reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating functions from LLVM IR into
// Machine IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "function-lowering-info"

/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
  if (I->use_empty()) return false;
  if (isa<PHINode>(I)) return true;
  const BasicBlock *BB = I->getParent();
  for (const User *U : I->users())
    if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
      return true;

  return false;
}

static ISD::NodeType getPreferredExtendForValue(const Value *V) {
  // For the users of the source value being used for compare instruction, if
  // the number of signed predicate is greater than unsigned predicate, we
  // prefer to use SIGN_EXTEND.
  //
  // With this optimization, we would be able to reduce some redundant sign or
  // zero extension instruction, and eventually more machine CSE opportunities
  // can be exposed.
  ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
  unsigned NumOfSigned = 0, NumOfUnsigned = 0;
  for (const User *U : V->users()) {
    if (const auto *CI = dyn_cast<CmpInst>(U)) {
      NumOfSigned += CI->isSigned();
      NumOfUnsigned += CI->isUnsigned();
    }
  }
  if (NumOfSigned > NumOfUnsigned)
    ExtendKind = ISD::SIGN_EXTEND;

  return ExtendKind;
}

void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
                               SelectionDAG *DAG) {
  Fn = &fn;
  MF = &mf;
  TLI = MF->getSubtarget().getTargetLowering();
  RegInfo = &MF->getRegInfo();
  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
  unsigned StackAlign = TFI->getStackAlignment();
  DA = DAG->getDivergenceAnalysis();

  // Check whether the function can return without sret-demotion.
  SmallVector<ISD::OutputArg, 4> Outs;
  CallingConv::ID CC = Fn->getCallingConv();

  GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
                mf.getDataLayout());
  CanLowerReturn =
      TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());

  // If this personality uses funclets, we need to do a bit more work.
  DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
  EHPersonality Personality = classifyEHPersonality(
      Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
  if (isFuncletEHPersonality(Personality)) {
    // Calculate state numbers if we haven't already.
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
    if (Personality == EHPersonality::MSVC_CXX)
      calculateWinCXXEHStateNumbers(&fn, EHInfo);
    else if (isAsynchronousEHPersonality(Personality))
      calculateSEHStateNumbers(&fn, EHInfo);
    else if (Personality == EHPersonality::CoreCLR)
      calculateClrEHStateNumbers(&fn, EHInfo);

    // Map all BB references in the WinEH data to MBBs.
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
      for (WinEHHandlerType &H : TBME.HandlerArray) {
        if (const AllocaInst *AI = H.CatchObj.Alloca)
          CatchObjects.insert({AI, {}}).first->second.push_back(
              &H.CatchObj.FrameIndex);
        else
          H.CatchObj.FrameIndex = INT_MAX;
      }
    }
  }
  if (Personality == EHPersonality::Wasm_CXX) {
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
    calculateWasmEHInfo(&fn, EHInfo);
  }

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  for (const BasicBlock &BB : *Fn) {
    for (const Instruction &I : BB) {
      if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
        Type *Ty = AI->getAllocatedType();
        unsigned Align =
          std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
                   AI->getAlignment());

        // Static allocas can be folded into the initial stack frame
        // adjustment. For targets that don't realign the stack, don't
        // do this if there is an extra alignment requirement.
        if (AI->isStaticAlloca() &&
            (TFI->isStackRealignable() || (Align <= StackAlign))) {
          const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
          uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);

          TySize *= CUI->getZExtValue();   // Get total allocated size.
          if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
          int FrameIndex = INT_MAX;
          auto Iter = CatchObjects.find(AI);
          if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
            FrameIndex = MF->getFrameInfo().CreateFixedObject(
                TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
            MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
          } else {
            FrameIndex =
                MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
          }

          StaticAllocaMap[AI] = FrameIndex;
          // Update the catch handler information.
          if (Iter != CatchObjects.end()) {
            for (int *CatchObjPtr : Iter->second)
              *CatchObjPtr = FrameIndex;
          }
        } else {
          // FIXME: Overaligned static allocas should be grouped into
          // a single dynamic allocation instead of using a separate
          // stack allocation for each one.
          if (Align <= StackAlign)
            Align = 0;
          // Inform the Frame Information that we have variable-sized objects.
          MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
        }
      }

      // Look for inline asm that clobbers the SP register.
      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        ImmutableCallSite CS(&I);
        if (isa<InlineAsm>(CS.getCalledValue())) {
          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
          const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
          std::vector<TargetLowering::AsmOperandInfo> Ops =
              TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
          for (TargetLowering::AsmOperandInfo &Op : Ops) {
            if (Op.Type == InlineAsm::isClobber) {
              // Clobbers don't have SDValue operands, hence SDValue().
              TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
              std::pair<unsigned, const TargetRegisterClass *> PhysReg =
                  TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
                                                    Op.ConstraintVT);
              if (PhysReg.first == SP)
                MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
            }
          }
        }
      }

