reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#include "RuntimeDyldELF.h"
#include "RuntimeDyldCheckerImpl.h"
#include "Targets/RuntimeDyldELFMips.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;

#define DEBUG_TYPE "dyld"

static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }

static void or32AArch64Imm(void *L, uint64_t Imm) {
  or32le(L, (Imm & 0xFFF) << 10);
}

template <class T> static void write(bool isBE, void *P, T V) {
  isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
}

static void write32AArch64Addr(void *L, uint64_t Imm) {
  uint32_t ImmLo = (Imm & 0x3) << 29;
  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}

// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t Val, int Start, int End) {
  uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
  return (Val >> Start) & Mask;
}

namespace {

template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)

  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;

  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;

  typedef typename ELFT::uint addr_type;

  DyldELFObject(ELFObjectFile<ELFT> &&Obj);

public:
  static Expected<std::unique_ptr<DyldELFObject>>
  create(MemoryBufferRef Wrapper);

  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);

  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);

  // Methods for type inquiry through isa, cast and dyn_cast
  static bool classof(const Binary *v) {
    return (isa<ELFObjectFile<ELFT>>(v) &&
            classof(cast<ELFObjectFile<ELFT>>(v)));
  }
  static bool classof(const ELFObjectFile<ELFT> *v) {
    return v->isDyldType();
  }
};



// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory.  Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
template <class ELFT>
DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
    : ELFObjectFile<ELFT>(std::move(Obj)) {
  this->isDyldELFObject = true;
}

template <class ELFT>
Expected<std::unique_ptr<DyldELFObject<ELFT>>>
DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
  auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
  if (auto E = Obj.takeError())
    return std::move(E);
  std::unique_ptr<DyldELFObject<ELFT>> Ret(
      new DyldELFObject<ELFT>(std::move(*Obj)));
  return std::move(Ret);
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
                                               uint64_t Addr) {
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
  Elf_Shdr *shdr =
      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  shdr->sh_addr = static_cast<addr_type>(Addr);
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
                                              uint64_t Addr) {

  Elf_Sym *sym = const_cast<Elf_Sym *>(
      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  sym->st_value = static_cast<addr_type>(Addr);
}

class LoadedELFObjectInfo final
    : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
                                    RuntimeDyld::LoadedObjectInfo> {
public:
  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
      : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}

  OwningBinary<ObjectFile>
  getObjectForDebug(const ObjectFile &Obj) const override;
};

template <typename ELFT>
static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
                      const LoadedELFObjectInfo &L) {
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::uint addr_type;

  Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
      DyldELFObject<ELFT>::create(Buffer);
  if (Error E = ObjOrErr.takeError())
    return std::move(E);

  std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);

  // Iterate over all sections in the object.
  auto SI = SourceObject.section_begin();
  for (const auto &Sec : Obj->sections()) {
    Expected<StringRef> NameOrErr = Sec.getName();
    if (!NameOrErr) {
      consumeError(NameOrErr.takeError());
      continue;
    }

    if (*NameOrErr != "") {
      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
        // This assumes that the address passed in matches the target address
        // bitness. The template-based type cast handles everything else.
        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
      }
    }
    ++SI;
  }

  return std::move(Obj);
}

static OwningBinary<ObjectFile>
createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
  assert(Obj.isELF() && "Not an ELF object file.");

  std::unique_ptr<MemoryBuffer> Buffer =
    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());

  Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
  handleAllErrors(DebugObj.takeError());
  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
  else
    llvm_unreachable("Unexpected ELF format");

  handleAllErrors(DebugObj.takeError());
  return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
}

OwningBinary<ObjectFile>
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
  return createELFDebugObject(Obj, *this);
}

} // anonymous namespace

namespace llvm {

RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
                               JITSymbolResolver &Resolver)
    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
RuntimeDyldELF::~RuntimeDyldELF() {}

void RuntimeDyldELF::registerEHFrames() {
  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
    SID EHFrameSID = UnregisteredEHFrameSections[i];
    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    size_t EHFrameSize = Sections[EHFrameSID].getSize();
    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
  }
  UnregisteredEHFrameSections.clear();
}

std::unique_ptr<RuntimeDyldELF>
llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
                             RuntimeDyld::MemoryManager &MemMgr,
                             JITSymbolResolver &Resolver) {
  switch (Arch) {
  default:
    return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
  }
}

std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
  if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
    return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
  else {
    HasError = true;
    raw_string_ostream ErrStream(ErrorStr);
    logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
    return nullptr;
  }
}

void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
                                             uint64_t Offset, uint64_t Value,
                                             uint32_t Type, int64_t Addend,
                                             uint64_t SymOffset) {
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_X86_64_NONE:
    break;
  case ELF::R_X86_64_64: {
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
        Value + Addend;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    Value += Addend;
    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
           (Type == ELF::R_X86_64_32S &&
            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncatedAddr;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_PC8: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    assert(isInt<8>(RealOffset));
    int8_t TruncOffset = (RealOffset & 0xFF);
    Section.getAddress()[Offset] = TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC32: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    assert(isInt<32>(RealOffset));
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC64: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
        RealOffset;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
                      << format("%p\n", FinalAddress));
    break;
  }
  case ELF::R_X86_64_GOTOFF64: {
    // Compute Value - GOTBase.
    uint64_t GOTBase = 0;
    for (const auto &Section : Sections) {
      if (Section.getName() == ".got") {
        GOTBase = Section.getLoadAddressWithOffset(0);
        break;
      }
    }
    assert(GOTBase != 0 && "missing GOT");
    int64_t GOTOffset = Value - GOTBase + Addend;
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  switch (Type) {
  case ELF::R_386_32: {
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        Value + Addend;
    break;
  }
  // Handle R_386_PLT32 like R_386_PC32 since it should be able to
  // reach any 32 bit address.
  case ELF::R_386_PLT32:
  case ELF::R_386_PC32: {
    uint32_t FinalAddress =
        Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    uint32_t RealOffset = Value + Addend - FinalAddress;
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        RealOffset;
    break;
  }
  default:
    // There are other relocation types, but it appears these are the
    // only ones currently used by the LLVM ELF object writer
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  }
}

void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint32_t *TargetPtr =
      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
  uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
  // Data should use target endian. Code should always use little endian.
  bool isBE = Arch == Triple::aarch64_be;

  LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
                    << format("%llx", Section.getAddressWithOffset(Offset))
                    << " FinalAddress: 0x" << format("%llx", FinalAddress)
                    << " Value: 0x" << format("%llx", Value) << " Type: 0x"
                    << format("%x", Type) << " Addend: 0x"
                    << format("%llx", Addend) << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_AARCH64_ABS16: {
    uint64_t Result = Value + Addend;
    assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
    break;
  }
  case ELF::R_AARCH64_ABS32: {
    uint64_t Result = Value + Addend;
    assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
    break;
  }
  case ELF::R_AARCH64_ABS64:
    write(isBE, TargetPtr, Value + Addend);
    break;
  case ELF::R_AARCH64_PREL32: {
    uint64_t Result = Value + Addend - FinalAddress;
    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
           static_cast<int64_t>(Result) <= UINT32_MAX);
    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
    break;
  }
  case ELF::R_AARCH64_PREL64:
    write(isBE, TargetPtr, Value + Addend - FinalAddress);
    break;
  case ELF::R_AARCH64_CALL26: // fallthrough
  case ELF::R_AARCH64_JUMP26: {
    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    // calculation.
    uint64_t BranchImm = Value + Addend - FinalAddress;

    // "Check that -2^27 <= result < 2^27".
    assert(isInt<28>(BranchImm));
    or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G3:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G2_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G1_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G0_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
    break;
  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
    // Operation: Page(S+A) - Page(P)
    uint64_t Result =
        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);

    // Check that -2^32 <= X < 2^32
    assert(isInt<33>(Result) && "overflow check failed for relocation");

    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
    // from bits 32:12 of X.
    write32AArch64Addr(TargetPtr, Result >> 12);
    break;
  }
  case ELF::R_AARCH64_ADD_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:0 of X
    or32AArch64Imm(TargetPtr, Value + Addend);
    break;
  case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:0 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
    break;
  case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:1 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
    break;
  case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:2 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
    break;
  case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:3 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
    break;
  case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:4 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
    break;
  }
}

void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  // TODO: Add Thumb relocations.
  uint32_t *TargetPtr =
      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
  uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
  Value += Addend;

  LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
                    << Section.getAddressWithOffset(Offset)
                    << " FinalAddress: " << format("%p", FinalAddress)
                    << " Value: " << format("%x", Value)
                    << " Type: " << format("%x", Type)
                    << " Addend: " << format("%x", Addend) << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");

  case ELF::R_ARM_NONE:
    break;
    // Write a 31bit signed offset
  case ELF::R_ARM_PREL31:
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
        ((Value - FinalAddress) & ~0x80000000);
    break;
  case ELF::R_ARM_TARGET1:
  case ELF::R_ARM_ABS32:
    support::ulittle32_t::ref{TargetPtr} = Value;
    break;
    // Write first 16 bit of 32 bit value to the mov instruction.
    // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVW_ABS_NC:
  case ELF::R_ARM_MOVT_ABS:
    if (Type == ELF::R_ARM_MOVW_ABS_NC)
      Value = Value & 0xFFFF;
    else if (Type == ELF::R_ARM_MOVT_ABS)
      Value = (Value >> 16) & 0xFFFF;
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
        (((Value >> 12) & 0xF) << 16);
    break;
    // Write 24 bit relative value to the branch instruction.
  case ELF::R_ARM_PC24: // Fall through.
  case ELF::R_ARM_CALL: // Fall through.
  case ELF::R_ARM_JUMP24:
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
    assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
    break;
  }
}

void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
  if (Arch == Triple::UnknownArch ||
      !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
    IsMipsO32ABI = false;
    IsMipsN32ABI = false;
    IsMipsN64ABI = false;
    return;
  }
  if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
    unsigned AbiVariant = E->getPlatformFlags();
    IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
    IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
  }
  IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
}

// Return the .TOC. section and offset.
Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
  // Set a default SectionID in case we do not find a TOC section below.
  // This may happen for references to TOC base base (sym@toc, .odp
  // relocation) without a .toc directive.  In this case just use the
  // first section (which is usually the .odp) since the code won't
  // reference the .toc base directly.
  Rel.SymbolName = nullptr;
  Rel.SectionID = 0;

  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
  // order. The TOC starts where the first of these sections starts.
  for (auto &Section : Obj.sections()) {
    Expected<StringRef> NameOrErr = Section.getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    StringRef SectionName = *NameOrErr;

    if (SectionName == ".got"
        || SectionName == ".toc"
        || SectionName == ".tocbss"
        || SectionName == ".plt") {
      if (auto SectionIDOrErr =
            findOrEmitSection(Obj, Section, false, LocalSections))
        Rel.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      break;
    }
  }

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment.
  Rel.Addend = 0x8000;

  return Error::success();
}

// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
  // Get the ELF symbol value (st_value) to compare with Relocation offset in
  // .opd entries
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
       si != se; ++si) {

    Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
    if (!RelSecOrErr)
      report_fatal_error(toString(RelSecOrErr.takeError()));

    section_iterator RelSecI = *RelSecOrErr;
    if (RelSecI == Obj.section_end())
      continue;

