reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits code for use by the "fast" instruction
// selection algorithm. See the comments at the top of
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
//
// This file scans through the target's tablegen instruction-info files
// and extracts instructions with obvious-looking patterns, and it emits
// code to look up these instructions by type and operator.
//
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <utility>
using namespace llvm;


/// InstructionMemo - This class holds additional information about an
/// instruction needed to emit code for it.
///
namespace {
struct InstructionMemo {
  std::string Name;
  const CodeGenRegisterClass *RC;
  std::string SubRegNo;
  std::vector<std::string> PhysRegs;
  std::string PredicateCheck;

  InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
                  std::string SubRegNo, std::vector<std::string> PhysRegs,
                  std::string PredicateCheck)
      : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
        PhysRegs(std::move(PhysRegs)),
        PredicateCheck(std::move(PredicateCheck)) {}

  // Make sure we do not copy InstructionMemo.
  InstructionMemo(const InstructionMemo &Other) = delete;
  InstructionMemo(InstructionMemo &&Other) = default;
};
} // End anonymous namespace

/// ImmPredicateSet - This uniques predicates (represented as a string) and
/// gives them unique (small) integer ID's that start at 0.
namespace {
class ImmPredicateSet {
  DenseMap<TreePattern *, unsigned> ImmIDs;
  std::vector<TreePredicateFn> PredsByName;
public:

  unsigned getIDFor(TreePredicateFn Pred) {
    unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
    if (Entry == 0) {
      PredsByName.push_back(Pred);
      Entry = PredsByName.size();
    }
    return Entry-1;
  }

  const TreePredicateFn &getPredicate(unsigned i) {
    assert(i < PredsByName.size());
    return PredsByName[i];
  }

  typedef std::vector<TreePredicateFn>::const_iterator iterator;
  iterator begin() const { return PredsByName.begin(); }
  iterator end() const { return PredsByName.end(); }

};
} // End anonymous namespace

/// OperandsSignature - This class holds a description of a list of operand
/// types. It has utility methods for emitting text based on the operands.
///
namespace {
struct OperandsSignature {
  class OpKind {
    enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
    char Repr;
  public:

    OpKind() : Repr(OK_Invalid) {}

    bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
    bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }

    static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
    static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
    static OpKind getImm(unsigned V) {
      assert((unsigned)OK_Imm+V < 128 &&
             "Too many integer predicates for the 'Repr' char");
      OpKind K; K.Repr = OK_Imm+V; return K;
    }

    bool isReg() const { return Repr == OK_Reg; }
    bool isFP() const  { return Repr == OK_FP; }
    bool isImm() const { return Repr >= OK_Imm; }

    unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }

    void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
                             bool StripImmCodes) const {
      if (isReg())
        OS << 'r';
      else if (isFP())
        OS << 'f';
      else {
        OS << 'i';
        if (!StripImmCodes)
          if (unsigned Code = getImmCode())
            OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
      }
    }
  };


  SmallVector<OpKind, 3> Operands;

  bool operator<(const OperandsSignature &O) const {
    return Operands < O.Operands;
  }
  bool operator==(const OperandsSignature &O) const {
    return Operands == O.Operands;
  }

  bool empty() const { return Operands.empty(); }

  bool hasAnyImmediateCodes() const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
        return true;
    return false;
  }

  /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
  /// to zero.
  OperandsSignature getWithoutImmCodes() const {
    OperandsSignature Result;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (!Operands[i].isImm())
        Result.Operands.push_back(Operands[i]);
      else
        Result.Operands.push_back(OpKind::getImm(0));
    return Result;
  }

  void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
    bool EmittedAnything = false;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (!Operands[i].isImm()) continue;

      unsigned Code = Operands[i].getImmCode();
      if (Code == 0) continue;

      if (EmittedAnything)
        OS << " &&\n        ";

      TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);

      // Emit the type check.
      TreePattern *TP = PredFn.getOrigPatFragRecord();
      ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
      assert(VVT.isSimple() &&
             "Cannot use variable value types with fast isel");
      OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";

      OS << PredFn.getFnName() << "(imm" << i <<')';
      EmittedAnything = true;
    }
  }

