reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some loop transformation utilities.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"

namespace llvm {

class AliasSet;
class AliasSetTracker;
class BasicBlock;
class DataLayout;
class Loop;
class LoopInfo;
class MemoryAccess;
class MemorySSAUpdater;
class OptimizationRemarkEmitter;
class PredicatedScalarEvolution;
class PredIteratorCache;
class ScalarEvolution;
class SCEV;
class TargetLibraryInfo;
class TargetTransformInfo;

BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   MemorySSAUpdater *MSSAU, bool PreserveLCSSA);

/// Ensure that all exit blocks of the loop are dedicated exits.
///
/// For any loop exit block with non-loop predecessors, we split the loop
/// predecessors to use a dedicated loop exit block. We update the dominator
/// tree and loop info if provided, and will preserve LCSSA if requested.
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA);

/// Ensures LCSSA form for every instruction from the Worklist in the scope of
/// innermost containing loop.
///
/// For the given instruction which have uses outside of the loop, an LCSSA PHI
/// node is inserted and the uses outside the loop are rewritten to use this
/// node.
///
/// LoopInfo and DominatorTree are required and, since the routine makes no
/// changes to CFG, preserved.
///
/// Returns true if any modifications are made.
bool formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
                              DominatorTree &DT, LoopInfo &LI);

/// Put loop into LCSSA form.
///
/// Looks at all instructions in the loop which have uses outside of the
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
/// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
/// already.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE);

/// Put a loop nest into LCSSA form.
///
/// This recursively forms LCSSA for a loop nest.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
                          ScalarEvolution *SE);

struct SinkAndHoistLICMFlags {
  bool NoOfMemAccTooLarge;
  unsigned LicmMssaOptCounter;
  unsigned LicmMssaOptCap;
  unsigned LicmMssaNoAccForPromotionCap;
  bool IsSink;
};

/// Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
/// instructions of the loop and loop safety information as
/// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
                TargetLibraryInfo *, TargetTransformInfo *, Loop *,
                AliasSetTracker *, MemorySSAUpdater *, ICFLoopSafetyInfo *,
                SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *);

/// Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree.  This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
/// loop and loop safety information as arguments. Diagnostics is emitted via \p
/// ORE. It returns changed status.
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
                 TargetLibraryInfo *, Loop *, AliasSetTracker *,
                 MemorySSAUpdater *, ICFLoopSafetyInfo *,
                 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *);

/// This function deletes dead loops. The caller of this function needs to
/// guarantee that the loop is infact dead.
/// The function requires a bunch or prerequisites to be present:
///   - The loop needs to be in LCSSA form
///   - The loop needs to have a Preheader
///   - A unique dedicated exit block must exist
///
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
/// LI if pointers to those are provided.
/// It also updates the loop PM if an updater struct is provided.

void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
                    LoopInfo *LI);

/// Try to promote memory values to scalars by sinking stores out of
/// the loop and moving loads to before the loop.  We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant. It takes a set of must-alias values, Loop exit blocks
/// vector, loop exit blocks insertion point vector, PredIteratorCache,
/// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
/// of the loop and loop safety information as arguments.
/// Diagnostics is emitted via \p ORE. It returns changed status.
bool promoteLoopAccessesToScalars(
    const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
    SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
    PredIteratorCache &, LoopInfo *, DominatorTree *, const TargetLibraryInfo *,
    Loop *, AliasSetTracker *, MemorySSAUpdater *, ICFLoopSafetyInfo *,
    OptimizationRemarkEmitter *);

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
                                                     const Loop *CurLoop);

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);

/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
                                                      StringRef Name);

/// Find named metadata for a loop with an integer value.
llvm::Optional<int> getOptionalIntLoopAttribute(Loop *TheLoop, StringRef Name);

/// Create a new loop identifier for a loop created from a loop transformation.
///
/// @param OrigLoopID The loop ID of the loop before the transformation.
/// @param FollowupAttrs List of attribute names that contain attributes to be
///                      added to the new loop ID.
/// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
///                                  from the original loop. The following values
///                                  are considered:
///        nullptr   : Inherit all attributes from @p OrigLoopID.
///        ""        : Do not inherit any attribute from @p OrigLoopID; only use
///                    those specified by a followup attribute.
///        "<prefix>": Inherit all attributes except those which start with
///                    <prefix>; commonly used to remove metadata for the
///                    applied transformation.
/// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
///                  None.
///
/// @return The loop ID for the after-transformation loop. The following values
///         can be returned:
///         None         : No followup attribute was found; it is up to the
///                        transformation to choose attributes that make sense.
///         @p OrigLoopID: The original identifier can be reused.
///         nullptr      : The new loop has no attributes.
///         MDNode*      : A new unique loop identifier.
Optional<MDNode *>
makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
                   const char *InheritOptionsAttrsPrefix = "",
                   bool AlwaysNew = false);

/// Look for the loop attribute that disables all transformation heuristic.
bool hasDisableAllTransformsHint(const Loop *L);

/// Look for the loop attribute that disables the LICM transformation heuristics.
bool hasDisableLICMTransformsHint(const Loop *L);

