1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
| //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass abstracted struct/union member accesses in order to support
// compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
// which can run on different kernels. In particular, if bpf program tries to
// access a particular kernel data structure member, the details of the
// intermediate member access will be remembered so bpf loader can do
// necessary adjustment right before program loading.
//
// For example,
//
// struct s {
// int a;
// int b;
// };
// struct t {
// struct s c;
// int d;
// };
// struct t e;
//
// For the member access e.c.b, the compiler will generate code
// &e + 4
//
// The compile-once run-everywhere instead generates the following code
// r = 4
// &e + r
// The "4" in "r = 4" can be changed based on a particular kernel version.
// For example, on a particular kernel version, if struct s is changed to
//
// struct s {
// int new_field;
// int a;
// int b;
// }
//
// By repeating the member access on the host, the bpf loader can
// adjust "r = 4" as "r = 8".
//
// This feature relies on the following three intrinsic calls:
// addr = preserve_array_access_index(base, dimension, index)
// addr = preserve_union_access_index(base, di_index)
// !llvm.preserve.access.index <union_ditype>
// addr = preserve_struct_access_index(base, gep_index, di_index)
// !llvm.preserve.access.index <struct_ditype>
//
// Bitfield member access needs special attention. User cannot take the
// address of a bitfield acceess. To facilitate kernel verifier
// for easy bitfield code optimization, a new clang intrinsic is introduced:
// uint32_t __builtin_preserve_field_info(member_access, info_kind)
// In IR, a chain with two (or more) intrinsic calls will be generated:
// ...
// addr = preserve_struct_access_index(base, 1, 1) !struct s
// uint32_t result = bpf_preserve_field_info(addr, info_kind)
//
// Suppose the info_kind is FIELD_SIGNEDNESS,
// The above two IR intrinsics will be replaced with
// a relocatable insn:
// signness = /* signness of member_access */
// and signness can be changed by bpf loader based on the
// types on the host.
//
// User can also test whether a field exists or not with
// uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
// The field will be always available (result = 1) during initial
// compilation, but bpf loader can patch with the correct value
// on the target host where the member_access may or may not be available
//
//===----------------------------------------------------------------------===//
#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <stack>
#define DEBUG_TYPE "bpf-abstract-member-access"
namespace llvm {
const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
} // namespace llvm
using namespace llvm;
namespace {
class BPFAbstractMemberAccess final : public ModulePass {
StringRef getPassName() const override {
return "BPF Abstract Member Access";
}
bool runOnModule(Module &M) override;
public:
static char ID;
TargetMachine *TM;
// Add optional BPFTargetMachine parameter so that BPF backend can add the phase
// with target machine to find out the endianness. The default constructor (without
// parameters) is used by the pass manager for managing purposes.
BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {}
struct CallInfo {
uint32_t Kind;
uint32_t AccessIndex;
MDNode *Metadata;
Value *Base;
};
typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
private:
enum : uint32_t {
BPFPreserveArrayAI = 1,
BPFPreserveUnionAI = 2,
BPFPreserveStructAI = 3,
BPFPreserveFieldInfoAI = 4,
};
std::map<std::string, GlobalVariable *> GEPGlobals;
// A map to link preserve_*_access_index instrinsic calls.
std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
// A map to hold all the base preserve_*_access_index instrinsic calls.
// The base call is not an input of any other preserve_*
// intrinsics.
std::map<CallInst *, CallInfo> BaseAICalls;
bool doTransformation(Module &M);
void traceAICall(CallInst *Call, CallInfo &ParentInfo);
void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
CallInfo &ParentInfo);
void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
CallInfo &ParentInfo);
void collectAICallChains(Module &M, Function &F);
bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
const MDNode *ChildMeta);
bool removePreserveAccessIndexIntrinsic(Module &M);
void replaceWithGEP(std::vector<CallInst *> &CallList,
uint32_t NumOfZerosIndex, uint32_t DIIndex);
bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
void GetStorageBitRange(DICompositeType *CTy, DIDerivedType *MemberTy,
uint32_t AccessIndex, uint32_t &StartBitOffset,
uint32_t &EndBitOffset);
uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
uint32_t AccessIndex, uint32_t PatchImm);
Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
std::string &AccessKey, MDNode *&BaseMeta);
uint64_t getConstant(const Value *IndexValue);
bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo);
};
} // End anonymous namespace
char BPFAbstractMemberAccess::ID = 0;
INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
"abstracting struct/union member accessees", false, false)
ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
return new BPFAbstractMemberAccess(TM);
}
bool BPFAbstractMemberAccess::runOnModule(Module &M) {
LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
// Bail out if no debug info.