  /// initialize - Examine the given pattern and initialize the contents
  /// of the Operands array accordingly. Return true if all the operands
  /// are supported, false otherwise.
  ///
  bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
                  MVT::SimpleValueType VT,
                  ImmPredicateSet &ImmediatePredicates,
                  const CodeGenRegisterClass *OrigDstRC) {
    if (InstPatNode->isLeaf())
      return false;

    if (InstPatNode->getOperator()->getName() == "imm") {
      Operands.push_back(OpKind::getImm(0));
      return true;
    }

    if (InstPatNode->getOperator()->getName() == "fpimm") {
      Operands.push_back(OpKind::getFP());
      return true;
    }

    const CodeGenRegisterClass *DstRC = nullptr;

    for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
      TreePatternNode *Op = InstPatNode->getChild(i);

      // Handle imm operands specially.
      if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
        unsigned PredNo = 0;
        if (!Op->getPredicateCalls().empty()) {
          TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
          // If there is more than one predicate weighing in on this operand
          // then we don't handle it.  This doesn't typically happen for
          // immediates anyway.
          if (Op->getPredicateCalls().size() > 1 ||
              !PredFn.isImmediatePattern() || PredFn.usesOperands())
            return false;
          // Ignore any instruction with 'FastIselShouldIgnore', these are
          // not needed and just bloat the fast instruction selector.  For
          // example, X86 doesn't need to generate code to match ADD16ri8 since
          // ADD16ri will do just fine.
          Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
          if (Rec->getValueAsBit("FastIselShouldIgnore"))
            return false;

          PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
        }

        Operands.push_back(OpKind::getImm(PredNo));
        continue;
      }


      // For now, filter out any operand with a predicate.
      // For now, filter out any operand with multiple values.
      if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
        return false;

      if (!Op->isLeaf()) {
         if (Op->getOperator()->getName() == "fpimm") {
          Operands.push_back(OpKind::getFP());
          continue;
        }
        // For now, ignore other non-leaf nodes.
        return false;
      }

      assert(Op->hasConcreteType(0) && "Type infererence not done?");

      // For now, all the operands must have the same type (if they aren't
      // immediates).  Note that this causes us to reject variable sized shifts
      // on X86.
      if (Op->getSimpleType(0) != VT)
        return false;

      DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
      if (!OpDI)
        return false;
      Record *OpLeafRec = OpDI->getDef();

      // For now, the only other thing we accept is register operands.
      const CodeGenRegisterClass *RC = nullptr;
      if (OpLeafRec->isSubClassOf("RegisterOperand"))
        OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
      if (OpLeafRec->isSubClassOf("RegisterClass"))
        RC = &Target.getRegisterClass(OpLeafRec);
      else if (OpLeafRec->isSubClassOf("Register"))
        RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
      else if (OpLeafRec->isSubClassOf("ValueType")) {
        RC = OrigDstRC;
      } else
        return false;

      // For now, this needs to be a register class of some sort.
      if (!RC)
        return false;

      // For now, all the operands must have the same register class or be
      // a strict subclass of the destination.
      if (DstRC) {
        if (DstRC != RC && !DstRC->hasSubClass(RC))
          return false;
      } else
        DstRC = RC;
      Operands.push_back(OpKind::getReg());
    }
    return true;
  }

  void PrintParameters(raw_ostream &OS) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg()) {
        OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
      } else if (Operands[i].isImm()) {
        OS << "uint64_t imm" << i;
      } else if (Operands[i].isFP()) {
        OS << "const ConstantFP *f" << i;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
      if (i + 1 != e)
        OS << ", ";
    }
  }

  void PrintArguments(raw_ostream &OS,
                      const std::vector<std::string> &PR) const {
    assert(PR.size() == Operands.size());
    bool PrintedArg = false;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (PR[i] != "")
        // Implicit physical register operand.
        continue;

      if (PrintedArg)
        OS << ", ";
      if (Operands[i].isReg()) {
        OS << "Op" << i << ", Op" << i << "IsKill";
        PrintedArg = true;
      } else if (Operands[i].isImm()) {
        OS << "imm" << i;
        PrintedArg = true;
      } else if (Operands[i].isFP()) {
        OS << "f" << i;
        PrintedArg = true;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
    }
  }