      // Look for calls to the @llvm.va_start intrinsic. We can omit some
      // prologue boilerplate for variadic functions that don't examine their
      // arguments.
      if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          MF->getFrameInfo().setHasVAStart(true);
      }

      // If we have a musttail call in a variadic function, we need to ensure we
      // forward implicit register parameters.
      if (const auto *CI = dyn_cast<CallInst>(&I)) {
        if (CI->isMustTailCall() && Fn->isVarArg())
          MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
      }

      // Mark values used outside their block as exported, by allocating
      // a virtual register for them.
      if (isUsedOutsideOfDefiningBlock(&I))
        if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
          InitializeRegForValue(&I);

      // Decide the preferred extend type for a value.
      PreferredExtendType[&I] = getPreferredExtendForValue(&I);
    }
  }

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (const BasicBlock &BB : *Fn) {
    // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
    // are really data, and no instructions can live here.
    if (BB.isEHPad()) {
      const Instruction *PadInst = BB.getFirstNonPHI();
      // If this is a non-landingpad EH pad, mark this function as using
      // funclets.
      // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
      // setting this in such cases in order to improve frame layout.
      if (!isa<LandingPadInst>(PadInst)) {
        MF->setHasEHScopes(true);
        MF->setHasEHFunclets(true);
        MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
      }
      if (isa<CatchSwitchInst>(PadInst)) {
        assert(&*BB.begin() == PadInst &&
               "WinEHPrepare failed to remove PHIs from imaginary BBs");
        continue;
      }
      if (isa<FuncletPadInst>(PadInst))
        assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
    }

    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
    MBBMap[&BB] = MBB;
    MF->push_back(MBB);

    // Transfer the address-taken flag. This is necessary because there could
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    // the first one should be marked.
    if (BB.hasAddressTaken())
      MBB->setHasAddressTaken();

    // Mark landing pad blocks.
    if (BB.isEHPad())
      MBB->setIsEHPad();

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    for (const PHINode &PN : BB.phis()) {
      if (PN.use_empty())
        continue;

      // Skip empty types
      if (PN.getType()->isEmptyTy())
        continue;

      DebugLoc DL = PN.getDebugLoc();
      unsigned PHIReg = ValueMap[&PN];
      assert(PHIReg && "PHI node does not have an assigned virtual register!");

      SmallVector<EVT, 4> ValueVTs;
      ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
      for (EVT VT : ValueVTs) {
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
        const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
        for (unsigned i = 0; i != NumRegisters; ++i)
          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
        PHIReg += NumRegisters;
      }
    }
  }

  if (isFuncletEHPersonality(Personality)) {
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();

    // Map all BB references in the WinEH data to MBBs.
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
      for (WinEHHandlerType &H : TBME.HandlerArray) {
        if (H.Handler)
          H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
      }
    }
    for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
      if (UME.Cleanup)
        UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
    for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
      const auto *BB = UME.Handler.get<const BasicBlock *>();
      UME.Handler = MBBMap[BB];
    }
    for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
      const auto *BB = CME.Handler.get<const BasicBlock *>();
      CME.Handler = MBBMap[BB];
    }
  }

  else if (Personality == EHPersonality::Wasm_CXX) {
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
    // Map all BB references in the WinEH data to MBBs.
    DenseMap<BBOrMBB, BBOrMBB> NewMap;
    for (auto &KV : EHInfo.EHPadUnwindMap) {
      const auto *Src = KV.first.get<const BasicBlock *>();
      const auto *Dst = KV.second.get<const BasicBlock *>();
      NewMap[MBBMap[Src]] = MBBMap[Dst];
    }
    EHInfo.EHPadUnwindMap = std::move(NewMap);
  }
}

/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
void FunctionLoweringInfo::clear() {
  MBBMap.clear();
  ValueMap.clear();
  VirtReg2Value.clear();
  StaticAllocaMap.clear();
  LiveOutRegInfo.clear();
  VisitedBBs.clear();
  ArgDbgValues.clear();
  DescribedArgs.clear();
  ByValArgFrameIndexMap.clear();
  RegFixups.clear();
  RegsWithFixups.clear();
  StatepointStackSlots.clear();
  StatepointSpillMaps.clear();
  PreferredExtendType.clear();
}

/// CreateReg - Allocate a single virtual register for the given type.
unsigned FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
  return RegInfo->createVirtualRegister(
      MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
}

/// CreateRegs - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types.  Assign these registers
/// consecutive vreg numbers and return the first assigned number.
///
/// In the case that the given value has struct or array type, this function
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();