/// The mode sets how eager a transformation should be applied.
enum TransformationMode {
  /// The pass can use heuristics to determine whether a transformation should
  /// be applied.
  TM_Unspecified,

  /// The transformation should be applied without considering a cost model.
  TM_Enable,

  /// The transformation should not be applied.
  TM_Disable,

  /// Force is a flag and should not be used alone.
  TM_Force = 0x04,

  /// The transformation was directed by the user, e.g. by a #pragma in
  /// the source code. If the transformation could not be applied, a
  /// warning should be emitted.
  TM_ForcedByUser = TM_Enable | TM_Force,

  /// The transformation must not be applied. For instance, `#pragma clang loop
  /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
  /// general loop metadata, it must not be dropped. Most passes should not
  /// behave differently under TM_Disable and TM_SuppressedByUser.
  TM_SuppressedByUser = TM_Disable | TM_Force
};

/// @{
/// Get the mode for LLVM's supported loop transformations.
TransformationMode hasUnrollTransformation(Loop *L);
TransformationMode hasUnrollAndJamTransformation(Loop *L);
TransformationMode hasVectorizeTransformation(Loop *L);
TransformationMode hasDistributeTransformation(Loop *L);
TransformationMode hasLICMVersioningTransformation(Loop *L);
/// @}

/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
                             unsigned V = 0);

/// Get a loop's estimated trip count based on branch weight metadata.
/// Returns 0 when the count is estimated to be 0, or None when a meaningful
/// estimate can not be made.
Optional<unsigned> getLoopEstimatedTripCount(Loop *L);

/// Check inner loop (L) backedge count is known to be invariant on all
/// iterations of its outer loop. If the loop has no parent, this is trivially
/// true.
bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);

/// Helper to consistently add the set of standard passes to a loop pass's \c
/// AnalysisUsage.
///
/// All loop passes should call this as part of implementing their \c
/// getAnalysisUsage.
void getLoopAnalysisUsage(AnalysisUsage &AU);

/// Returns true if is legal to hoist or sink this instruction disregarding the
/// possible introduction of faults.  Reasoning about potential faulting
/// instructions is the responsibility of the caller since it is challenging to
/// do efficiently from within this routine.
/// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
/// target executes at most once per execution of the loop body.  This is used
/// to assess the legality of duplicating atomic loads.  Generally, this is
/// true when moving out of loop and not true when moving into loops.
/// If \p ORE is set use it to emit optimization remarks.
bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
                        Loop *CurLoop, AliasSetTracker *CurAST,
                        MemorySSAUpdater *MSSAU, bool TargetExecutesOncePerLoop,
                        SinkAndHoistLICMFlags *LICMFlags = nullptr,
                        OptimizationRemarkEmitter *ORE = nullptr);

/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
Value *createMinMaxOp(IRBuilder<> &Builder,
                      RecurrenceDescriptor::MinMaxRecurrenceKind RK,
                      Value *Left, Value *Right);

/// Generates an ordered vector reduction using extracts to reduce the value.
Value *
getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, unsigned Op,
                    RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
                        RecurrenceDescriptor::MRK_Invalid,
                    ArrayRef<Value *> RedOps = None);

/// Generates a vector reduction using shufflevectors to reduce the value.
/// Fast-math-flags are propagated using the IRBuilder's setting.
Value *getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
                           RecurrenceDescriptor::MinMaxRecurrenceKind
                               MinMaxKind = RecurrenceDescriptor::MRK_Invalid,
                           ArrayRef<Value *> RedOps = None);

/// Create a target reduction of the given vector. The reduction operation
/// is described by the \p Opcode parameter. min/max reductions require
/// additional information supplied in \p Flags.
/// The target is queried to determine if intrinsics or shuffle sequences are
/// required to implement the reduction.
/// Fast-math-flags are propagated using the IRBuilder's setting.
Value *createSimpleTargetReduction(IRBuilder<> &B,
                                   const TargetTransformInfo *TTI,
                                   unsigned Opcode, Value *Src,
                                   TargetTransformInfo::ReductionFlags Flags =
                                       TargetTransformInfo::ReductionFlags(),
                                   ArrayRef<Value *> RedOps = None);

/// Create a generic target reduction using a recurrence descriptor \p Desc
/// The target is queried to determine if intrinsics or shuffle sequences are
/// required to implement the reduction.
/// Fast-math-flags are propagated using the RecurrenceDescriptor.
Value *createTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI,
                             RecurrenceDescriptor &Desc, Value *Src,
                             bool NoNaN = false);

/// Get the intersection (logical and) of all of the potential IR flags
/// of each scalar operation (VL) that will be converted into a vector (I).
/// If OpValue is non-null, we only consider operations similar to OpValue
/// when intersecting.
/// Flag set: NSW, NUW, exact, and all of fast-math.
void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr);

/// Returns true if we can prove that \p S is defined and always negative in
/// loop \p L.
bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);

/// Returns true if we can prove that \p S is defined and always non-negative in
/// loop \p L.
bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
                              ScalarEvolution &SE);

/// Returns true if \p S is defined and never is equal to signed/unsigned max.
bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                       bool Signed);

/// Returns true if \p S is defined and never is equal to signed/unsigned min.
bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                       bool Signed);

} // end namespace llvm

#endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H