  void PrintArguments(raw_ostream &OS) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg()) {
        OS << "Op" << i << ", Op" << i << "IsKill";
      } else if (Operands[i].isImm()) {
        OS << "imm" << i;
      } else if (Operands[i].isFP()) {
        OS << "f" << i;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
      if (i + 1 != e)
        OS << ", ";
    }
  }


  void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
                           ImmPredicateSet &ImmPredicates,
                           bool StripImmCodes = false) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (PR[i] != "")
        // Implicit physical register operand. e.g. Instruction::Mul expect to
        // select to a binary op. On x86, mul may take a single operand with
        // the other operand being implicit. We must emit something that looks
        // like a binary instruction except for the very inner fastEmitInst_*
        // call.
        continue;
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    }
  }

  void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
                           bool StripImmCodes = false) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
  }
};
} // End anonymous namespace

namespace {
class FastISelMap {
  // A multimap is needed instead of a "plain" map because the key is
  // the instruction's complexity (an int) and they are not unique.
  typedef std::multimap<int, InstructionMemo> PredMap;
  typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
  typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
  typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
  typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
            OperandsOpcodeTypeRetPredMap;

  OperandsOpcodeTypeRetPredMap SimplePatterns;

  // This is used to check that there are no duplicate predicates
  typedef std::multimap<std::string, bool> PredCheckMap;
  typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
  typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
  typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
  typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
            OperandsOpcodeTypeRetPredCheckMap;

  OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;

  std::map<OperandsSignature, std::vector<OperandsSignature> >
    SignaturesWithConstantForms;

  StringRef InstNS;
  ImmPredicateSet ImmediatePredicates;
public:
  explicit FastISelMap(StringRef InstNS);

  void collectPatterns(CodeGenDAGPatterns &CGP);
  void printImmediatePredicates(raw_ostream &OS);
  void printFunctionDefinitions(raw_ostream &OS);
private:
  void emitInstructionCode(raw_ostream &OS,
                           const OperandsSignature &Operands,
                           const PredMap &PM,
                           const std::string &RetVTName);
};
} // End anonymous namespace

static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
  return CGP.getSDNodeInfo(Op).getEnumName();
}

static std::string getLegalCName(std::string OpName) {
  std::string::size_type pos = OpName.find("::");
  if (pos != std::string::npos)
    OpName.replace(pos, 2, "_");
  return OpName;
}

FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}

static std::string PhyRegForNode(TreePatternNode *Op,
                                 const CodeGenTarget &Target) {
  std::string PhysReg;

  if (!Op->isLeaf())
    return PhysReg;

  Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
  if (!OpLeafRec->isSubClassOf("Register"))
    return PhysReg;

  PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
               ->getValue();
  PhysReg += "::";
  PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
  return PhysReg;
}

void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
  const CodeGenTarget &Target = CGP.getTargetInfo();

  // Scan through all the patterns and record the simple ones.
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
       E = CGP.ptm_end(); I != E; ++I) {
    const PatternToMatch &Pattern = *I;

    // For now, just look at Instructions, so that we don't have to worry
    // about emitting multiple instructions for a pattern.
    TreePatternNode *Dst = Pattern.getDstPattern();
    if (Dst->isLeaf()) continue;
    Record *Op = Dst->getOperator();
    if (!Op->isSubClassOf("Instruction"))
      continue;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    if (II.Operands.empty())
      continue;

    // Allow instructions to be marked as unavailable for FastISel for
    // certain cases, i.e. an ISA has two 'and' instruction which differ
    // by what registers they can use but are otherwise identical for
    // codegen purposes.
    if (II.FastISelShouldIgnore)
      continue;

    // For now, ignore multi-instruction patterns.
    bool MultiInsts = false;
    for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
      TreePatternNode *ChildOp = Dst->getChild(i);
      if (ChildOp->isLeaf())
        continue;
      if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
        MultiInsts = true;
        break;
      }
    }
    if (MultiInsts)
      continue;