    Expected<StringRef> NameOrErr = RelSecI->getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    StringRef RelSectionName = *NameOrErr;

    if (RelSectionName != ".opd")
      continue;

    for (elf_relocation_iterator i = si->relocation_begin(),
                                 e = si->relocation_end();
         i != e;) {
      // The R_PPC64_ADDR64 relocation indicates the first field
      // of a .opd entry
      uint64_t TypeFunc = i->getType();
      if (TypeFunc != ELF::R_PPC64_ADDR64) {
        ++i;
        continue;
      }

      uint64_t TargetSymbolOffset = i->getOffset();
      symbol_iterator TargetSymbol = i->getSymbol();
      int64_t Addend;
      if (auto AddendOrErr = i->getAddend())
        Addend = *AddendOrErr;
      else
        return AddendOrErr.takeError();

      ++i;
      if (i == e)
        break;

      // Just check if following relocation is a R_PPC64_TOC
      uint64_t TypeTOC = i->getType();
      if (TypeTOC != ELF::R_PPC64_TOC)
        continue;

      // Finally compares the Symbol value and the target symbol offset
      // to check if this .opd entry refers to the symbol the relocation
      // points to.
      if (Rel.Addend != (int64_t)TargetSymbolOffset)
        continue;

      section_iterator TSI = Obj.section_end();
      if (auto TSIOrErr = TargetSymbol->getSection())
        TSI = *TSIOrErr;
      else
        return TSIOrErr.takeError();
      assert(TSI != Obj.section_end() && "TSI should refer to a valid section");

      bool IsCode = TSI->isText();
      if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
                                                  LocalSections))
        Rel.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      Rel.Addend = (intptr_t)Addend;
      return Error::success();
    }
  }
  llvm_unreachable("Attempting to get address of ODP entry!");
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.

static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }

static inline uint16_t applyPPChi(uint64_t value) {
  return (value >> 16) & 0xffff;
}

static inline uint16_t applyPPCha (uint64_t value) {
  return ((value + 0x8000) >> 16) & 0xffff;
}

static inline uint16_t applyPPChigher(uint64_t value) {
  return (value >> 32) & 0xffff;
}

static inline uint16_t applyPPChighera (uint64_t value) {
  return ((value + 0x8000) >> 32) & 0xffff;
}

static inline uint16_t applyPPChighest(uint64_t value) {
  return (value >> 48) & 0xffff;
}

static inline uint16_t applyPPChighesta (uint64_t value) {
  return ((value + 0x8000) >> 48) & 0xffff;
}

void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
                                            uint64_t Offset, uint64_t Value,
                                            uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_PPC_ADDR16_LO:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC_ADDR16_HI:
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    break;
  case ELF::R_PPC_ADDR16_HA:
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    break;
  }
}

void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
                                            uint64_t Offset, uint64_t Value,
                                            uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_PPC64_ADDR16:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_LO:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_LO_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_HI:
  case ELF::R_PPC64_ADDR16_HIGH:
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HA:
  case ELF::R_PPC64_ADDR16_HIGHA:
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHER:
    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHERA:
    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHEST:
    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHESTA:
    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR14: {
    assert(((Value + Addend) & 3) == 0);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = *(LocalAddress + 3);
    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
  } break;
  case ELF::R_PPC64_REL16_LO: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPClo(Delta));
  } break;
  case ELF::R_PPC64_REL16_HI: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPChi(Delta));
  } break;
  case ELF::R_PPC64_REL16_HA: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPCha(Delta));
  } break;
  case ELF::R_PPC64_ADDR32: {
    int64_t Result = static_cast<int64_t>(Value + Addend);
    if (SignExtend64<32>(Result) != Result)
      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
    writeInt32BE(LocalAddress, Result);
  } break;
  case ELF::R_PPC64_REL24: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
    if (SignExtend64<26>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    // We preserve bits other than LI field, i.e. PO and AA/LK fields.
    uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
    writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
  } break;
  case ELF::R_PPC64_REL32: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
    if (SignExtend64<32>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
    writeInt32BE(LocalAddress, delta);
  } break;
  case ELF::R_PPC64_REL64: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt64BE(LocalAddress, Delta);
  } break;
  case ELF::R_PPC64_ADDR64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_390_PC16DBL:
  case ELF::R_390_PLT16DBL: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
    writeInt16BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC32DBL:
  case ELF::R_390_PLT32DBL: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
    writeInt32BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC16: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
    writeInt16BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_PC32: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
    writeInt32BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_PC64: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    writeInt64BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_8:
    *LocalAddress = (uint8_t)(Value + Addend);
    break;
  case ELF::R_390_16:
    writeInt16BE(LocalAddress, Value + Addend);
    break;
  case ELF::R_390_32:
    writeInt32BE(LocalAddress, Value + Addend);
    break;
  case ELF::R_390_64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
                                          uint64_t Offset, uint64_t Value,
                                          uint32_t Type, int64_t Addend) {
  bool isBE = Arch == Triple::bpfeb;

  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_BPF_NONE:
    break;
  case ELF::R_BPF_64_64: {
    write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_BPF_64_32: {
    Value += Addend;
    assert(Value <= UINT32_MAX);
    write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  }
}