if (M.debug_compile_units().empty())
return false;
return doTransformation(M);
}
static bool SkipDIDerivedTag(unsigned Tag) {
if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
Tag != dwarf::DW_TAG_volatile_type &&
Tag != dwarf::DW_TAG_restrict_type &&
Tag != dwarf::DW_TAG_member)
return false;
return true;
}
static DIType * stripQualifiers(DIType *Ty) {
while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
if (!SkipDIDerivedTag(DTy->getTag()))
break;
Ty = DTy->getBaseType();
}
return Ty;
}
static const DIType * stripQualifiers(const DIType *Ty) {
while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
if (!SkipDIDerivedTag(DTy->getTag()))
break;
Ty = DTy->getBaseType();
}
return Ty;
}
static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
DINodeArray Elements = CTy->getElements();
uint32_t DimSize = 1;
for (uint32_t I = StartDim; I < Elements.size(); ++I) {
if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
const DISubrange *SR = cast<DISubrange>(Element);
auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
DimSize *= CI->getSExtValue();
}
}
return DimSize;
}
/// Check whether a call is a preserve_*_access_index intrinsic call or not.
bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
CallInfo &CInfo) {
if (!Call)
return false;
const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
if (!GV)
return false;
if (GV->getName().startswith("llvm.preserve.array.access.index")) {
CInfo.Kind = BPFPreserveArrayAI;
CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!CInfo.Metadata)
report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
CInfo.Base = Call->getArgOperand(0);
return true;
}
if (GV->getName().startswith("llvm.preserve.union.access.index")) {
CInfo.Kind = BPFPreserveUnionAI;
CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!CInfo.Metadata)
report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
CInfo.Base = Call->getArgOperand(0);
return true;
}
if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
CInfo.Kind = BPFPreserveStructAI;
CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!CInfo.Metadata)
report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
CInfo.Base = Call->getArgOperand(0);
return true;
}
if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
CInfo.Kind = BPFPreserveFieldInfoAI;
CInfo.Metadata = nullptr;
// Check validity of info_kind as clang did not check this.
uint64_t InfoKind = getConstant(Call->getArgOperand(1));
if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
CInfo.AccessIndex = InfoKind;
return true;
}
return false;
}
void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
uint32_t DimensionIndex,
uint32_t GEPIndex) {
for (auto Call : CallList) {
uint32_t Dimension = 1;
if (DimensionIndex > 0)
Dimension = getConstant(Call->getArgOperand(DimensionIndex));
Constant *Zero =
ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
SmallVector<Value *, 4> IdxList;
for (unsigned I = 0; I < Dimension; ++I)
IdxList.push_back(Zero);
IdxList.push_back(Call->getArgOperand(GEPIndex));
auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
IdxList, "", Call);
Call->replaceAllUsesWith(GEP);
Call->eraseFromParent();
}
}
bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
std::vector<CallInst *> PreserveArrayIndexCalls;
std::vector<CallInst *> PreserveUnionIndexCalls;
std::vector<CallInst *> PreserveStructIndexCalls;
bool Found = false;
for (Function &F : M)
for (auto &BB : F)
for (auto &I : BB) {
auto *Call = dyn_cast<CallInst>(&I);
CallInfo CInfo;
if (!IsPreserveDIAccessIndexCall(Call, CInfo))
continue;
Found = true;
if (CInfo.Kind == BPFPreserveArrayAI)
PreserveArrayIndexCalls.push_back(Call);
else if (CInfo.Kind == BPFPreserveUnionAI)
PreserveUnionIndexCalls.push_back(Call);
else
PreserveStructIndexCalls.push_back(Call);
}
// do the following transformation:
// . addr = preserve_array_access_index(base, dimension, index)
// is transformed to
// addr = GEP(base, dimenion's zero's, index)
// . addr = preserve_union_access_index(base, di_index)
// is transformed to
// addr = base, i.e., all usages of "addr" are replaced by "base".
