reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
//===- SpeculativeExecution.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass hoists instructions to enable speculative execution on
// targets where branches are expensive. This is aimed at GPUs. It
// currently works on simple if-then and if-then-else
// patterns.
//
// Removing branches is not the only motivation for this
// pass. E.g. consider this code and assume that there is no
// addressing mode for multiplying by sizeof(*a):
//
//   if (b > 0)
//     c = a[i + 1]
//   if (d > 0)
//     e = a[i + 2]
//
// turns into
//
//   p = &a[i + 1];
//   if (b > 0)
//     c = *p;
//   q = &a[i + 2];
//   if (d > 0)
//     e = *q;
//
// which could later be optimized to
//
//   r = &a[i];
//   if (b > 0)
//     c = r[1];
//   if (d > 0)
//     e = r[2];
//
// Later passes sink back much of the speculated code that did not enable
// further optimization.
//
// This pass is more aggressive than the function SpeculativeyExecuteBB in
// SimplifyCFG. SimplifyCFG will not speculate if no selects are introduced and
// it will speculate at most one instruction. It also will not speculate if
// there is a value defined in the if-block that is only used in the then-block.
// These restrictions make sense since the speculation in SimplifyCFG seems
// aimed at introducing cheap selects, while this pass is intended to do more
// aggressive speculation while counting on later passes to either capitalize on
// that or clean it up.
//
// If the pass was created by calling
// createSpeculativeExecutionIfHasBranchDivergencePass or the
// -spec-exec-only-if-divergent-target option is present, this pass only has an
// effect on targets where TargetTransformInfo::hasBranchDivergence() is true;
// on other targets, it is a nop.
//
// This lets you include this pass unconditionally in the IR pass pipeline, but
// only enable it for relevant targets.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SpeculativeExecution.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "speculative-execution"

// The risk that speculation will not pay off increases with the
// number of instructions speculated, so we put a limit on that.
static cl::opt<unsigned> SpecExecMaxSpeculationCost(
    "spec-exec-max-speculation-cost", cl::init(7), cl::Hidden,
    cl::desc("Speculative execution is not applied to basic blocks where "
             "the cost of the instructions to speculatively execute "
             "exceeds this limit."));

// Speculating just a few instructions from a larger block tends not
// to be profitable and this limit prevents that. A reason for that is
// that small basic blocks are more likely to be candidates for
// further optimization.
static cl::opt<unsigned> SpecExecMaxNotHoisted(
    "spec-exec-max-not-hoisted", cl::init(5), cl::Hidden,
    cl::desc("Speculative execution is not applied to basic blocks where the "
             "number of instructions that would not be speculatively executed "
             "exceeds this limit."));

static cl::opt<bool> SpecExecOnlyIfDivergentTarget(
    "spec-exec-only-if-divergent-target", cl::init(false), cl::Hidden,
    cl::desc("Speculative execution is applied only to targets with divergent "
             "branches, even if the pass was configured to apply only to all "
             "targets."));

namespace {

class SpeculativeExecutionLegacyPass : public FunctionPass {
public:
  static char ID;
  explicit SpeculativeExecutionLegacyPass(bool OnlyIfDivergentTarget = false)
      : FunctionPass(ID), OnlyIfDivergentTarget(OnlyIfDivergentTarget ||
                                                SpecExecOnlyIfDivergentTarget),
        Impl(OnlyIfDivergentTarget) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override {
    if (OnlyIfDivergentTarget)
      return "Speculatively execute instructions if target has divergent "
             "branches";
    return "Speculatively execute instructions";
  }

private:
  // Variable preserved purely for correct name printing.
  const bool OnlyIfDivergentTarget;

  SpeculativeExecutionPass Impl;
};
} // namespace

char SpeculativeExecutionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SpeculativeExecutionLegacyPass, "speculative-execution",
                      "Speculatively execute instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(SpeculativeExecutionLegacyPass, "speculative-execution",
                    "Speculatively execute instructions", false, false)

void SpeculativeExecutionLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetTransformInfoWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.setPreservesCFG();
}

bool SpeculativeExecutionLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  return Impl.runImpl(F, TTI);
}

namespace llvm {

bool SpeculativeExecutionPass::runImpl(Function &F, TargetTransformInfo *TTI) {
  if (OnlyIfDivergentTarget && !TTI->hasBranchDivergence()) {
    LLVM_DEBUG(dbgs() << "Not running SpeculativeExecution because "
                         "TTI->hasBranchDivergence() is false.\n");
    return false;
  }

  this->TTI = TTI;
  bool Changed = false;
  for (auto& B : F) {
    Changed |= runOnBasicBlock(B);
  }
  return Changed;
}

bool SpeculativeExecutionPass::runOnBasicBlock(BasicBlock &B) {
  BranchInst *BI = dyn_cast<BranchInst>(B.getTerminator());
  if (BI == nullptr)
    return false;

  if (BI->getNumSuccessors() != 2)
    return false;
  BasicBlock &Succ0 = *BI->getSuccessor(0);
  BasicBlock &Succ1 = *BI->getSuccessor(1);

  if (&B == &Succ0 || &B == &Succ1 || &Succ0 == &Succ1) {
    return false;
  }

  // Hoist from if-then (triangle).
  if (Succ0.getSinglePredecessor() != nullptr &&
      Succ0.getSingleSuccessor() == &Succ1) {
    return considerHoistingFromTo(Succ0, B);
  }