// The target location for the relocation is described by RE.SectionID and
// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process.  SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied.  For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location).  For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
                                       uint64_t Value) {
  const SectionEntry &Section = Sections[RE.SectionID];
  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
                           RE.SymOffset, RE.SectionID);
}

void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
                                       uint64_t Offset, uint64_t Value,
                                       uint32_t Type, int64_t Addend,
                                       uint64_t SymOffset, SID SectionID) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
    break;
  case Triple::x86:
    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::aarch64:
  case Triple::aarch64_be:
    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::arm: // Fall through.
  case Triple::armeb:
  case Triple::thumb:
  case Triple::thumbeb:
    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::ppc:
    resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::ppc64: // Fall through.
  case Triple::ppc64le:
    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::systemz:
    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::bpfel:
  case Triple::bpfeb:
    resolveBPFRelocation(Section, Offset, Value, Type, Addend);
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
}

void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
  return (void *)(Sections[SectionID].getObjAddress() + Offset);
}

void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
  if (Value.SymbolName)
    addRelocationForSymbol(RE, Value.SymbolName);
  else
    addRelocationForSection(RE, Value.SectionID);
}

uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
                                                 bool IsLocal) const {
  switch (RelType) {
  case ELF::R_MICROMIPS_GOT16:
    if (IsLocal)
      return ELF::R_MICROMIPS_LO16;
    break;
  case ELF::R_MICROMIPS_HI16:
    return ELF::R_MICROMIPS_LO16;
  case ELF::R_MIPS_GOT16:
    if (IsLocal)
      return ELF::R_MIPS_LO16;
    break;
  case ELF::R_MIPS_HI16:
    return ELF::R_MIPS_LO16;
  case ELF::R_MIPS_PCHI16:
    return ELF::R_MIPS_PCLO16;
  default:
    break;
  }
  return ELF::R_MIPS_NONE;
}

// Sometimes we don't need to create thunk for a branch.
// This typically happens when branch target is located
// in the same object file. In such case target is either
// a weak symbol or symbol in a different executable section.
// This function checks if branch target is located in the
// same object file and if distance between source and target
// fits R_AARCH64_CALL26 relocation. If both conditions are
// met, it emits direct jump to the target and returns true.
// Otherwise false is returned and thunk is created.
bool RuntimeDyldELF::resolveAArch64ShortBranch(
    unsigned SectionID, relocation_iterator RelI,
    const RelocationValueRef &Value) {
  uint64_t Address;
  if (Value.SymbolName) {
    auto Loc = GlobalSymbolTable.find(Value.SymbolName);

    // Don't create direct branch for external symbols.
    if (Loc == GlobalSymbolTable.end())
      return false;

    const auto &SymInfo = Loc->second;
    Address =
        uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
            SymInfo.getOffset()));
  } else {
    Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
  }
  uint64_t Offset = RelI->getOffset();
  uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);

  // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
  // If distance between source and target is out of range then we should
  // create thunk.
  if (!isInt<28>(Address + Value.Addend - SourceAddress))
    return false;

  resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
                    Value.Addend);

  return true;
}

void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
                                          const RelocationValueRef &Value,
                                          relocation_iterator RelI,
                                          StubMap &Stubs) {

  LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
  SectionEntry &Section = Sections[SectionID];

  uint64_t Offset = RelI->getOffset();
  unsigned RelType = RelI->getType();
  // Look for an existing stub.
  StubMap::const_iterator i = Stubs.find(Value);
  if (i != Stubs.end()) {
    resolveRelocation(Section, Offset,
                      (uint64_t)Section.getAddressWithOffset(i->second),
                      RelType, 0);
    LLVM_DEBUG(dbgs() << " Stub function found\n");
  } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
    // Create a new stub function.
    LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    Stubs[Value] = Section.getStubOffset();
    uint8_t *StubTargetAddr = createStubFunction(
        Section.getAddressWithOffset(Section.getStubOffset()));

    RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
                              ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
    RelocationEntry REmovk_g2(SectionID,
                              StubTargetAddr - Section.getAddress() + 4,
                              ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
    RelocationEntry REmovk_g1(SectionID,
                              StubTargetAddr - Section.getAddress() + 8,
                              ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
    RelocationEntry REmovk_g0(SectionID,
                              StubTargetAddr - Section.getAddress() + 12,
                              ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);

    if (Value.SymbolName) {
      addRelocationForSymbol(REmovz_g3, Value.SymbolName);
      addRelocationForSymbol(REmovk_g2, Value.SymbolName);
      addRelocationForSymbol(REmovk_g1, Value.SymbolName);
      addRelocationForSymbol(REmovk_g0, Value.SymbolName);
    } else {
      addRelocationForSection(REmovz_g3, Value.SectionID);
      addRelocationForSection(REmovk_g2, Value.SectionID);
      addRelocationForSection(REmovk_g1, Value.SectionID);
      addRelocationForSection(REmovk_g0, Value.SectionID);
    }
    resolveRelocation(Section, Offset,
                      reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
                          Section.getStubOffset())),
                      RelType, 0);
    Section.advanceStubOffset(getMaxStubSize());
  }
}

Expected<relocation_iterator>
RuntimeDyldELF::processRelocationRef(
    unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
    ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
  const auto &Obj = cast<ELFObjectFileBase>(O);
  uint64_t RelType = RelI->getType();
  int64_t Addend = 0;
  if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
    Addend = *AddendOrErr;
  else
    consumeError(AddendOrErr.takeError());
  elf_symbol_iterator Symbol = RelI->getSymbol();

  // Obtain the symbol name which is referenced in the relocation
  StringRef TargetName;
  if (Symbol != Obj.symbol_end()) {
    if (auto TargetNameOrErr = Symbol->getName())
      TargetName = *TargetNameOrErr;
    else
      return TargetNameOrErr.takeError();
  }
  LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
                    << " TargetName: " << TargetName << "\n");
  RelocationValueRef Value;
  // First search for the symbol in the local symbol table
  SymbolRef::Type SymType = SymbolRef::ST_Unknown;

