reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary.  For example, it turns
// the left into the right code:
//
// for (...)                for (...)
//   if (c)                   if (c)
//     X1 = ...                 X1 = ...
//   else                     else
//     X2 = ...                 X2 = ...
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
// ... = X3 + 4             X4 = phi(X3)
//                          ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine.  The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LCSSA.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;

#define DEBUG_TYPE "lcssa"

STATISTIC(NumLCSSA, "Number of live out of a loop variables");

#ifdef EXPENSIVE_CHECKS
static bool VerifyLoopLCSSA = true;
#else
static bool VerifyLoopLCSSA = false;
#endif
static cl::opt<bool, true>
    VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
                        cl::Hidden,
                        cl::desc("Verify loop lcssa form (time consuming)"));

/// Return true if the specified block is in the list.
static bool isExitBlock(BasicBlock *BB,
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
  return is_contained(ExitBlocks, BB);
}

/// For every instruction from the worklist, check to see if it has any uses
/// that are outside the current loop.  If so, insert LCSSA PHI nodes and
/// rewrite the uses.
bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
                                    DominatorTree &DT, LoopInfo &LI) {
  SmallVector<Use *, 16> UsesToRewrite;
  SmallSetVector<PHINode *, 16> PHIsToRemove;
  PredIteratorCache PredCache;
  bool Changed = false;

  // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
  // instructions within the same loops, computing the exit blocks is
  // expensive, and we're not mutating the loop structure.
  SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;

  while (!Worklist.empty()) {
    UsesToRewrite.clear();

    Instruction *I = Worklist.pop_back_val();
    assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
    BasicBlock *InstBB = I->getParent();
    Loop *L = LI.getLoopFor(InstBB);
    assert(L && "Instruction belongs to a BB that's not part of a loop");
    if (!LoopExitBlocks.count(L))
      L->getExitBlocks(LoopExitBlocks[L]);
    assert(LoopExitBlocks.count(L));
    const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];

    if (ExitBlocks.empty())
      continue;

    for (Use &U : I->uses()) {
      Instruction *User = cast<Instruction>(U.getUser());
      BasicBlock *UserBB = User->getParent();
      if (auto *PN = dyn_cast<PHINode>(User))
        UserBB = PN->getIncomingBlock(U);

      if (InstBB != UserBB && !L->contains(UserBB))
        UsesToRewrite.push_back(&U);
    }

    // If there are no uses outside the loop, exit with no change.
    if (UsesToRewrite.empty())
      continue;

    ++NumLCSSA; // We are applying the transformation

    // Invoke instructions are special in that their result value is not
    // available along their unwind edge. The code below tests to see whether
    // DomBB dominates the value, so adjust DomBB to the normal destination
    // block, which is effectively where the value is first usable.
    BasicBlock *DomBB = InstBB;
    if (auto *Inv = dyn_cast<InvokeInst>(I))
      DomBB = Inv->getNormalDest();

    DomTreeNode *DomNode = DT.getNode(DomBB);

    SmallVector<PHINode *, 16> AddedPHIs;
    SmallVector<PHINode *, 8> PostProcessPHIs;

    SmallVector<PHINode *, 4> InsertedPHIs;
    SSAUpdater SSAUpdate(&InsertedPHIs);
    SSAUpdate.Initialize(I->getType(), I->getName());

    // Insert the LCSSA phi's into all of the exit blocks dominated by the
    // value, and add them to the Phi's map.
    for (BasicBlock *ExitBB : ExitBlocks) {
      if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
        continue;

      // If we already inserted something for this BB, don't reprocess it.
      if (SSAUpdate.HasValueForBlock(ExitBB))
        continue;

      PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
                                    I->getName() + ".lcssa", &ExitBB->front());
      // Get the debug location from the original instruction.
      PN->setDebugLoc(I->getDebugLoc());
      // Add inputs from inside the loop for this PHI.
      for (BasicBlock *Pred : PredCache.get(ExitBB)) {
        PN->addIncoming(I, Pred);

        // If the exit block has a predecessor not within the loop, arrange for
        // the incoming value use corresponding to that predecessor to be
        // rewritten in terms of a different LCSSA PHI.
        if (!L->contains(Pred))
          UsesToRewrite.push_back(
              &PN->getOperandUse(PN->getOperandNumForIncomingValue(
                  PN->getNumIncomingValues() - 1)));
      }

      AddedPHIs.push_back(PN);

      // Remember that this phi makes the value alive in this block.
      SSAUpdate.AddAvailableValue(ExitBB, PN);

      // LoopSimplify might fail to simplify some loops (e.g. when indirect
      // branches are involved). In such situations, it might happen that an
      // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
      // create PHIs in such an exit block, we are also inserting PHIs into L2's
      // header. This could break LCSSA form for L2 because these inserted PHIs
      // can also have uses outside of L2. Remember all PHIs in such situation
      // as to revisit than later on. FIXME: Remove this if indirectbr support
      // into LoopSimplify gets improved.
      if (auto *OtherLoop = LI.getLoopFor(ExitBB))
        if (!L->contains(OtherLoop))
          PostProcessPHIs.push_back(PN);
    }

