reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
///    VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
///    treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
///    within VPBasicBlocks;
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
///    instruction;
/// 5. The VPlan class holding a candidate for vectorization;
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
/// These are documented in docs/VectorizationPlan.rst.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H

#include "VPlanLoopInfo.h"
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IRBuilder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <map>
#include <string>

namespace llvm {

class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class BasicBlock;
class DominatorTree;
class InnerLoopVectorizer;
template <class T> class InterleaveGroup;
class LoopInfo;
class raw_ostream;
class Value;
class VPBasicBlock;
class VPRegionBlock;
class VPlan;
class VPlanSlp;

/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 9) = {1, 2, 4, 8}
struct VFRange {
  // A power of 2.
  const unsigned Start;

  // Need not be a power of 2. If End <= Start range is empty.
  unsigned End;
};

using VPlanPtr = std::unique_ptr<VPlan>;

/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.

/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
  /// in [0..UF)
  unsigned Part;

  /// in [0..VF)
  unsigned Lane;
};

/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
  friend struct VPTransformState;

private:
  /// The unroll factor. Each entry in the vector map contains UF vector values.
  unsigned UF;

  /// The vectorization factor. Each entry in the scalar map contains UF x VF
  /// scalar values.
  unsigned VF;

  /// The vector and scalar map storage. We use std::map and not DenseMap
  /// because insertions to DenseMap invalidate its iterators.
  using VectorParts = SmallVector<Value *, 2>;
  using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
  std::map<Value *, VectorParts> VectorMapStorage;
  std::map<Value *, ScalarParts> ScalarMapStorage;

public:
  /// Construct an empty map with the given unroll and vectorization factors.
  VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}

  /// \return True if the map has any vector entry for \p Key.
  bool hasAnyVectorValue(Value *Key) const {
    return VectorMapStorage.count(Key);
  }

  /// \return True if the map has a vector entry for \p Key and \p Part.
  bool hasVectorValue(Value *Key, unsigned Part) const {
    assert(Part < UF && "Queried Vector Part is too large.");
    if (!hasAnyVectorValue(Key))
      return false;
    const VectorParts &Entry = VectorMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
    return Entry[Part] != nullptr;
  }

  /// \return True if the map has any scalar entry for \p Key.
  bool hasAnyScalarValue(Value *Key) const {
    return ScalarMapStorage.count(Key);
  }

  /// \return True if the map has a scalar entry for \p Key and \p Instance.
  bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
    assert(Instance.Part < UF && "Queried Scalar Part is too large.");
    assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
    if (!hasAnyScalarValue(Key))
      return false;
    const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
    assert(Entry[Instance.Part].size() == VF &&
           "ScalarParts has wrong dimensions.");
    return Entry[Instance.Part][Instance.Lane] != nullptr;
  }

  /// Retrieve the existing vector value that corresponds to \p Key and
  /// \p Part.
  Value *getVectorValue(Value *Key, unsigned Part) {
    assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
    return VectorMapStorage[Key][Part];
  }

  /// Retrieve the existing scalar value that corresponds to \p Key and
  /// \p Instance.
  Value *getScalarValue(Value *Key, const VPIteration &Instance) {
    assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
    return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
  }

  /// Set a vector value associated with \p Key and \p Part. Assumes such a
  /// value is not already set. If it is, use resetVectorValue() instead.
  void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
    if (!VectorMapStorage.count(Key)) {
      VectorParts Entry(UF);
      VectorMapStorage[Key] = Entry;
    }
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
  /// value is not already set.
  void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
    assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
    if (!ScalarMapStorage.count(Key)) {
      ScalarParts Entry(UF);
      // TODO: Consider storing uniform values only per-part, as they occupy
      //       lane 0 only, keeping the other VF-1 redundant entries null.
      for (unsigned Part = 0; Part < UF; ++Part)
        Entry[Part].resize(VF, nullptr);
      ScalarMapStorage[Key] = Entry;
    }
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }

  /// Reset the vector value associated with \p Key for the given \p Part.
  /// This function can be used to update values that have already been
  /// vectorized. This is the case for "fix-up" operations including type
  /// truncation and the second phase of recurrence vectorization.
  void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(hasVectorValue(Key, Part) && "Vector value not set for part");
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
  /// This function can be used to update values that have already been
  /// scalarized. This is the case for "fix-up" operations including scalar phi
  /// nodes for scalarized and predicated instructions.
  void resetScalarValue(Value *Key, const VPIteration &Instance,
                        Value *Scalar) {
    assert(hasScalarValue(Key, Instance) &&
           "Scalar value not set for part and lane");
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }
};

/// This class is used to enable the VPlan to invoke a method of ILV. This is
/// needed until the method is refactored out of ILV and becomes reusable.
struct VPCallback {
  virtual ~VPCallback() {}
  virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
};

/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
  VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
                   IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
                   InnerLoopVectorizer *ILV, VPCallback &Callback)
      : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
        ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}