  // Hoist from if-else (triangle).
  if (Succ1.getSinglePredecessor() != nullptr &&
      Succ1.getSingleSuccessor() == &Succ0) {
    return considerHoistingFromTo(Succ1, B);
  }

  // Hoist from if-then-else (diamond), but only if it is equivalent to
  // an if-else or if-then due to one of the branches doing nothing.
  if (Succ0.getSinglePredecessor() != nullptr &&
      Succ1.getSinglePredecessor() != nullptr &&
      Succ1.getSingleSuccessor() != nullptr &&
      Succ1.getSingleSuccessor() != &B &&
      Succ1.getSingleSuccessor() == Succ0.getSingleSuccessor()) {
    // If a block has only one instruction, then that is a terminator
    // instruction so that the block does nothing. This does happen.
    if (Succ1.size() == 1) // equivalent to if-then
      return considerHoistingFromTo(Succ0, B);
    if (Succ0.size() == 1) // equivalent to if-else
      return considerHoistingFromTo(Succ1, B);
  }

  return false;
}

static unsigned ComputeSpeculationCost(const Instruction *I,
                                       const TargetTransformInfo &TTI) {
  switch (Operator::getOpcode(I)) {
    case Instruction::GetElementPtr:
    case Instruction::Add:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Select:
    case Instruction::Shl:
    case Instruction::Sub:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::Xor:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::Call:
    case Instruction::BitCast:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::AddrSpaceCast:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPExt:
    case Instruction::FPTrunc:
    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul:
    case Instruction::FDiv:
    case Instruction::FRem:
    case Instruction::FNeg:
    case Instruction::ICmp:
    case Instruction::FCmp:
      return TTI.getUserCost(I);

    default:
      return UINT_MAX; // Disallow anything not whitelisted.
  }
}

bool SpeculativeExecutionPass::considerHoistingFromTo(
    BasicBlock &FromBlock, BasicBlock &ToBlock) {
  SmallPtrSet<const Instruction *, 8> NotHoisted;
  const auto AllPrecedingUsesFromBlockHoisted = [&NotHoisted](User *U) {
    for (Value* V : U->operand_values()) {
      if (Instruction *I = dyn_cast<Instruction>(V)) {
        if (NotHoisted.count(I) > 0)
          return false;
      }
    }
    return true;
  };

  unsigned TotalSpeculationCost = 0;
  for (auto& I : FromBlock) {
    const unsigned Cost = ComputeSpeculationCost(&I, *TTI);
    if (Cost != UINT_MAX && isSafeToSpeculativelyExecute(&I) &&
        AllPrecedingUsesFromBlockHoisted(&I)) {
      TotalSpeculationCost += Cost;
      if (TotalSpeculationCost > SpecExecMaxSpeculationCost)
        return false;  // too much to hoist
    } else {
      NotHoisted.insert(&I);
      if (NotHoisted.size() > SpecExecMaxNotHoisted)
        return false; // too much left behind
    }
  }

  if (TotalSpeculationCost == 0)
    return false; // nothing to hoist

  for (auto I = FromBlock.begin(); I != FromBlock.end();) {
    // We have to increment I before moving Current as moving Current
    // changes the list that I is iterating through.
    auto Current = I;
    ++I;
    if (!NotHoisted.count(&*Current)) {
      Current->moveBefore(ToBlock.getTerminator());
    }
  }
  return true;
}

FunctionPass *createSpeculativeExecutionPass() {
  return new SpeculativeExecutionLegacyPass();
}

FunctionPass *createSpeculativeExecutionIfHasBranchDivergencePass() {
  return new SpeculativeExecutionLegacyPass(/* OnlyIfDivergentTarget = */ true);
}

SpeculativeExecutionPass::SpeculativeExecutionPass(bool OnlyIfDivergentTarget)
    : OnlyIfDivergentTarget(OnlyIfDivergentTarget ||
                            SpecExecOnlyIfDivergentTarget) {}

PreservedAnalyses SpeculativeExecutionPass::run(Function &F,
                                                FunctionAnalysisManager &AM) {
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);

  bool Changed = runImpl(F, TTI);

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}
}  // namespace llvm