    // Rewrite all uses outside the loop in terms of the new PHIs we just
    // inserted.
    for (Use *UseToRewrite : UsesToRewrite) {
      // If this use is in an exit block, rewrite to use the newly inserted PHI.
      // This is required for correctness because SSAUpdate doesn't handle uses
      // in the same block.  It assumes the PHI we inserted is at the end of the
      // block.
      Instruction *User = cast<Instruction>(UseToRewrite->getUser());
      BasicBlock *UserBB = User->getParent();
      if (auto *PN = dyn_cast<PHINode>(User))
        UserBB = PN->getIncomingBlock(*UseToRewrite);

      if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
        // Tell the VHs that the uses changed. This updates SCEV's caches.
        if (UseToRewrite->get()->hasValueHandle())
          ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
        UseToRewrite->set(&UserBB->front());
        continue;
      }

      // If we added a single PHI, it must dominate all uses and we can directly
      // rename it.
      if (AddedPHIs.size() == 1) {
        // Tell the VHs that the uses changed. This updates SCEV's caches.
        // We might call ValueIsRAUWd multiple times for the same value.
        if (UseToRewrite->get()->hasValueHandle())
          ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]);
        UseToRewrite->set(AddedPHIs[0]);
        continue;
      }

      // Otherwise, do full PHI insertion.
      SSAUpdate.RewriteUse(*UseToRewrite);
    }

    SmallVector<DbgValueInst *, 4> DbgValues;
    llvm::findDbgValues(DbgValues, I);

    // Update pre-existing debug value uses that reside outside the loop.
    auto &Ctx = I->getContext();
    for (auto DVI : DbgValues) {
      BasicBlock *UserBB = DVI->getParent();
      if (InstBB == UserBB || L->contains(UserBB))
        continue;
      // We currently only handle debug values residing in blocks that were
      // traversed while rewriting the uses. If we inserted just a single PHI,
      // we will handle all relevant debug values.
      Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
                                       : SSAUpdate.FindValueForBlock(UserBB);
      if (V)
        DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
    }

    // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
    // to post-process them to keep LCSSA form.
    for (PHINode *InsertedPN : InsertedPHIs) {
      if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
        if (!L->contains(OtherLoop))
          PostProcessPHIs.push_back(InsertedPN);
    }

    // Post process PHI instructions that were inserted into another disjoint
    // loop and update their exits properly.
    for (auto *PostProcessPN : PostProcessPHIs)
      if (!PostProcessPN->use_empty())
        Worklist.push_back(PostProcessPN);

    // Keep track of PHI nodes that we want to remove because they did not have
    // any uses rewritten. If the new PHI is used, store it so that we can
    // try to propagate dbg.value intrinsics to it.
    SmallVector<PHINode *, 2> NeedDbgValues;
    for (PHINode *PN : AddedPHIs)
      if (PN->use_empty())
        PHIsToRemove.insert(PN);
      else
        NeedDbgValues.push_back(PN);
    insertDebugValuesForPHIs(InstBB, NeedDbgValues);
    Changed = true;
  }
  // Remove PHI nodes that did not have any uses rewritten. We need to redo the
  // use_empty() check here, because even if the PHI node wasn't used when added
  // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
  // not guaranteed to handle trees/cycles of PHI nodes that only are used by
  // each other. Such situations has only been noticed when the input IR
  // contains unreachable code, and leaving some extra redundant PHI nodes in
  // such situations is considered a minor problem.
  for (PHINode *PN : PHIsToRemove)
    if (PN->use_empty())
      PN->eraseFromParent();
  return Changed;
}

// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
static void computeBlocksDominatingExits(
    Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
    SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
  SmallVector<BasicBlock *, 8> BBWorklist;

  // We start from the exit blocks, as every block trivially dominates itself
  // (not strictly).
  for (BasicBlock *BB : ExitBlocks)
    BBWorklist.push_back(BB);

  while (!BBWorklist.empty()) {
    BasicBlock *BB = BBWorklist.pop_back_val();

    // Check if this is a loop header. If this is the case, we're done.
    if (L.getHeader() == BB)
      continue;

    // Otherwise, add its immediate predecessor in the dominator tree to the
    // worklist, unless we visited it already.
    BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();

    // Exit blocks can have an immediate dominator not beloinging to the
    // loop. For an exit block to be immediately dominated by another block
    // outside the loop, it implies not all paths from that dominator, to the
    // exit block, go through the loop.
    // Example:
    //
    // |---- A
    // |     |
    // |     B<--
    // |     |  |
    // |---> C --
    //       |
    //       D
    //
    // C is the exit block of the loop and it's immediately dominated by A,
    // which doesn't belong to the loop.
    if (!L.contains(IDomBB))
      continue;

    if (BlocksDominatingExits.insert(IDomBB))
      BBWorklist.push_back(IDomBB);
  }
}

bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
                     ScalarEvolution *SE) {
  bool Changed = false;