  /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
  unsigned VF;
  unsigned UF;

  /// Hold the indices to generate specific scalar instructions. Null indicates
  /// that all instances are to be generated, using either scalar or vector
  /// instructions.
  Optional<VPIteration> Instance;

  struct DataState {
    /// A type for vectorized values in the new loop. Each value from the
    /// original loop, when vectorized, is represented by UF vector values in
    /// the new unrolled loop, where UF is the unroll factor.
    typedef SmallVector<Value *, 2> PerPartValuesTy;

    DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
  } Data;

  /// Get the generated Value for a given VPValue and a given Part. Note that
  /// as some Defs are still created by ILV and managed in its ValueMap, this
  /// method will delegate the call to ILV in such cases in order to provide
  /// callers a consistent API.
  /// \see set.
  Value *get(VPValue *Def, unsigned Part) {
    // If Values have been set for this Def return the one relevant for \p Part.
    if (Data.PerPartOutput.count(Def))
      return Data.PerPartOutput[Def][Part];
    // Def is managed by ILV: bring the Values from ValueMap.
    return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
  }

  /// Set the generated Value for a given VPValue and a given Part.
  void set(VPValue *Def, Value *V, unsigned Part) {
    if (!Data.PerPartOutput.count(Def)) {
      DataState::PerPartValuesTy Entry(UF);
      Data.PerPartOutput[Def] = Entry;
    }
    Data.PerPartOutput[Def][Part] = V;
  }

  /// Hold state information used when constructing the CFG of the output IR,
  /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
  struct CFGState {
    /// The previous VPBasicBlock visited. Initially set to null.
    VPBasicBlock *PrevVPBB = nullptr;

    /// The previous IR BasicBlock created or used. Initially set to the new
    /// header BasicBlock.
    BasicBlock *PrevBB = nullptr;

    /// The last IR BasicBlock in the output IR. Set to the new latch
    /// BasicBlock, used for placing the newly created BasicBlocks.
    BasicBlock *LastBB = nullptr;

    /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
    /// of replication, maps the BasicBlock of the last replica created.
    SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;

    /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
    /// up at the end of vector code generation.
    SmallVector<VPBasicBlock *, 8> VPBBsToFix;

    CFGState() = default;
  } CFG;

  /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
  LoopInfo *LI;

  /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
  DominatorTree *DT;

  /// Hold a reference to the IRBuilder used to generate output IR code.
  IRBuilder<> &Builder;

  /// Hold a reference to the Value state information used when generating the
  /// Values of the output IR.
  VectorizerValueMap &ValueMap;

  /// Hold a reference to a mapping between VPValues in VPlan and original
  /// Values they correspond to.
  VPValue2ValueTy VPValue2Value;

  /// Hold the trip count of the scalar loop.
  Value *TripCount = nullptr;

  /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
  InnerLoopVectorizer *ILV;

  VPCallback &Callback;
};

/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
  friend class VPBlockUtils;

private:
  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).

  /// An optional name for the block.
  std::string Name;

  /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
  /// it is a topmost VPBlockBase.
  VPRegionBlock *Parent = nullptr;

  /// List of predecessor blocks.
  SmallVector<VPBlockBase *, 1> Predecessors;

  /// List of successor blocks.
  SmallVector<VPBlockBase *, 1> Successors;

  /// Successor selector, null for zero or single successor blocks.
  VPValue *CondBit = nullptr;

  /// Current block predicate - null if the block does not need a predicate.
  VPValue *Predicate = nullptr;

  /// Add \p Successor as the last successor to this block.
  void appendSuccessor(VPBlockBase *Successor) {
    assert(Successor && "Cannot add nullptr successor!");
    Successors.push_back(Successor);
  }

  /// Add \p Predecessor as the last predecessor to this block.
  void appendPredecessor(VPBlockBase *Predecessor) {
    assert(Predecessor && "Cannot add nullptr predecessor!");
    Predecessors.push_back(Predecessor);
  }

  /// Remove \p Predecessor from the predecessors of this block.
  void removePredecessor(VPBlockBase *Predecessor) {
    auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
    assert(Pos && "Predecessor does not exist");
    Predecessors.erase(Pos);
  }

  /// Remove \p Successor from the successors of this block.
  void removeSuccessor(VPBlockBase *Successor) {
    auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
    assert(Pos && "Successor does not exist");
    Successors.erase(Pos);
  }

protected:
  VPBlockBase(const unsigned char SC, const std::string &N)
      : SubclassID(SC), Name(N) {}

public:
  /// An enumeration for keeping track of the concrete subclass of VPBlockBase
  /// that are actually instantiated. Values of this enumeration are kept in the
  /// SubclassID field of the VPBlockBase objects. They are used for concrete
  /// type identification.
  using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };

  using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;

  virtual ~VPBlockBase() = default;

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// \return an ID for the concrete type of this object.
  /// This is used to implement the classof checks. This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.
  unsigned getVPBlockID() const { return SubclassID; }

