reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
//===- TruncInstCombine.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// TruncInstCombine - looks for expression dags post-dominated by TruncInst and
// for each eligible dag, it will create a reduced bit-width expression, replace
// the old expression with this new one and remove the old expression.
// Eligible expression dag is such that:
//   1. Contains only supported instructions.
//   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
//   3. Can be evaluated into type with reduced legal bit-width.
//   4. All instructions in the dag must not have users outside the dag.
//      The only exception is for {ZExt, SExt}Inst with operand type equal to
//      the new reduced type evaluated in (3).
//
// The motivation for this optimization is that evaluating and expression using
// smaller bit-width is preferable, especially for vectorization where we can
// fit more values in one vectorized instruction. In addition, this optimization
// may decrease the number of cast instructions, but will not increase it.
//
//===----------------------------------------------------------------------===//

#include "AggressiveInstCombineInternal.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
using namespace llvm;

#define DEBUG_TYPE "aggressive-instcombine"

/// Given an instruction and a container, it fills all the relevant operands of
/// that instruction, with respect to the Trunc expression dag optimizaton.
static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // These CastInst are considered leaves of the evaluated expression, thus,
    // their operands are not relevent.
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Ops.push_back(I->getOperand(0));
    Ops.push_back(I->getOperand(1));
    break;
  default:
    llvm_unreachable("Unreachable!");
  }
}

bool TruncInstCombine::buildTruncExpressionDag() {
  SmallVector<Value *, 8> Worklist;
  SmallVector<Instruction *, 8> Stack;
  // Clear old expression dag.
  InstInfoMap.clear();

  Worklist.push_back(CurrentTruncInst->getOperand(0));

  while (!Worklist.empty()) {
    Value *Curr = Worklist.back();

    if (isa<Constant>(Curr)) {
      Worklist.pop_back();
      continue;
    }

    auto *I = dyn_cast<Instruction>(Curr);
    if (!I)
      return false;

    if (!Stack.empty() && Stack.back() == I) {
      // Already handled all instruction operands, can remove it from both the
      // Worklist and the Stack, and add it to the instruction info map.
      Worklist.pop_back();
      Stack.pop_back();
      // Insert I to the Info map.
      InstInfoMap.insert(std::make_pair(I, Info()));
      continue;
    }

    if (InstInfoMap.count(I)) {
      Worklist.pop_back();
      continue;
    }

    // Add the instruction to the stack before start handling its operands.
    Stack.push_back(I);

    unsigned Opc = I->getOpcode();
    switch (Opc) {
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      // trunc(trunc(x)) -> trunc(x)
      // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
      // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
      // dest
      break;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      SmallVector<Value *, 2> Operands;
      getRelevantOperands(I, Operands);
      for (Value *Operand : Operands)
        Worklist.push_back(Operand);
      break;
    }
    default:
      // TODO: Can handle more cases here:
      // 1. select, shufflevector, extractelement, insertelement
      // 2. udiv, urem
      // 3. shl, lshr, ashr
      // 4. phi node(and loop handling)
      // ...
      return false;
    }
  }
  return true;
}

unsigned TruncInstCombine::getMinBitWidth() {
  SmallVector<Value *, 8> Worklist;
  SmallVector<Instruction *, 8> Stack;

  Value *Src = CurrentTruncInst->getOperand(0);
  Type *DstTy = CurrentTruncInst->getType();
  unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
  unsigned OrigBitWidth =
      CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();

  if (isa<Constant>(Src))
    return TruncBitWidth;

  Worklist.push_back(Src);
  InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;

  while (!Worklist.empty()) {
    Value *Curr = Worklist.back();

    if (isa<Constant>(Curr)) {
      Worklist.pop_back();
      continue;
    }

    // Otherwise, it must be an instruction.
    auto *I = cast<Instruction>(Curr);

    auto &Info = InstInfoMap[I];