#ifdef EXPENSIVE_CHECKS
  // Verify all sub-loops are in LCSSA form already.
  for (Loop *SubLoop: L)
    assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
#endif

  SmallVector<BasicBlock *, 8> ExitBlocks;
  L.getExitBlocks(ExitBlocks);
  if (ExitBlocks.empty())
    return false;

  SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;

  // We want to avoid use-scanning leveraging dominance informations.
  // If a block doesn't dominate any of the loop exits, the none of the values
  // defined in the loop can be used outside.
  // We compute the set of blocks fullfilling the conditions in advance
  // walking the dominator tree upwards until we hit a loop header.
  computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);

  SmallVector<Instruction *, 8> Worklist;

  // Look at all the instructions in the loop, checking to see if they have uses
  // outside the loop.  If so, put them into the worklist to rewrite those uses.
  for (BasicBlock *BB : BlocksDominatingExits) {
    // Skip blocks that are part of any sub-loops, they must be in LCSSA
    // already.
    if (LI->getLoopFor(BB) != &L)
      continue;
    for (Instruction &I : *BB) {
      // Reject two common cases fast: instructions with no uses (like stores)
      // and instructions with one use that is in the same block as this.
      if (I.use_empty() ||
          (I.hasOneUse() && I.user_back()->getParent() == BB &&
           !isa<PHINode>(I.user_back())))
        continue;

      // Tokens cannot be used in PHI nodes, so we skip over them.
      // We can run into tokens which are live out of a loop with catchswitch
      // instructions in Windows EH if the catchswitch has one catchpad which
      // is inside the loop and another which is not.
      if (I.getType()->isTokenTy())
        continue;

      Worklist.push_back(&I);
    }
  }
  Changed = formLCSSAForInstructions(Worklist, DT, *LI);

  // If we modified the code, remove any caches about the loop from SCEV to
  // avoid dangling entries.
  // FIXME: This is a big hammer, can we clear the cache more selectively?
  if (SE && Changed)
    SE->forgetLoop(&L);

  assert(L.isLCSSAForm(DT));

  return Changed;
}

/// Process a loop nest depth first.
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
                                ScalarEvolution *SE) {
  bool Changed = false;

  // Recurse depth-first through inner loops.
  for (Loop *SubLoop : L.getSubLoops())
    Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);

  Changed |= formLCSSA(L, DT, LI, SE);
  return Changed;
}

/// Process all loops in the function, inner-most out.
static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
                                ScalarEvolution *SE) {
  bool Changed = false;
  for (auto &L : *LI)
    Changed |= formLCSSARecursively(*L, DT, LI, SE);
  return Changed;
}

namespace {
struct LCSSAWrapperPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  LCSSAWrapperPass() : FunctionPass(ID) {
    initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
  }

  // Cached analysis information for the current function.
  DominatorTree *DT;
  LoopInfo *LI;
  ScalarEvolution *SE;

  bool runOnFunction(Function &F) override;
  void verifyAnalysis() const override {
    // This check is very expensive. On the loop intensive compiles it may cause
    // up to 10x slowdown. Currently it's disabled by default. LPPassManager
    // always does limited form of the LCSSA verification. Similar reasoning
    // was used for the LoopInfo verifier.
    if (VerifyLoopLCSSA) {
      assert(all_of(*LI,
                    [&](Loop *L) {
                      return L->isRecursivelyLCSSAForm(*DT, *LI);
                    }) &&
             "LCSSA form is broken!");
    }
  };

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG.  It maintains both of these,
  /// as well as the CFG.  It also requires dominator information.
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();

    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreservedID(LoopSimplifyID);
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<BasicAAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<SCEVAAWrapperPass>();
    AU.addPreserved<BranchProbabilityInfoWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();

    // This is needed to perform LCSSA verification inside LPPassManager
    AU.addRequired<LCSSAVerificationPass>();
    AU.addPreserved<LCSSAVerificationPass>();
  }
};
}

char LCSSAWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
                    false, false)

Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
char &llvm::LCSSAID = LCSSAWrapperPass::ID;

/// Transform \p F into loop-closed SSA form.
bool LCSSAWrapperPass::runOnFunction(Function &F) {
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
  SE = SEWP ? &SEWP->getSE() : nullptr;

  return formLCSSAOnAllLoops(LI, *DT, SE);
}

PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
  if (!formLCSSAOnAllLoops(&LI, DT, SE))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<BasicAA>();
  PA.preserve<GlobalsAA>();
  PA.preserve<SCEVAA>();
  PA.preserve<ScalarEvolutionAnalysis>();
  // BPI maps terminators to probabilities, since we don't modify the CFG, no
  // updates are needed to preserve it.
  PA.preserve<BranchProbabilityAnalysis>();
  PA.preserve<MemorySSAAnalysis>();
  return PA;
}