  VPRegionBlock *getParent() { return Parent; }
  const VPRegionBlock *getParent() const { return Parent; }

  void setParent(VPRegionBlock *P) { Parent = P; }

  /// \return the VPBasicBlock that is the entry of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getEntryBasicBlock() const;
  VPBasicBlock *getEntryBasicBlock();

  /// \return the VPBasicBlock that is the exit of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getExitBasicBlock() const;
  VPBasicBlock *getExitBasicBlock();

  const VPBlocksTy &getSuccessors() const { return Successors; }
  VPBlocksTy &getSuccessors() { return Successors; }

  const VPBlocksTy &getPredecessors() const { return Predecessors; }
  VPBlocksTy &getPredecessors() { return Predecessors; }

  /// \return the successor of this VPBlockBase if it has a single successor.
  /// Otherwise return a null pointer.
  VPBlockBase *getSingleSuccessor() const {
    return (Successors.size() == 1 ? *Successors.begin() : nullptr);
  }

  /// \return the predecessor of this VPBlockBase if it has a single
  /// predecessor. Otherwise return a null pointer.
  VPBlockBase *getSinglePredecessor() const {
    return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
  }

  size_t getNumSuccessors() const { return Successors.size(); }
  size_t getNumPredecessors() const { return Predecessors.size(); }

  /// An Enclosing Block of a block B is any block containing B, including B
  /// itself. \return the closest enclosing block starting from "this", which
  /// has successors. \return the root enclosing block if all enclosing blocks
  /// have no successors.
  VPBlockBase *getEnclosingBlockWithSuccessors();

  /// \return the closest enclosing block starting from "this", which has
  /// predecessors. \return the root enclosing block if all enclosing blocks
  /// have no predecessors.
  VPBlockBase *getEnclosingBlockWithPredecessors();

  /// \return the successors either attached directly to this VPBlockBase or, if
  /// this VPBlockBase is the exit block of a VPRegionBlock and has no
  /// successors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has successors and return them. If no such
  /// VPRegionBlock exists, return the (empty) successors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalSuccessors() {
    return getEnclosingBlockWithSuccessors()->getSuccessors();
  }

  /// \return the hierarchical successor of this VPBlockBase if it has a single
  /// hierarchical successor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalSuccessor() {
    return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
  }

  /// \return the predecessors either attached directly to this VPBlockBase or,
  /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
  /// predecessors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has predecessors and return them. If no such
  /// VPRegionBlock exists, return the (empty) predecessors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalPredecessors() {
    return getEnclosingBlockWithPredecessors()->getPredecessors();
  }

  /// \return the hierarchical predecessor of this VPBlockBase if it has a
  /// single hierarchical predecessor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalPredecessor() {
    return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
  }

  /// \return the condition bit selecting the successor.
  VPValue *getCondBit() { return CondBit; }

  const VPValue *getCondBit() const { return CondBit; }

  void setCondBit(VPValue *CV) { CondBit = CV; }

  VPValue *getPredicate() { return Predicate; }

  const VPValue *getPredicate() const { return Predicate; }

  void setPredicate(VPValue *Pred) { Predicate = Pred; }

  /// Set a given VPBlockBase \p Successor as the single successor of this
  /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
  /// This VPBlockBase must have no successors.
  void setOneSuccessor(VPBlockBase *Successor) {
    assert(Successors.empty() && "Setting one successor when others exist.");
    appendSuccessor(Successor);
  }

  /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
  /// successors of this VPBlockBase. \p Condition is set as the successor
  /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
  /// IfFalse. This VPBlockBase must have no successors.
  void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                        VPValue *Condition) {
    assert(Successors.empty() && "Setting two successors when others exist.");
    assert(Condition && "Setting two successors without condition!");
    CondBit = Condition;
    appendSuccessor(IfTrue);
    appendSuccessor(IfFalse);
  }

  /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
  /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
  /// as successor of any VPBasicBlock in \p NewPreds.
  void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
    assert(Predecessors.empty() && "Block predecessors already set.");
    for (auto *Pred : NewPreds)
      appendPredecessor(Pred);
  }

  /// Remove all the predecessor of this block.
  void clearPredecessors() { Predecessors.clear(); }

  /// Remove all the successors of this block and set to null its condition bit
  void clearSuccessors() {
    Successors.clear();
    CondBit = nullptr;
  }

  /// The method which generates the output IR that correspond to this
  /// VPBlockBase, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState *State) = 0;

  /// Delete all blocks reachable from a given VPBlockBase, inclusive.
  static void deleteCFG(VPBlockBase *Entry);

  void printAsOperand(raw_ostream &OS, bool PrintType) const {
    OS << getName();
  }

  void print(raw_ostream &OS) const {
    // TODO: Only printing VPBB name for now since we only have dot printing
    // support for VPInstructions/Recipes.
    printAsOperand(OS, false);
  }

  /// Return true if it is legal to hoist instructions into this block.
  bool isLegalToHoistInto() {
    // There are currently no constraints that prevent an instruction to be
    // hoisted into a VPBlockBase.
    return true;
  }
};

/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
  friend VPBasicBlock;

private:
  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).