  SmallVector<EVT, 4> ValueVTs;
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);

  unsigned FirstReg = 0;
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    EVT ValueVT = ValueVTs[Value];
    MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);

    unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    for (unsigned i = 0; i != NumRegs; ++i) {
      unsigned R = CreateReg(RegisterVT, isDivergent);
      if (!FirstReg) FirstReg = R;
    }
  }
  return FirstReg;
}

unsigned FunctionLoweringInfo::CreateRegs(const Value *V) {
  return CreateRegs(V->getType(), DA && !TLI->requiresUniformRegister(*MF, V) &&
                                      DA->isDivergent(V));
}

/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
/// the larger bit width by zero extension. The bit width must be no smaller
/// than the LiveOutInfo's existing bit width.
const FunctionLoweringInfo::LiveOutInfo *
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
  if (!LiveOutRegInfo.inBounds(Reg))
    return nullptr;

  LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
  if (!LOI->IsValid)
    return nullptr;

  if (BitWidth > LOI->Known.getBitWidth()) {
    LOI->NumSignBits = 1;
    LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
  }

  return LOI;
}

/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
/// register based on the LiveOutInfo of its operands.
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
  Type *Ty = PN->getType();
  if (!Ty->isIntegerTy() || Ty->isVectorTy())
    return;

  SmallVector<EVT, 1> ValueVTs;
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
  assert(ValueVTs.size() == 1 &&
         "PHIs with non-vector integer types should have a single VT.");
  EVT IntVT = ValueVTs[0];

  if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    return;
  IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
  unsigned BitWidth = IntVT.getSizeInBits();

  unsigned DestReg = ValueMap[PN];
  if (!Register::isVirtualRegister(DestReg))
    return;
  LiveOutRegInfo.grow(DestReg);
  LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];

  Value *V = PN->getIncomingValue(0);
  if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    DestLOI.NumSignBits = 1;
    DestLOI.Known = KnownBits(BitWidth);
    return;
  }

  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    DestLOI.NumSignBits = Val.getNumSignBits();
    DestLOI.Known.Zero = ~Val;
    DestLOI.Known.One = Val;
  } else {
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
                                "CopyToReg node was created.");
    unsigned SrcReg = ValueMap[V];
    if (!Register::isVirtualRegister(SrcReg)) {
      DestLOI.IsValid = false;
      return;
    }
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    if (!SrcLOI) {
      DestLOI.IsValid = false;
      return;
    }
    DestLOI = *SrcLOI;
  }

  assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
         DestLOI.Known.One.getBitWidth() == BitWidth &&
         "Masks should have the same bit width as the type.");

  for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *V = PN->getIncomingValue(i);
    if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
      DestLOI.NumSignBits = 1;
      DestLOI.Known = KnownBits(BitWidth);
      return;
    }

    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      APInt Val = CI->getValue().zextOrTrunc(BitWidth);
      DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
      DestLOI.Known.Zero &= ~Val;
      DestLOI.Known.One &= Val;
      continue;
    }

    assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
                                "its CopyToReg node was created.");
    unsigned SrcReg = ValueMap[V];
    if (!Register::isVirtualRegister(SrcReg)) {
      DestLOI.IsValid = false;
      return;
    }
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    if (!SrcLOI) {
      DestLOI.IsValid = false;
      return;
    }
    DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    DestLOI.Known.Zero &= SrcLOI->Known.Zero;
    DestLOI.Known.One &= SrcLOI->Known.One;
  }
}

/// setArgumentFrameIndex - Record frame index for the byval
/// argument. This overrides previous frame index entry for this argument,
/// if any.
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
                                                 int FI) {
  ByValArgFrameIndexMap[A] = FI;
}

/// getArgumentFrameIndex - Get frame index for the byval argument.
/// If the argument does not have any assigned frame index then 0 is
/// returned.
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
  auto I = ByValArgFrameIndexMap.find(A);
  if (I != ByValArgFrameIndexMap.end())
    return I->second;
  LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
  return INT_MAX;
}

unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
    const Value *CPI, const TargetRegisterClass *RC) {
  MachineRegisterInfo &MRI = MF->getRegInfo();
  auto I = CatchPadExceptionPointers.insert({CPI, 0});
  unsigned &VReg = I.first->second;
  if (I.second)
    VReg = MRI.createVirtualRegister(RC);
  assert(VReg && "null vreg in exception pointer table!");
  return VReg;
}

const Value *
FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
  if (VirtReg2Value.empty()) {
    SmallVector<EVT, 4> ValueVTs;
    for (auto &P : ValueMap) {
      ValueVTs.clear();
      ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
                      P.first->getType(), ValueVTs);
      unsigned Reg = P.second;
      for (EVT VT : ValueVTs) {
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
          VirtReg2Value[Reg++] = P.first;
      }
    }
  }
  return VirtReg2Value.lookup(Vreg);
}