    // For now, ignore instructions where the first operand is not an
    // output register.
    const CodeGenRegisterClass *DstRC = nullptr;
    std::string SubRegNo;
    if (Op->getName() != "EXTRACT_SUBREG") {
      Record *Op0Rec = II.Operands[0].Rec;
      if (Op0Rec->isSubClassOf("RegisterOperand"))
        Op0Rec = Op0Rec->getValueAsDef("RegClass");
      if (!Op0Rec->isSubClassOf("RegisterClass"))
        continue;
      DstRC = &Target.getRegisterClass(Op0Rec);
      if (!DstRC)
        continue;
    } else {
      // If this isn't a leaf, then continue since the register classes are
      // a bit too complicated for now.
      if (!Dst->getChild(1)->isLeaf()) continue;

      DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
      if (SR)
        SubRegNo = getQualifiedName(SR->getDef());
      else
        SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    }

    // Inspect the pattern.
    TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    if (!InstPatNode) continue;
    if (InstPatNode->isLeaf()) continue;

    // Ignore multiple result nodes for now.
    if (InstPatNode->getNumTypes() > 1) continue;

    Record *InstPatOp = InstPatNode->getOperator();
    std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    MVT::SimpleValueType RetVT = MVT::isVoid;
    if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
    MVT::SimpleValueType VT = RetVT;
    if (InstPatNode->getNumChildren()) {
      assert(InstPatNode->getChild(0)->getNumTypes() == 1);
      VT = InstPatNode->getChild(0)->getSimpleType(0);
    }

    // For now, filter out any instructions with predicates.
    if (!InstPatNode->getPredicateCalls().empty())
      continue;

    // Check all the operands.
    OperandsSignature Operands;
    if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
                             DstRC))
      continue;

    std::vector<std::string> PhysRegInputs;
    if (InstPatNode->getOperator()->getName() == "imm" ||
        InstPatNode->getOperator()->getName() == "fpimm")
      PhysRegInputs.push_back("");
    else {
      // Compute the PhysRegs used by the given pattern, and check that
      // the mapping from the src to dst patterns is simple.
      bool FoundNonSimplePattern = false;
      unsigned DstIndex = 0;
      for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
        std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
        if (PhysReg.empty()) {
          if (DstIndex >= Dst->getNumChildren() ||
              Dst->getChild(DstIndex)->getName() !=
              InstPatNode->getChild(i)->getName()) {
            FoundNonSimplePattern = true;
            break;
          }
          ++DstIndex;
        }

        PhysRegInputs.push_back(PhysReg);
      }

      if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
        FoundNonSimplePattern = true;

      if (FoundNonSimplePattern)
        continue;
    }

    // Check if the operands match one of the patterns handled by FastISel.
    std::string ManglingSuffix;
    raw_string_ostream SuffixOS(ManglingSuffix);
    Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
    SuffixOS.flush();
    if (!StringSwitch<bool>(ManglingSuffix)
        .Cases("", "r", "rr", "ri", "i", "f", true)
        .Default(false))
      continue;

    // Get the predicate that guards this pattern.
    std::string PredicateCheck = Pattern.getPredicateCheck();

    // Ok, we found a pattern that we can handle. Remember it.
    InstructionMemo Memo(
      Pattern.getDstPattern()->getOperator()->getName(),
      DstRC,
      SubRegNo,
      PhysRegInputs,
      PredicateCheck
    );

    int complexity = Pattern.getPatternComplexity(CGP);

    if (SimplePatternsCheck[Operands][OpcodeName][VT]
         [RetVT].count(PredicateCheck)) {
      PrintFatalError(Pattern.getSrcRecord()->getLoc(),
                    "Duplicate predicate in FastISel table!");
    }
    SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
            std::make_pair(PredicateCheck, true));

       // Note: Instructions with the same complexity will appear in the order
          // that they are encountered.
    SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
                                                            std::move(Memo));

    // If any of the operands were immediates with predicates on them, strip
    // them down to a signature that doesn't have predicates so that we can
    // associate them with the stripped predicate version.
    if (Operands.hasAnyImmediateCodes()) {
      SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
        .push_back(Operands);
    }
  }
}

void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
  if (ImmediatePredicates.begin() == ImmediatePredicates.end())
    return;