  /// Each VPRecipe belongs to a single VPBasicBlock.
  VPBasicBlock *Parent = nullptr;

public:
  /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
  /// that is actually instantiated. Values of this enumeration are kept in the
  /// SubclassID field of the VPRecipeBase objects. They are used for concrete
  /// type identification.
  using VPRecipeTy = enum {
    VPBlendSC,
    VPBranchOnMaskSC,
    VPInstructionSC,
    VPInterleaveSC,
    VPPredInstPHISC,
    VPReplicateSC,
    VPWidenIntOrFpInductionSC,
    VPWidenMemoryInstructionSC,
    VPWidenPHISC,
    VPWidenSC,
  };

  VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
  virtual ~VPRecipeBase() = default;

  /// \return an ID for the concrete type of this object.
  /// This is used to implement the classof checks. This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.
  unsigned getVPRecipeID() const { return SubclassID; }

  /// \return the VPBasicBlock which this VPRecipe belongs to.
  VPBasicBlock *getParent() { return Parent; }
  const VPBasicBlock *getParent() const { return Parent; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRecipe, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState &State) = 0;

  /// Each recipe prints itself.
  virtual void print(raw_ostream &O, const Twine &Indent) const = 0;

  /// Insert an unlinked recipe into a basic block immediately before
  /// the specified recipe.
  void insertBefore(VPRecipeBase *InsertPos);

  /// Unlink this recipe from its current VPBasicBlock and insert it into
  /// the VPBasicBlock that MovePos lives in, right after MovePos.
  void moveAfter(VPRecipeBase *MovePos);

  /// This method unlinks 'this' from the containing basic block and deletes it.
  ///
  /// \returns an iterator pointing to the element after the erased one
  iplist<VPRecipeBase>::iterator eraseFromParent();
};

/// This is a concrete Recipe that models a single VPlan-level instruction.
/// While as any Recipe it may generate a sequence of IR instructions when
/// executed, these instructions would always form a single-def expression as
/// the VPInstruction is also a single def-use vertex.
class VPInstruction : public VPUser, public VPRecipeBase {
  friend class VPlanHCFGTransforms;
  friend class VPlanSlp;

public:
  /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
  enum {
    Not = Instruction::OtherOpsEnd + 1,
    ICmpULE,
    SLPLoad,
    SLPStore,
  };

private:
  typedef unsigned char OpcodeTy;
  OpcodeTy Opcode;

  /// Utility method serving execute(): generates a single instance of the
  /// modeled instruction.
  void generateInstruction(VPTransformState &State, unsigned Part);

protected:
  Instruction *getUnderlyingInstr() {
    return cast_or_null<Instruction>(getUnderlyingValue());
  }

  void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }

public:
  VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
      : VPUser(VPValue::VPInstructionSC, Operands),
        VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}

  VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
      : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPInstructionSC;
  }

  VPInstruction *clone() const {
    SmallVector<VPValue *, 2> Operands(operands());
    return new VPInstruction(Opcode, Operands);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *R) {
    return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
  }

  unsigned getOpcode() const { return Opcode; }

  /// Generate the instruction.
  /// TODO: We currently execute only per-part unless a specific instance is
  /// provided.
  void execute(VPTransformState &State) override;

  /// Print the Recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;

  /// Print the VPInstruction.
  void print(raw_ostream &O) const;

  /// Return true if this instruction may modify memory.
  bool mayWriteToMemory() const {
    // TODO: we can use attributes of the called function to rule out memory
    //       modifications.
    return Opcode == Instruction::Store || Opcode == Instruction::Call ||
           Opcode == Instruction::Invoke || Opcode == SLPStore;
  }
};

/// VPWidenRecipe is a recipe for producing a copy of vector type for each
/// Instruction in its ingredients independently, in order. This recipe covers
/// most of the traditional vectorization cases where each ingredient transforms
/// into a vectorized version of itself.
class VPWidenRecipe : public VPRecipeBase {
private:
  /// Hold the ingredients by pointing to their original BasicBlock location.
  BasicBlock::iterator Begin;
  BasicBlock::iterator End;

public:
  VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
    End = I->getIterator();
    Begin = End++;
  }

  ~VPWidenRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
  }

  /// Produce widened copies of all Ingredients.
  void execute(VPTransformState &State) override;

  /// Augment the recipe to include Instr, if it lies at its End.
  bool appendInstruction(Instruction *Instr) {
    if (End != Instr->getIterator())
      return false;
    End++;
    return true;
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector and scalar values.
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
private:
  PHINode *IV;
  TruncInst *Trunc;

public:
  VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
      : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
  ~VPWidenIntOrFpInductionRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
  }