    SmallVector<Value *, 2> Operands;
    getRelevantOperands(I, Operands);

    if (!Stack.empty() && Stack.back() == I) {
      // Already handled all instruction operands, can remove it from both, the
      // Worklist and the Stack, and update MinBitWidth.
      Worklist.pop_back();
      Stack.pop_back();
      for (auto *Operand : Operands)
        if (auto *IOp = dyn_cast<Instruction>(Operand))
          Info.MinBitWidth =
              std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
      continue;
    }

    // Add the instruction to the stack before start handling its operands.
    Stack.push_back(I);
    unsigned ValidBitWidth = Info.ValidBitWidth;

    // Update minimum bit-width before handling its operands. This is required
    // when the instruction is part of a loop.
    Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);

    for (auto *Operand : Operands)
      if (auto *IOp = dyn_cast<Instruction>(Operand)) {
        // If we already calculated the minimum bit-width for this valid
        // bit-width, or for a smaller valid bit-width, then just keep the
        // answer we already calculated.
        unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
        if (IOpBitwidth >= ValidBitWidth)
          continue;
        InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
        Worklist.push_back(IOp);
      }
  }
  unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
  assert(MinBitWidth >= TruncBitWidth);

  if (MinBitWidth > TruncBitWidth) {
    // In this case reducing expression with vector type might generate a new
    // vector type, which is not preferable as it might result in generating
    // sub-optimal code.
    if (DstTy->isVectorTy())
      return OrigBitWidth;
    // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
    Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
    // Update minimum bit-width with the new destination type bit-width if
    // succeeded to find such, otherwise, with original bit-width.
    MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
  } else { // MinBitWidth == TruncBitWidth
    // In this case the expression can be evaluated with the trunc instruction
    // destination type, and trunc instruction can be omitted. However, we
    // should not perform the evaluation if the original type is a legal scalar
    // type and the target type is illegal.
    bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
    bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
    if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
      return OrigBitWidth;
  }
  return MinBitWidth;
}

Type *TruncInstCombine::getBestTruncatedType() {
  if (!buildTruncExpressionDag())
    return nullptr;

  // We don't want to duplicate instructions, which isn't profitable. Thus, we
  // can't shrink something that has multiple users, unless all users are
  // post-dominated by the trunc instruction, i.e., were visited during the
  // expression evaluation.
  unsigned DesiredBitWidth = 0;
  for (auto Itr : InstInfoMap) {
    Instruction *I = Itr.first;
    if (I->hasOneUse())
      continue;
    bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
    for (auto *U : I->users())
      if (auto *UI = dyn_cast<Instruction>(U))
        if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
          if (!IsExtInst)
            return nullptr;
          // If this is an extension from the dest type, we can eliminate it,
          // even if it has multiple users. Thus, update the DesiredBitWidth and
          // validate all extension instructions agrees on same DesiredBitWidth.
          unsigned ExtInstBitWidth =
              I->getOperand(0)->getType()->getScalarSizeInBits();
          if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
            return nullptr;
          DesiredBitWidth = ExtInstBitWidth;
        }
  }

  unsigned OrigBitWidth =
      CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();

  // Calculate minimum allowed bit-width allowed for shrinking the currently
  // visited truncate's operand.
  unsigned MinBitWidth = getMinBitWidth();

  // Check that we can shrink to smaller bit-width than original one and that
  // it is similar to the DesiredBitWidth is such exists.
  if (MinBitWidth >= OrigBitWidth ||
      (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
    return nullptr;

  return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
}

/// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
/// for \p V, according to its type, if it vector type, return the vector
/// version of \p Ty, otherwise return \p Ty.
static Type *getReducedType(Value *V, Type *Ty) {
  assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
  if (auto *VTy = dyn_cast<VectorType>(V->getType()))
    return VectorType::get(Ty, VTy->getNumElements());
  return Ty;
}

Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
  Type *Ty = getReducedType(V, SclTy);
  if (auto *C = dyn_cast<Constant>(V)) {
    C = ConstantExpr::getIntegerCast(C, Ty, false);
    // If we got a constantexpr back, try to simplify it with DL info.
    if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
      C = FoldedC;
    return C;
  }

  auto *I = cast<Instruction>(V);
  Info Entry = InstInfoMap.lookup(I);
  assert(Entry.NewValue);
  return Entry.NewValue;
}

void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
  for (auto &Itr : InstInfoMap) { // Forward
    Instruction *I = Itr.first;
    TruncInstCombine::Info &NodeInfo = Itr.second;

    assert(!NodeInfo.NewValue && "Instruction has been evaluated");

    IRBuilder<> Builder(I);
    Value *Res = nullptr;
    unsigned Opc = I->getOpcode();
    switch (Opc) {
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt: {
      Type *Ty = getReducedType(I, SclTy);
      // If the source type of the cast is the type we're trying for then we can
      // just return the source.  There's no need to insert it because it is not
      // new.
      if (I->getOperand(0)->getType() == Ty) {
        assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
        NodeInfo.NewValue = I->getOperand(0);
        continue;
      }
      // Otherwise, must be the same type of cast, so just reinsert a new one.
      // This also handles the case of zext(trunc(x)) -> zext(x).
      Res = Builder.CreateIntCast(I->getOperand(0), Ty,
                                  Opc == Instruction::SExt);

      // Update Worklist entries with new value if needed.
      // There are three possible changes to the Worklist:
      // 1. Update Old-TruncInst -> New-TruncInst.
      // 2. Remove Old-TruncInst (if New node is not TruncInst).
      // 3. Add New-TruncInst (if Old node was not TruncInst).
      auto Entry = find(Worklist, I);
      if (Entry != Worklist.end()) {
        if (auto *NewCI = dyn_cast<TruncInst>(Res))
          *Entry = NewCI;
        else
          Worklist.erase(Entry);
      } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
          Worklist.push_back(NewCI);
      break;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
      Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
      Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
      break;
    }
    default:
      llvm_unreachable("Unhandled instruction");
    }

    NodeInfo.NewValue = Res;
    if (auto *ResI = dyn_cast<Instruction>(Res))
      ResI->takeName(I);
  }

  Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
  Type *DstTy = CurrentTruncInst->getType();
  if (Res->getType() != DstTy) {
    IRBuilder<> Builder(CurrentTruncInst);
    Res = Builder.CreateIntCast(Res, DstTy, false);
    if (auto *ResI = dyn_cast<Instruction>(Res))
      ResI->takeName(CurrentTruncInst);
  }
  CurrentTruncInst->replaceAllUsesWith(Res);

  // Erase old expression dag, which was replaced by the reduced expression dag.
  // We iterate backward, which means we visit the instruction before we visit
  // any of its operands, this way, when we get to the operand, we already
  // removed the instructions (from the expression dag) that uses it.
  CurrentTruncInst->eraseFromParent();
  for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
    // We still need to check that the instruction has no users before we erase
    // it, because {SExt, ZExt}Inst Instruction might have other users that was
    // not reduced, in such case, we need to keep that instruction.
    if (I->first->use_empty())
      I->first->eraseFromParent();
  }
}

bool TruncInstCombine::run(Function &F) {
  bool MadeIRChange = false;

  // Collect all TruncInst in the function into the Worklist for evaluating.
  for (auto &BB : F) {
    // Ignore unreachable basic block.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    for (auto &I : BB)
      if (auto *CI = dyn_cast<TruncInst>(&I))
        Worklist.push_back(CI);
  }

  // Process all TruncInst in the Worklist, for each instruction:
  //   1. Check if it dominates an eligible expression dag to be reduced.
  //   2. Create a reduced expression dag and replace the old one with it.
  while (!Worklist.empty()) {
    CurrentTruncInst = Worklist.pop_back_val();

    if (Type *NewDstSclTy = getBestTruncatedType()) {
      LLVM_DEBUG(
          dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
                    "dominated by: "
                 << CurrentTruncInst << '\n');
      ReduceExpressionDag(NewDstSclTy);
      MadeIRChange = true;
    }
  }

  return MadeIRChange;
}