  OS << "\n// FastEmit Immediate Predicate functions.\n";
  for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
       E = ImmediatePredicates.end(); I != E; ++I) {
    OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
    OS << I->getImmediatePredicateCode() << "\n}\n";
  }

  OS << "\n\n";
}

void FastISelMap::emitInstructionCode(raw_ostream &OS,
                                      const OperandsSignature &Operands,
                                      const PredMap &PM,
                                      const std::string &RetVTName) {
  // Emit code for each possible instruction. There may be
  // multiple if there are subtarget concerns.  A reverse iterator
  // is used to produce the ones with highest complexity first.

  bool OneHadNoPredicate = false;
  for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
       PI != PE; ++PI) {
    const InstructionMemo &Memo = PI->second;
    std::string PredicateCheck = Memo.PredicateCheck;

    if (PredicateCheck.empty()) {
      assert(!OneHadNoPredicate &&
             "Multiple instructions match and more than one had "
             "no predicate!");
      OneHadNoPredicate = true;
    } else {
      if (OneHadNoPredicate) {
        PrintFatalError("Multiple instructions match and one with no "
                        "predicate came before one with a predicate!  "
                        "name:" + Memo.Name + "  predicate: " + PredicateCheck);
      }
      OS << "  if (" + PredicateCheck + ") {\n";
      OS << "  ";
    }

    for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
      if (Memo.PhysRegs[i] != "")
        OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
           << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
           << ").addReg(Op" << i << ");\n";
    }

    OS << "  return fastEmitInst_";
    if (Memo.SubRegNo.empty()) {
      Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
                                   true);
      OS << "(" << InstNS << "::" << Memo.Name << ", ";
      OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintArguments(OS, Memo.PhysRegs);
      OS << ");\n";
    } else {
      OS << "extractsubreg(" << RetVTName
         << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
    }

    if (!PredicateCheck.empty()) {
      OS << "  }\n";
    }
  }
  // Return 0 if all of the possibilities had predicates but none
  // were satisfied.
  if (!OneHadNoPredicate)
    OS << "  return 0;\n";
  OS << "}\n";
  OS << "\n";
}


void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
  // Now emit code for all the patterns that we collected.
  for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
       OE = SimplePatterns.end(); OI != OE; ++OI) {
    const OperandsSignature &Operands = OI->first;
    const OpcodeTypeRetPredMap &OTM = OI->second;

    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
         I != E; ++I) {
      const std::string &Opcode = I->first;
      const TypeRetPredMap &TM = I->second;

      OS << "// FastEmit functions for " << Opcode << ".\n";
      OS << "\n";

      // Emit one function for each opcode,type pair.
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
           TI != TE; ++TI) {
        MVT::SimpleValueType VT = TI->first;
        const RetPredMap &RM = TI->second;
        if (RM.size() != 1) {
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
               RI != RE; ++RI) {
            MVT::SimpleValueType RetVT = RI->first;
            const PredMap &PM = RI->second;

            OS << "unsigned fastEmit_"
               << getLegalCName(Opcode)
               << "_" << getLegalCName(getName(VT))
               << "_" << getLegalCName(getName(RetVT)) << "_";
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
            OS << "(";
            Operands.PrintParameters(OS);
            OS << ") {\n";

            emitInstructionCode(OS, Operands, PM, getName(RetVT));
          }

          // Emit one function for the type that demultiplexes on return type.
          OS << "unsigned fastEmit_"
             << getLegalCName(Opcode) << "_"
             << getLegalCName(getName(VT)) << "_";
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
          OS << "(MVT RetVT";
          if (!Operands.empty())
            OS << ", ";
          Operands.PrintParameters(OS);
          OS << ") {\nswitch (RetVT.SimpleTy) {\n";
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
               RI != RE; ++RI) {
            MVT::SimpleValueType RetVT = RI->first;
            OS << "  case " << getName(RetVT) << ": return fastEmit_"
               << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
               << "_" << getLegalCName(getName(RetVT)) << "_";
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
            OS << "(";
            Operands.PrintArguments(OS);
            OS << ");\n";
          }
          OS << "  default: return 0;\n}\n}\n\n";