  /// Generate the vectorized and scalarized versions of the phi node as
  /// needed by their users.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for handling all phi nodes except for integer and FP inductions.
class VPWidenPHIRecipe : public VPRecipeBase {
private:
  PHINode *Phi;

public:
  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
  ~VPWidenPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for vectorizing a phi-node as a sequence of mask-based select
/// instructions.
class VPBlendRecipe : public VPRecipeBase {
private:
  PHINode *Phi;

  /// The blend operation is a User of a mask, if not null.
  std::unique_ptr<VPUser> User;

public:
  VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
      : VPRecipeBase(VPBlendSC), Phi(Phi) {
    assert((Phi->getNumIncomingValues() == 1 ||
            Phi->getNumIncomingValues() == Masks.size()) &&
           "Expected the same number of incoming values and masks");
    if (!Masks.empty())
      User.reset(new VPUser(Masks));
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles.
class VPInterleaveRecipe : public VPRecipeBase {
private:
  const InterleaveGroup<Instruction> *IG;
  std::unique_ptr<VPUser> User;

public:
  VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
      : VPRecipeBase(VPInterleaveSC), IG(IG) {
    if (Mask) // Create a VPInstruction to register as a user of the mask.
      User.reset(new VPUser({Mask}));
  }
  ~VPInterleaveRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
  }

  /// Generate the wide load or store, and shuffles.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;

  const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
};

/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeBase {
private:
  /// The instruction being replicated.
  Instruction *Ingredient;

  /// Indicator if only a single replica per lane is needed.
  bool IsUniform;

  /// Indicator if the replicas are also predicated.
  bool IsPredicated;

  /// Indicator if the scalar values should also be packed into a vector.
  bool AlsoPack;

public:
  VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
      : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
        IsPredicated(IsPredicated) {
    // Retain the previous behavior of predicateInstructions(), where an
    // insert-element of a predicated instruction got hoisted into the
    // predicated basic block iff it was its only user. This is achieved by
    // having predicated instructions also pack their values into a vector by
    // default unless they have a replicated user which uses their scalar value.
    AlsoPack = IsPredicated && !I->use_empty();
  }

  ~VPReplicateRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
  }

  /// Generate replicas of the desired Ingredient. Replicas will be generated
  /// for all parts and lanes unless a specific part and lane are specified in
  /// the \p State.
  void execute(VPTransformState &State) override;

  void setAlsoPack(bool Pack) { AlsoPack = Pack; }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase {
private:
  std::unique_ptr<VPUser> User;

public:
  VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
    if (BlockInMask) // nullptr means all-one mask.
      User.reset(new VPUser({BlockInMask}));
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
  }

  /// Generate the extraction of the appropriate bit from the block mask and the
  /// conditional branch.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
    if (User)
      O << *User->getOperand(0);
    else
      O << " All-One";
    O << "\\l\"";
  }
};

/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPRecipeBase {
private:
  Instruction *PredInst;

public:
  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
  /// nodes after merging back from a Branch-on-Mask.
  VPPredInstPHIRecipe(Instruction *PredInst)
      : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
  ~VPPredInstPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
  }

  /// Generates phi nodes for live-outs as needed to retain SSA form.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A Recipe for widening load/store operations.
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
private:
  Instruction &Instr;
  std::unique_ptr<VPUser> User;

public:
  VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
      : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
    if (Mask) // Create a VPInstruction to register as a user of the mask.
      User.reset(new VPUser({Mask}));
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
  }

  /// Generate the wide load/store.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
  using RecipeListTy = iplist<VPRecipeBase>;

private:
  /// The VPRecipes held in the order of output instructions to generate.
  RecipeListTy Recipes;

public:
  VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
      : VPBlockBase(VPBasicBlockSC, Name.str()) {
    if (Recipe)
      appendRecipe(Recipe);
  }

  ~VPBasicBlock() override { Recipes.clear(); }

  /// Instruction iterators...
  using iterator = RecipeListTy::iterator;
  using const_iterator = RecipeListTy::const_iterator;
  using reverse_iterator = RecipeListTy::reverse_iterator;
  using const_reverse_iterator = RecipeListTy::const_reverse_iterator;

  //===--------------------------------------------------------------------===//
  /// Recipe iterator methods
  ///
  inline iterator begin() { return Recipes.begin(); }
  inline const_iterator begin() const { return Recipes.begin(); }
  inline iterator end() { return Recipes.end(); }
  inline const_iterator end() const { return Recipes.end(); }

  inline reverse_iterator rbegin() { return Recipes.rbegin(); }
  inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
  inline reverse_iterator rend() { return Recipes.rend(); }
  inline const_reverse_iterator rend() const { return Recipes.rend(); }

  inline size_t size() const { return Recipes.size(); }
  inline bool empty() const { return Recipes.empty(); }
  inline const VPRecipeBase &front() const { return Recipes.front(); }
  inline VPRecipeBase &front() { return Recipes.front(); }
  inline const VPRecipeBase &back() const { return Recipes.back(); }
  inline VPRecipeBase &back() { return Recipes.back(); }

