
  ScopPass::getAnalysisUsage(AU);
  AU.addRequired<DependenceInfo>();
  AU.addRequired<TargetTransformInfoWrapperPass>();

  AU.addPreserved<DependenceInfo>();
}

Pass *polly::createIslScheduleOptimizerPass() {
  return new IslScheduleOptimizer();
}

INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
                      "Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
                    "Polly - Optimize schedule of SCoP", false, false)