        } else {
          // Non-variadic return type.
          OS << "unsigned fastEmit_"
             << getLegalCName(Opcode) << "_"
             << getLegalCName(getName(VT)) << "_";
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
          OS << "(MVT RetVT";
          if (!Operands.empty())
            OS << ", ";
          Operands.PrintParameters(OS);
          OS << ") {\n";

          OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
             << ")\n    return 0;\n";

          const PredMap &PM = RM.begin()->second;

          emitInstructionCode(OS, Operands, PM, "RetVT");
        }
      }

      // Emit one function for the opcode that demultiplexes based on the type.
      OS << "unsigned fastEmit_"
         << getLegalCName(Opcode) << "_";
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
      OS << "(MVT VT, MVT RetVT";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintParameters(OS);
      OS << ") {\n";
      OS << "  switch (VT.SimpleTy) {\n";
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
           TI != TE; ++TI) {
        MVT::SimpleValueType VT = TI->first;
        std::string TypeName = getName(VT);
        OS << "  case " << TypeName << ": return fastEmit_"
           << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
        Operands.PrintManglingSuffix(OS, ImmediatePredicates);
        OS << "(RetVT";
        if (!Operands.empty())
          OS << ", ";
        Operands.PrintArguments(OS);
        OS << ");\n";
      }
      OS << "  default: return 0;\n";
      OS << "  }\n";
      OS << "}\n";
      OS << "\n";
    }

    OS << "// Top-level FastEmit function.\n";
    OS << "\n";

    // Emit one function for the operand signature that demultiplexes based
    // on opcode and type.
    OS << "unsigned fastEmit_";
    Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    OS << "(MVT VT, MVT RetVT, unsigned Opcode";
    if (!Operands.empty())
      OS << ", ";
    Operands.PrintParameters(OS);
    OS << ") ";
    if (!Operands.hasAnyImmediateCodes())
      OS << "override ";
    OS << "{\n";

    // If there are any forms of this signature available that operate on
    // constrained forms of the immediate (e.g., 32-bit sext immediate in a
    // 64-bit operand), check them first.

    std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
      = SignaturesWithConstantForms.find(Operands);
    if (MI != SignaturesWithConstantForms.end()) {
      // Unique any duplicates out of the list.
      llvm::sort(MI->second);
      MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
                       MI->second.end());

      // Check each in order it was seen.  It would be nice to have a good
      // relative ordering between them, but we're not going for optimality
      // here.
      for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
        OS << "  if (";
        MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
        OS << ")\n    if (unsigned Reg = fastEmit_";
        MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
        OS << "(VT, RetVT, Opcode";
        if (!MI->second[i].empty())
          OS << ", ";
        MI->second[i].PrintArguments(OS);
        OS << "))\n      return Reg;\n\n";
      }

      // Done with this, remove it.
      SignaturesWithConstantForms.erase(MI);
    }

    OS << "  switch (Opcode) {\n";
    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
         I != E; ++I) {
      const std::string &Opcode = I->first;

      OS << "  case " << Opcode << ": return fastEmit_"
         << getLegalCName(Opcode) << "_";
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
      OS << "(VT, RetVT";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintArguments(OS);
      OS << ");\n";
    }
    OS << "  default: return 0;\n";
    OS << "  }\n";
    OS << "}\n";
    OS << "\n";
  }

  // TODO: SignaturesWithConstantForms should be empty here.
}

namespace llvm {

void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
  CodeGenDAGPatterns CGP(RK);
  const CodeGenTarget &Target = CGP.getTargetInfo();
  emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
                       Target.getName().str() + " target", OS);

  // Determine the target's namespace name.
  StringRef InstNS = Target.getInstNamespace();
  assert(!InstNS.empty() && "Can't determine target-specific namespace!");

  FastISelMap F(InstNS);
  F.collectPatterns(CGP);
  F.printImmediatePredicates(OS);
  F.printFunctionDefinitions(OS);
}

} // End llvm namespace