  /// Returns a reference to the list of recipes.
  RecipeListTy &getRecipeList() { return Recipes; }

  /// Returns a pointer to a member of the recipe list.
  static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
    return &VPBasicBlock::Recipes;
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
  }

  void insert(VPRecipeBase *Recipe, iterator InsertPt) {
    assert(Recipe && "No recipe to append.");
    assert(!Recipe->Parent && "Recipe already in VPlan");
    Recipe->Parent = this;
    Recipes.insert(InsertPt, Recipe);
  }

  /// Augment the existing recipes of a VPBasicBlock with an additional
  /// \p Recipe as the last recipe.
  void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }

  /// The method which generates the output IR instructions that correspond to
  /// this VPBasicBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;

private:
  /// Create an IR BasicBlock to hold the output instructions generated by this
  /// VPBasicBlock, and return it. Update the CFGState accordingly.
  BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};

/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
private:
  /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Entry;

  /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Exit;

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool IsReplicator;

public:
  VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
                const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
        IsReplicator(IsReplicator) {
    assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
    assert(Exit->getSuccessors().empty() && "Exit block has successors.");
    Entry->setParent(this);
    Exit->setParent(this);
  }
  VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
        IsReplicator(IsReplicator) {}

  ~VPRegionBlock() override {
    if (Entry)
      deleteCFG(Entry);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
  }

  const VPBlockBase *getEntry() const { return Entry; }
  VPBlockBase *getEntry() { return Entry; }

  /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
  /// EntryBlock must have no predecessors.
  void setEntry(VPBlockBase *EntryBlock) {
    assert(EntryBlock->getPredecessors().empty() &&
           "Entry block cannot have predecessors.");
    Entry = EntryBlock;
    EntryBlock->setParent(this);
  }

  // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
  // specific interface of llvm::Function, instead of using
  // GraphTraints::getEntryNode. We should add a new template parameter to
  // DominatorTreeBase representing the Graph type.
  VPBlockBase &front() const { return *Entry; }

  const VPBlockBase *getExit() const { return Exit; }
  VPBlockBase *getExit() { return Exit; }

  /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
  /// ExitBlock must have no successors.
  void setExit(VPBlockBase *ExitBlock) {
    assert(ExitBlock->getSuccessors().empty() &&
           "Exit block cannot have successors.");
    Exit = ExitBlock;
    ExitBlock->setParent(this);
  }

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool isReplicator() const { return IsReplicator; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRegionBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;
};

/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
  friend class VPlanPrinter;

private:
  /// Hold the single entry to the Hierarchical CFG of the VPlan.
  VPBlockBase *Entry;

  /// Holds the VFs applicable to this VPlan.
  SmallSet<unsigned, 2> VFs;

  /// Holds the name of the VPlan, for printing.
  std::string Name;

  /// Holds all the external definitions created for this VPlan.
  // TODO: Introduce a specific representation for external definitions in
  // VPlan. External definitions must be immutable and hold a pointer to its
  // underlying IR that will be used to implement its structural comparison
  // (operators '==' and '<').
  SmallPtrSet<VPValue *, 16> VPExternalDefs;

  /// Represents the backedge taken count of the original loop, for folding
  /// the tail.
  VPValue *BackedgeTakenCount = nullptr;

  /// Holds a mapping between Values and their corresponding VPValue inside
  /// VPlan.
  Value2VPValueTy Value2VPValue;

  /// Holds the VPLoopInfo analysis for this VPlan.
  VPLoopInfo VPLInfo;

  /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
  SmallVector<VPValue *, 4> VPCBVs;

public:
  VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}

  ~VPlan() {
    if (Entry)
      VPBlockBase::deleteCFG(Entry);
    for (auto &MapEntry : Value2VPValue)
      if (MapEntry.second != BackedgeTakenCount)
        delete MapEntry.second;
    if (BackedgeTakenCount)
      delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
    for (VPValue *Def : VPExternalDefs)
      delete Def;
    for (VPValue *CBV : VPCBVs)
      delete CBV;
  }

  /// Generate the IR code for this VPlan.
  void execute(struct VPTransformState *State);

  VPBlockBase *getEntry() { return Entry; }
  const VPBlockBase *getEntry() const { return Entry; }

  VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }

  /// The backedge taken count of the original loop.
  VPValue *getOrCreateBackedgeTakenCount() {
    if (!BackedgeTakenCount)
      BackedgeTakenCount = new VPValue();
    return BackedgeTakenCount;
  }

  void addVF(unsigned VF) { VFs.insert(VF); }

  bool hasVF(unsigned VF) { return VFs.count(VF); }

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// Add \p VPVal to the pool of external definitions if it's not already
  /// in the pool.
  void addExternalDef(VPValue *VPVal) {
    VPExternalDefs.insert(VPVal);
  }

  /// Add \p CBV to the vector of condition bit values.
  void addCBV(VPValue *CBV) {
    VPCBVs.push_back(CBV);
  }

  void addVPValue(Value *V) {
    assert(V && "Trying to add a null Value to VPlan");
    assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
    Value2VPValue[V] = new VPValue();
  }