  // Search for the symbol in the global symbol table
  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
  if (Symbol != Obj.symbol_end()) {
    gsi = GlobalSymbolTable.find(TargetName.data());
    Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
    if (!SymTypeOrErr) {
      std::string Buf;
      raw_string_ostream OS(Buf);
      logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
      OS.flush();
      report_fatal_error(Buf);
    }
    SymType = *SymTypeOrErr;
  }
  if (gsi != GlobalSymbolTable.end()) {
    const auto &SymInfo = gsi->second;
    Value.SectionID = SymInfo.getSectionID();
    Value.Offset = SymInfo.getOffset();
    Value.Addend = SymInfo.getOffset() + Addend;
  } else {
    switch (SymType) {
    case SymbolRef::ST_Debug: {
      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
      // and can be changed by another developers. Maybe best way is add
      // a new symbol type ST_Section to SymbolRef and use it.
      auto SectionOrErr = Symbol->getSection();
      if (!SectionOrErr) {
        std::string Buf;
        raw_string_ostream OS(Buf);
        logAllUnhandledErrors(SectionOrErr.takeError(), OS);
        OS.flush();
        report_fatal_error(Buf);
      }
      section_iterator si = *SectionOrErr;
      if (si == Obj.section_end())
        llvm_unreachable("Symbol section not found, bad object file format!");
      LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
      bool isCode = si->isText();
      if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
                                                  ObjSectionToID))
        Value.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      Value.Addend = Addend;
      break;
    }
    case SymbolRef::ST_Data:
    case SymbolRef::ST_Function:
    case SymbolRef::ST_Unknown: {
      Value.SymbolName = TargetName.data();
      Value.Addend = Addend;

      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
      // will manifest here as a NULL symbol name.
      // We can set this as a valid (but empty) symbol name, and rely
      // on addRelocationForSymbol to handle this.
      if (!Value.SymbolName)
        Value.SymbolName = "";
      break;
    }
    default:
      llvm_unreachable("Unresolved symbol type!");
      break;
    }
  }

  uint64_t Offset = RelI->getOffset();

  LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
                    << "\n");
  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
    if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
      resolveAArch64Branch(SectionID, Value, RelI, Stubs);
    } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
      // Craete new GOT entry or find existing one. If GOT entry is
      // to be created, then we also emit ABS64 relocation for it.
      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_AARCH64_ADR_PREL_PG_HI21);

    } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (Arch == Triple::arm) {
    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
      RelType == ELF::R_ARM_JUMP24) {
      // This is an ARM branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
      SectionEntry &Section = Sections[SectionID];

      // Look for an existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        resolveRelocation(
            Section, Offset,
            reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
            RelType, 0);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();
        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()));
        RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
                           ELF::R_ARM_ABS32, Value.Addend);
        if (Value.SymbolName)
          addRelocationForSymbol(RE, Value.SymbolName);
        else
          addRelocationForSection(RE, Value.SectionID);

        resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
                                               Section.getAddressWithOffset(
                                                   Section.getStubOffset())),
                          RelType, 0);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else {
      uint32_t *Placeholder =
        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
          RelType == ELF::R_ARM_ABS32) {
        Value.Addend += *Placeholder;
      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
        // See ELF for ARM documentation
        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
      }
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (IsMipsO32ABI) {
    uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
        computePlaceholderAddress(SectionID, Offset));
    uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
    if (RelType == ELF::R_MIPS_26) {
      // This is an Mips branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
      SectionEntry &Section = Sections[SectionID];

      // Extract the addend from the instruction.
      // We shift up by two since the Value will be down shifted again
      // when applying the relocation.
      uint32_t Addend = (Opcode & 0x03ffffff) << 2;

      Value.Addend += Addend;

      //  Look up for existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        RelocationEntry RE(SectionID, Offset, RelType, i->second);
        addRelocationForSection(RE, SectionID);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();

        unsigned AbiVariant = Obj.getPlatformFlags();

        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);

        // Creating Hi and Lo relocations for the filled stub instructions.
        RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
                             ELF::R_MIPS_HI16, Value.Addend);
        RelocationEntry RELo(SectionID,
                             StubTargetAddr - Section.getAddress() + 4,
                             ELF::R_MIPS_LO16, Value.Addend);

        if (Value.SymbolName) {
          addRelocationForSymbol(REHi, Value.SymbolName);
          addRelocationForSymbol(RELo, Value.SymbolName);
        } else {
          addRelocationForSection(REHi, Value.SectionID);
          addRelocationForSection(RELo, Value.SectionID);
        }

        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
        addRelocationForSection(RE, SectionID);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
      int64_t Addend = (Opcode & 0x0000ffff) << 16;
      RelocationEntry RE(SectionID, Offset, RelType, Addend);
      PendingRelocs.push_back(std::make_pair(Value, RE));
    } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
      int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
      for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
        const RelocationValueRef &MatchingValue = I->first;
        RelocationEntry &Reloc = I->second;
        if (MatchingValue == Value &&
            RelType == getMatchingLoRelocation(Reloc.RelType) &&
            SectionID == Reloc.SectionID) {
          Reloc.Addend += Addend;
          if (Value.SymbolName)
            addRelocationForSymbol(Reloc, Value.SymbolName);
          else
            addRelocationForSection(Reloc, Value.SectionID);
          I = PendingRelocs.erase(I);
        } else
          ++I;
      }
      RelocationEntry RE(SectionID, Offset, RelType, Addend);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else {
      if (RelType == ELF::R_MIPS_32)
        Value.Addend += Opcode;
      else if (RelType == ELF::R_MIPS_PC16)
        Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
      else if (RelType == ELF::R_MIPS_PC19_S2)
        Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
      else if (RelType == ELF::R_MIPS_PC21_S2)
        Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
      else if (RelType == ELF::R_MIPS_PC26_S2)
        Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (IsMipsN32ABI || IsMipsN64ABI) {
    uint32_t r_type = RelType & 0xff;
    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
        || r_type == ELF::R_MIPS_GOT_DISP) {
      StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
      if (i != GOTSymbolOffsets.end())
        RE.SymOffset = i->second;
      else {
        RE.SymOffset = allocateGOTEntries(1);
        GOTSymbolOffsets[TargetName] = RE.SymOffset;
      }
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_MIPS_26) {
      // This is an Mips branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
      SectionEntry &Section = Sections[SectionID];