  VPValue *getVPValue(Value *V) {
    assert(V && "Trying to get the VPValue of a null Value");
    assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
    return Value2VPValue[V];
  }

  /// Return the VPLoopInfo analysis for this VPlan.
  VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
  const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }

private:
  /// Add to the given dominator tree the header block and every new basic block
  /// that was created between it and the latch block, inclusive.
  static void updateDominatorTree(DominatorTree *DT,
                                  BasicBlock *LoopPreHeaderBB,
                                  BasicBlock *LoopLatchBB);
};

/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
  friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
  friend inline raw_ostream &operator<<(raw_ostream &OS,
                                        const struct VPlanIngredient &I);

private:
  raw_ostream &OS;
  VPlan &Plan;
  unsigned Depth;
  unsigned TabWidth = 2;
  std::string Indent;
  unsigned BID = 0;
  SmallDenseMap<const VPBlockBase *, unsigned> BlockID;

  VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}

  /// Handle indentation.
  void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }

  /// Print a given \p Block of the Plan.
  void dumpBlock(const VPBlockBase *Block);

  /// Print the information related to the CFG edges going out of a given
  /// \p Block, followed by printing the successor blocks themselves.
  void dumpEdges(const VPBlockBase *Block);

  /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
  /// its successor blocks.
  void dumpBasicBlock(const VPBasicBlock *BasicBlock);

  /// Print a given \p Region of the Plan.
  void dumpRegion(const VPRegionBlock *Region);

  unsigned getOrCreateBID(const VPBlockBase *Block) {
    return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
  }

  const Twine getOrCreateName(const VPBlockBase *Block);

  const Twine getUID(const VPBlockBase *Block);

  /// Print the information related to a CFG edge between two VPBlockBases.
  void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
                const Twine &Label);

  void dump();

  static void printAsIngredient(raw_ostream &O, Value *V);
};

struct VPlanIngredient {
  Value *V;

  VPlanIngredient(Value *V) : V(V) {}
};

inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
  VPlanPrinter::printAsIngredient(OS, I.V);
  return OS;
}

inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
  VPlanPrinter Printer(OS, Plan);
  Printer.dump();
  return OS;
}

//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
//===----------------------------------------------------------------------===//

// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.

template <> struct GraphTraits<VPBlockBase *> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

template <> struct GraphTraits<const VPBlockBase *> {
  using NodeRef = const VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
// of successors for the inverse traversal.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getPredecessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getPredecessors().end();
  }
};

// The following set of template specializations implement GraphTraits to
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
// there won't be automatic recursion into other VPBlockBases that turn to be
// VPRegionBlocks.

template <>
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<const VPRegionBlock *>
    : public GraphTraits<const VPBlockBase *> {
  using GraphRef = const VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<Inverse<VPRegionBlock *>>
    : public GraphTraits<Inverse<VPBlockBase *>> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(Inverse<GraphRef> N) {
    return N.Graph->getExit();
  }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getExit());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//

/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
  VPBlockUtils() = delete;

  /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
  /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
  /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
  /// has more than one successor, its conditional bit is propagated to \p
  /// NewBlock. \p NewBlock must have neither successors nor predecessors.
  static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
    assert(NewBlock->getSuccessors().empty() &&
           "Can't insert new block with successors.");
    // TODO: move successors from BlockPtr to NewBlock when this functionality
    // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
    // already has successors.
    BlockPtr->setOneSuccessor(NewBlock);
    NewBlock->setPredecessors({BlockPtr});
    NewBlock->setParent(BlockPtr->getParent());
  }

  /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
  /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
  /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
  /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
  /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
  /// must have neither successors nor predecessors.
  static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                                   VPValue *Condition, VPBlockBase *BlockPtr) {
    assert(IfTrue->getSuccessors().empty() &&
           "Can't insert IfTrue with successors.");
    assert(IfFalse->getSuccessors().empty() &&
           "Can't insert IfFalse with successors.");
    BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
    IfTrue->setPredecessors({BlockPtr});
    IfFalse->setPredecessors({BlockPtr});
    IfTrue->setParent(BlockPtr->getParent());
    IfFalse->setParent(BlockPtr->getParent());
  }

  /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
  /// the successors of \p From and \p From to the predecessors of \p To. Both
  /// VPBlockBases must have the same parent, which can be null. Both
  /// VPBlockBases can be already connected to other VPBlockBases.
  static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert((From->getParent() == To->getParent()) &&
           "Can't connect two block with different parents");
    assert(From->getNumSuccessors() < 2 &&
           "Blocks can't have more than two successors.");
    From->appendSuccessor(To);
    To->appendPredecessor(From);
  }

  /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
  /// from the successors of \p From and \p From from the predecessors of \p To.
  static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert(To && "Successor to disconnect is null.");
    From->removeSuccessor(To);
    To->removePredecessor(From);
  }

  /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
  static bool isBackEdge(const VPBlockBase *FromBlock,
                         const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
    assert(FromBlock->getParent() == ToBlock->getParent() &&
           FromBlock->getParent() && "Must be in same region");
    const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
    const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
    if (!FromLoop || !ToLoop || FromLoop != ToLoop)
      return false;

    // A back-edge is a branch from the loop latch to its header.
    return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
  }

  /// Returns true if \p Block is a loop latch
  static bool blockIsLoopLatch(const VPBlockBase *Block,
                               const VPLoopInfo *VPLInfo) {
    if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
      return ParentVPL->isLoopLatch(Block);

    return false;
  }

  /// Count and return the number of succesors of \p PredBlock excluding any
  /// backedges.
  static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
                                      VPLoopInfo *VPLI) {
    unsigned Count = 0;
    for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
      if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
        Count++;
    }
    return Count;
  }
};

class VPInterleavedAccessInfo {
private:
  DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
      InterleaveGroupMap;

  /// Type for mapping of instruction based interleave groups to VPInstruction
  /// interleave groups
  using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
                             InterleaveGroup<VPInstruction> *>;

  /// Recursively \p Region and populate VPlan based interleave groups based on
  /// \p IAI.
  void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
                   InterleavedAccessInfo &IAI);
  /// Recursively traverse \p Block and populate VPlan based interleave groups
  /// based on \p IAI.
  void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
                  InterleavedAccessInfo &IAI);

public:
  VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);

  ~VPInterleavedAccessInfo() {
    SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
    // Avoid releasing a pointer twice.
    for (auto &I : InterleaveGroupMap)
      DelSet.insert(I.second);
    for (auto *Ptr : DelSet)
      delete Ptr;
  }

  /// Get the interleave group that \p Instr belongs to.
  ///
  /// \returns nullptr if doesn't have such group.
  InterleaveGroup<VPInstruction> *
  getInterleaveGroup(VPInstruction *Instr) const {
    if (InterleaveGroupMap.count(Instr))
      return InterleaveGroupMap.find(Instr)->second;
    return nullptr;
  }
};

/// Class that maps (parts of) an existing VPlan to trees of combined
/// VPInstructions.
class VPlanSlp {
private:
  enum class OpMode { Failed, Load, Opcode };

  /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
  /// DenseMap keys.
  struct BundleDenseMapInfo {
    static SmallVector<VPValue *, 4> getEmptyKey() {
      return {reinterpret_cast<VPValue *>(-1)};
    }

    static SmallVector<VPValue *, 4> getTombstoneKey() {
      return {reinterpret_cast<VPValue *>(-2)};
    }

    static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
    }

    static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
                        const SmallVector<VPValue *, 4> &RHS) {
      return LHS == RHS;
    }
  };

  /// Mapping of values in the original VPlan to a combined VPInstruction.
  DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
      BundleToCombined;

  VPInterleavedAccessInfo &IAI;

  /// Basic block to operate on. For now, only instructions in a single BB are
  /// considered.
  const VPBasicBlock &BB;

  /// Indicates whether we managed to combine all visited instructions or not.
  bool CompletelySLP = true;

  /// Width of the widest combined bundle in bits.
  unsigned WidestBundleBits = 0;

  using MultiNodeOpTy =
      typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;

  // Input operand bundles for the current multi node. Each multi node operand
  // bundle contains values not matching the multi node's opcode. They will
  // be reordered in reorderMultiNodeOps, once we completed building a
  // multi node.
  SmallVector<MultiNodeOpTy, 4> MultiNodeOps;

  /// Indicates whether we are building a multi node currently.
  bool MultiNodeActive = false;

  /// Check if we can vectorize Operands together.
  bool areVectorizable(ArrayRef<VPValue *> Operands) const;

  /// Add combined instruction \p New for the bundle \p Operands.
  void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);

  /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
  VPInstruction *markFailed();

  /// Reorder operands in the multi node to maximize sequential memory access
  /// and commutative operations.
  SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();

  /// Choose the best candidate to use for the lane after \p Last. The set of
  /// candidates to choose from are values with an opcode matching \p Last's
  /// or loads consecutive to \p Last.
  std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
                                       SmallPtrSetImpl<VPValue *> &Candidates,
                                       VPInterleavedAccessInfo &IAI);

  /// Print bundle \p Values to dbgs().
  void dumpBundle(ArrayRef<VPValue *> Values);

public:
  VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}

  ~VPlanSlp() {
    for (auto &KV : BundleToCombined)
      delete KV.second;
  }

  /// Tries to build an SLP tree rooted at \p Operands and returns a
  /// VPInstruction combining \p Operands, if they can be combined.
  VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);

  /// Return the width of the widest combined bundle in bits.
  unsigned getWidestBundleBits() const { return WidestBundleBits; }

  /// Return true if all visited instruction can be combined.
  bool isCompletelySLP() const { return CompletelySLP; }
};
} // end namespace llvm

#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H