      //  Look up for existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        RelocationEntry RE(SectionID, Offset, RelType, i->second);
        addRelocationForSection(RE, SectionID);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();

        unsigned AbiVariant = Obj.getPlatformFlags();

        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);

        if (IsMipsN32ABI) {
          // Creating Hi and Lo relocations for the filled stub instructions.
          RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
                               ELF::R_MIPS_HI16, Value.Addend);
          RelocationEntry RELo(SectionID,
                               StubTargetAddr - Section.getAddress() + 4,
                               ELF::R_MIPS_LO16, Value.Addend);
          if (Value.SymbolName) {
            addRelocationForSymbol(REHi, Value.SymbolName);
            addRelocationForSymbol(RELo, Value.SymbolName);
          } else {
            addRelocationForSection(REHi, Value.SectionID);
            addRelocationForSection(RELo, Value.SectionID);
          }
        } else {
          // Creating Highest, Higher, Hi and Lo relocations for the filled stub
          // instructions.
          RelocationEntry REHighest(SectionID,
                                    StubTargetAddr - Section.getAddress(),
                                    ELF::R_MIPS_HIGHEST, Value.Addend);
          RelocationEntry REHigher(SectionID,
                                   StubTargetAddr - Section.getAddress() + 4,
                                   ELF::R_MIPS_HIGHER, Value.Addend);
          RelocationEntry REHi(SectionID,
                               StubTargetAddr - Section.getAddress() + 12,
                               ELF::R_MIPS_HI16, Value.Addend);
          RelocationEntry RELo(SectionID,
                               StubTargetAddr - Section.getAddress() + 20,
                               ELF::R_MIPS_LO16, Value.Addend);
          if (Value.SymbolName) {
            addRelocationForSymbol(REHighest, Value.SymbolName);
            addRelocationForSymbol(REHigher, Value.SymbolName);
            addRelocationForSymbol(REHi, Value.SymbolName);
            addRelocationForSymbol(RELo, Value.SymbolName);
          } else {
            addRelocationForSection(REHighest, Value.SectionID);
            addRelocationForSection(REHigher, Value.SectionID);
            addRelocationForSection(REHi, Value.SectionID);
            addRelocationForSection(RELo, Value.SectionID);
          }
        }
        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
        addRelocationForSection(RE, SectionID);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }

  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    if (RelType == ELF::R_PPC64_REL24) {
      // Determine ABI variant in use for this object.
      unsigned AbiVariant = Obj.getPlatformFlags();
      AbiVariant &= ELF::EF_PPC64_ABI;
      // A PPC branch relocation will need a stub function if the target is
      // an external symbol (either Value.SymbolName is set, or SymType is
      // Symbol::ST_Unknown) or if the target address is not within the
      // signed 24-bits branch address.
      SectionEntry &Section = Sections[SectionID];
      uint8_t *Target = Section.getAddressWithOffset(Offset);
      bool RangeOverflow = false;
      bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
      if (!IsExtern) {
        if (AbiVariant != 2) {
          // In the ELFv1 ABI, a function call may point to the .opd entry,
          // so the final symbol value is calculated based on the relocation
          // values in the .opd section.
          if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
            return std::move(Err);
        } else {
          // In the ELFv2 ABI, a function symbol may provide a local entry
          // point, which must be used for direct calls.
          if (Value.SectionID == SectionID){
            uint8_t SymOther = Symbol->getOther();
            Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
          }
        }
        uint8_t *RelocTarget =
            Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
        int64_t delta = static_cast<int64_t>(Target - RelocTarget);
        // If it is within 26-bits branch range, just set the branch target
        if (SignExtend64<26>(delta) != delta) {
          RangeOverflow = true;
        } else if ((AbiVariant != 2) ||
                   (AbiVariant == 2  && Value.SectionID == SectionID)) {
          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
          addRelocationForSection(RE, Value.SectionID);
        }
      }
      if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
          RangeOverflow) {
        // It is an external symbol (either Value.SymbolName is set, or
        // SymType is SymbolRef::ST_Unknown) or out of range.
        StubMap::const_iterator i = Stubs.find(Value);
        if (i != Stubs.end()) {
          // Symbol function stub already created, just relocate to it
          resolveRelocation(Section, Offset,
                            reinterpret_cast<uint64_t>(
                                Section.getAddressWithOffset(i->second)),
                            RelType, 0);
          LLVM_DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function.
          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
          Stubs[Value] = Section.getStubOffset();
          uint8_t *StubTargetAddr = createStubFunction(
              Section.getAddressWithOffset(Section.getStubOffset()),
              AbiVariant);
          RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
                             ELF::R_PPC64_ADDR64, Value.Addend);

          // Generates the 64-bits address loads as exemplified in section
          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
          // apply to the low part of the instructions, so we have to update
          // the offset according to the target endianness.
          uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
          if (!IsTargetLittleEndian)
            StubRelocOffset += 2;

          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
          RelocationEntry REh(SectionID, StubRelocOffset + 12,
                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
          RelocationEntry REl(SectionID, StubRelocOffset + 16,
                              ELF::R_PPC64_ADDR16_LO, Value.Addend);

          if (Value.SymbolName) {
            addRelocationForSymbol(REhst, Value.SymbolName);
            addRelocationForSymbol(REhr, Value.SymbolName);
            addRelocationForSymbol(REh, Value.SymbolName);
            addRelocationForSymbol(REl, Value.SymbolName);
          } else {
            addRelocationForSection(REhst, Value.SectionID);
            addRelocationForSection(REhr, Value.SectionID);
            addRelocationForSection(REh, Value.SectionID);
            addRelocationForSection(REl, Value.SectionID);
          }

          resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
                                                 Section.getAddressWithOffset(
                                                     Section.getStubOffset())),
                            RelType, 0);
          Section.advanceStubOffset(getMaxStubSize());
        }
        if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
          // Restore the TOC for external calls
          if (AbiVariant == 2)
            writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
          else
            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
        }
      }
    } else if (RelType == ELF::R_PPC64_TOC16 ||
               RelType == ELF::R_PPC64_TOC16_DS ||
               RelType == ELF::R_PPC64_TOC16_LO ||
               RelType == ELF::R_PPC64_TOC16_LO_DS ||
               RelType == ELF::R_PPC64_TOC16_HI ||
               RelType == ELF::R_PPC64_TOC16_HA) {
      // These relocations are supposed to subtract the TOC address from
      // the final value.  This does not fit cleanly into the RuntimeDyld
      // scheme, since there may be *two* sections involved in determining
      // the relocation value (the section of the symbol referred to by the
      // relocation, and the TOC section associated with the current module).
      //
      // Fortunately, these relocations are currently only ever generated
      // referring to symbols that themselves reside in the TOC, which means
      // that the two sections are actually the same.  Thus they cancel out
      // and we can immediately resolve the relocation right now.
      switch (RelType) {
      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
      default: llvm_unreachable("Wrong relocation type.");
      }

      RelocationValueRef TOCValue;
      if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
        return std::move(Err);
      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
        llvm_unreachable("Unsupported TOC relocation.");
      Value.Addend -= TOCValue.Addend;
      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
    } else {
      // There are two ways to refer to the TOC address directly: either
      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
      // ignored), or via any relocation that refers to the magic ".TOC."
      // symbols (in which case the addend is respected).
      if (RelType == ELF::R_PPC64_TOC) {
        RelType = ELF::R_PPC64_ADDR64;
        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
          return std::move(Err);
      } else if (TargetName == ".TOC.") {
        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
          return std::move(Err);
        Value.Addend += Addend;
      }

      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);

      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    }
  } else if (Arch == Triple::systemz &&
             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
    // Create function stubs for both PLT and GOT references, regardless of
    // whether the GOT reference is to data or code.  The stub contains the
    // full address of the symbol, as needed by GOT references, and the
    // executable part only adds an overhead of 8 bytes.
    //
    // We could try to conserve space by allocating the code and data
    // parts of the stub separately.  However, as things stand, we allocate
    // a stub for every relocation, so using a GOT in JIT code should be
    // no less space efficient than using an explicit constant pool.
    LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
    SectionEntry &Section = Sections[SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    uintptr_t StubAddress;
    if (i != Stubs.end()) {
      StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
      LLVM_DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      LLVM_DEBUG(dbgs() << " Create a new stub function\n");

      uintptr_t BaseAddress = uintptr_t(Section.getAddress());
      uintptr_t StubAlignment = getStubAlignment();
      StubAddress =
          (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
          -StubAlignment;
      unsigned StubOffset = StubAddress - BaseAddress;

      Stubs[Value] = StubOffset;
      createStubFunction((uint8_t *)StubAddress);
      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
                         Value.Offset);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
      Section.advanceStubOffset(getMaxStubSize());
    }

    if (RelType == ELF::R_390_GOTENT)
      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
                        Addend);
    else
      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
  } else if (Arch == Triple::x86_64) {
    if (RelType == ELF::R_X86_64_PLT32) {
      // The way the PLT relocations normally work is that the linker allocates
      // the
      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
      // entry will then jump to an address provided by the GOT.  On first call,
      // the
      // GOT address will point back into PLT code that resolves the symbol. After
      // the first call, the GOT entry points to the actual function.
      //
      // For local functions we're ignoring all of that here and just replacing
      // the PLT32 relocation type with PC32, which will translate the relocation
      // into a PC-relative call directly to the function. For external symbols we
      // can't be sure the function will be within 2^32 bytes of the call site, so
      // we need to create a stub, which calls into the GOT.  This case is
      // equivalent to the usual PLT implementation except that we use the stub
      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
      // rather than allocating a PLT section.
      if (Value.SymbolName) {
        // This is a call to an external function.
        // Look for an existing stub.
        SectionEntry &Section = Sections[SectionID];
        StubMap::const_iterator i = Stubs.find(Value);
        uintptr_t StubAddress;
        if (i != Stubs.end()) {
          StubAddress = uintptr_t(Section.getAddress()) + i->second;
          LLVM_DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function (equivalent to a PLT entry).
          LLVM_DEBUG(dbgs() << " Create a new stub function\n");

          uintptr_t BaseAddress = uintptr_t(Section.getAddress());
          uintptr_t StubAlignment = getStubAlignment();
          StubAddress =
              (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
              -StubAlignment;
          unsigned StubOffset = StubAddress - BaseAddress;
          Stubs[Value] = StubOffset;
          createStubFunction((uint8_t *)StubAddress);

          // Bump our stub offset counter
          Section.advanceStubOffset(getMaxStubSize());

          // Allocate a GOT Entry
          uint64_t GOTOffset = allocateGOTEntries(1);

          // The load of the GOT address has an addend of -4
          resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
                                     ELF::R_X86_64_PC32);

          // Fill in the value of the symbol we're targeting into the GOT
          addRelocationForSymbol(
              computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
              Value.SymbolName);
        }

        // Make the target call a call into the stub table.
        resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
                          Addend);
      } else {
        RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
                  Value.Offset);
        addRelocationForSection(RE, Value.SectionID);
      }
    } else if (RelType == ELF::R_X86_64_GOTPCREL ||
               RelType == ELF::R_X86_64_GOTPCRELX ||
               RelType == ELF::R_X86_64_REX_GOTPCRELX) {
      uint64_t GOTOffset = allocateGOTEntries(1);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_X86_64_PC32);

      // Fill in the value of the symbol we're targeting into the GOT
      RelocationEntry RE =
          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_X86_64_GOT64) {
      // Fill in a 64-bit GOT offset.
      uint64_t GOTOffset = allocateGOTEntries(1);
      resolveRelocation(Sections[SectionID], Offset, GOTOffset,
                        ELF::R_X86_64_64, 0);

      // Fill in the value of the symbol we're targeting into the GOT
      RelocationEntry RE =
          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_X86_64_GOTPC64) {
      // Materialize the address of the base of the GOT relative to the PC.
      // This doesn't create a GOT entry, but it does mean we need a GOT
      // section.
      (void)allocateGOTEntries(0);
      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
    } else if (RelType == ELF::R_X86_64_GOTOFF64) {
      // GOTOFF relocations ultimately require a section difference relocation.
      (void)allocateGOTEntries(0);
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else if (RelType == ELF::R_X86_64_PC32) {
      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else if (RelType == ELF::R_X86_64_PC64) {
      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else {
    if (Arch == Triple::x86) {
      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    }
    processSimpleRelocation(SectionID, Offset, RelType, Value);
  }
  return ++RelI;
}

size_t RuntimeDyldELF::getGOTEntrySize() {
  // We don't use the GOT in all of these cases, but it's essentially free
  // to put them all here.
  size_t Result = 0;
  switch (Arch) {
  case Triple::x86_64:
  case Triple::aarch64:
  case Triple::aarch64_be:
  case Triple::ppc64:
  case Triple::ppc64le:
  case Triple::systemz:
    Result = sizeof(uint64_t);
    break;
  case Triple::x86:
  case Triple::arm:
  case Triple::thumb:
    Result = sizeof(uint32_t);
    break;
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    if (IsMipsO32ABI || IsMipsN32ABI)
      Result = sizeof(uint32_t);
    else if (IsMipsN64ABI)
      Result = sizeof(uint64_t);
    else
      llvm_unreachable("Mips ABI not handled");
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
  return Result;
}

uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
  if (GOTSectionID == 0) {
    GOTSectionID = Sections.size();
    // Reserve a section id. We'll allocate the section later
    // once we know the total size
    Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
  }
  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
  CurrentGOTIndex += no;
  return StartOffset;
}

uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
                                             unsigned GOTRelType) {
  auto E = GOTOffsetMap.insert({Value, 0});
  if (E.second) {
    uint64_t GOTOffset = allocateGOTEntries(1);

    // Create relocation for newly created GOT entry
    RelocationEntry RE =
        computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);

    E.first->second = GOTOffset;
  }

  return E.first->second;
}

void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
                                                uint64_t Offset,
                                                uint64_t GOTOffset,
                                                uint32_t Type) {
  // Fill in the relative address of the GOT Entry into the stub
  RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
  addRelocationForSection(GOTRE, GOTSectionID);
}

RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
                                                   uint64_t SymbolOffset,
                                                   uint32_t Type) {
  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
}

Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
                                  ObjSectionToIDMap &SectionMap) {
  if (IsMipsO32ABI)
    if (!PendingRelocs.empty())
      return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");

  // If necessary, allocate the global offset table
  if (GOTSectionID != 0) {
    // Allocate memory for the section
    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
                                                GOTSectionID, ".got", false);
    if (!Addr)
      return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");

    Sections[GOTSectionID] =
        SectionEntry(".got", Addr, TotalSize, TotalSize, 0);

    // For now, initialize all GOT entries to zero.  We'll fill them in as
    // needed when GOT-based relocations are applied.
    memset(Addr, 0, TotalSize);
    if (IsMipsN32ABI || IsMipsN64ABI) {
      // To correctly resolve Mips GOT relocations, we need a mapping from
      // object's sections to GOTs.
      for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
           SI != SE; ++SI) {
        if (SI->relocation_begin() != SI->relocation_end()) {
          Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
          if (!RelSecOrErr)
            return make_error<RuntimeDyldError>(
                toString(RelSecOrErr.takeError()));

          section_iterator RelocatedSection = *RelSecOrErr;
          ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
          assert (i != SectionMap.end());
          SectionToGOTMap[i->second] = GOTSectionID;
        }
      }
      GOTSymbolOffsets.clear();
    }
  }

  // Look for and record the EH frame section.
  ObjSectionToIDMap::iterator i, e;
  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
    const SectionRef &Section = i->first;

    StringRef Name;
    Expected<StringRef> NameOrErr = Section.getName();
    if (NameOrErr)
      Name = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    if (Name == ".eh_frame") {
      UnregisteredEHFrameSections.push_back(i->second);
      break;
    }
  }

  GOTSectionID = 0;
  CurrentGOTIndex = 0;

  return Error::success();
}

bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
  return Obj.isELF();
}

bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
  unsigned RelTy = R.getType();
  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
    return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
           RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;

  if (Arch == Triple::x86_64)
    return RelTy == ELF::R_X86_64_GOTPCREL ||
           RelTy == ELF::R_X86_64_GOTPCRELX ||
           RelTy == ELF::R_X86_64_GOT64 ||
           RelTy == ELF::R_X86_64_REX_GOTPCRELX;
  return false;
}

bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
  if (Arch != Triple::x86_64)
    return true;  // Conservative answer

  switch (R.getType()) {
  default:
    return true;  // Conservative answer


  case ELF::R_X86_64_GOTPCREL:
  case ELF::R_X86_64_GOTPCRELX:
  case ELF::R_X86_64_REX_GOTPCRELX:
  case ELF::R_X86_64_GOTPC64:
  case ELF::R_X86_64_GOT64:
  case ELF::R_X86_64_GOTOFF64:
  case ELF::R_X86_64_PC32:
  case ELF::R_X86_64_PC64:
  case ELF::R_X86_64_64:
    // We know that these reloation types won't need a stub function.  This list
    // can be extended as needed.
    return false;
  }
}

} // namespace llvm