// . addr = preserve_struct_access_index(base, gep_index, di_index)
// is transformed to
// addr = GEP(base, 0, gep_index)
replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
replaceWithGEP(PreserveStructIndexCalls, 0, 1);
for (auto Call : PreserveUnionIndexCalls) {
Call->replaceAllUsesWith(Call->getArgOperand(0));
Call->eraseFromParent();
}
return Found;
}
/// Check whether the access index chain is valid. We check
/// here because there may be type casts between two
/// access indexes. We want to ensure memory access still valid.
bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
uint32_t ParentAI,
const MDNode *ChildType) {
if (!ChildType)
return true; // preserve_field_info, no type comparison needed.
const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
// Child is a derived/pointer type, which is due to type casting.
// Pointer type cannot be in the middle of chain.
if (isa<DIDerivedType>(CType))
return false;
// Parent is a pointer type.
if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
return false;
return stripQualifiers(PtrTy->getBaseType()) == CType;
}
// Otherwise, struct/union/array types
const auto *PTy = dyn_cast<DICompositeType>(PType);
const auto *CTy = dyn_cast<DICompositeType>(CType);
assert(PTy && CTy && "ParentType or ChildType is null or not composite");
uint32_t PTyTag = PTy->getTag();
assert(PTyTag == dwarf::DW_TAG_array_type ||
PTyTag == dwarf::DW_TAG_structure_type ||
PTyTag == dwarf::DW_TAG_union_type);
uint32_t CTyTag = CTy->getTag();
assert(CTyTag == dwarf::DW_TAG_array_type ||
CTyTag == dwarf::DW_TAG_structure_type ||
CTyTag == dwarf::DW_TAG_union_type);
// Multi dimensional arrays, base element should be the same
if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
return PTy->getBaseType() == CTy->getBaseType();
DIType *Ty;
if (PTyTag == dwarf::DW_TAG_array_type)
Ty = PTy->getBaseType();
else
Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
}
void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
CallInfo &ParentInfo) {
for (User *U : Call->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Call, ParentInfo);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
CallInfo ChildInfo;
if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
ChildInfo.Metadata)) {
AIChain[CI] = std::make_pair(Call, ParentInfo);
traceAICall(CI, ChildInfo);
} else {
BaseAICalls[Call] = ParentInfo;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Call, ParentInfo);
else
BaseAICalls[Call] = ParentInfo;
} else {
BaseAICalls[Call] = ParentInfo;
}
}
}
void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
CallInst *Parent,
CallInfo &ParentInfo) {
for (User *U : BitCast->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Parent, ParentInfo);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
CallInfo ChildInfo;
if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
ChildInfo.Metadata)) {
AIChain[CI] = std::make_pair(Parent, ParentInfo);
traceAICall(CI, ChildInfo);
} else {
BaseAICalls[Parent] = ParentInfo;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Parent, ParentInfo);
else
BaseAICalls[Parent] = ParentInfo;
} else {
BaseAICalls[Parent] = ParentInfo;
}
}
}
void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
CallInfo &ParentInfo) {
for (User *U : GEP->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Parent, ParentInfo);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
CallInfo ChildInfo;
if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
ChildInfo.Metadata)) {
AIChain[CI] = std::make_pair(Parent, ParentInfo);
traceAICall(CI, ChildInfo);
} else {
BaseAICalls[Parent] = ParentInfo;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Parent, ParentInfo);
else
BaseAICalls[Parent] = ParentInfo;
} else {
BaseAICalls[Parent] = ParentInfo;
}
}
}
void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
AIChain.clear();
BaseAICalls.clear();
for (auto &BB : F)
for (auto &I : BB) {
CallInfo CInfo;
auto *Call = dyn_cast<CallInst>(&I);
if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
AIChain.find(Call) != AIChain.end())
continue;
traceAICall(Call, CInfo);
}
}
uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
assert(CV);
return CV->getValue().getZExtValue();
}
/// Get the start and the end of storage offset for \p MemberTy.
/// The storage bits are corresponding to the LLVM internal types,
/// and the storage bits for the member determines what load width
/// to use in order to extract the bitfield value.
void BPFAbstractMemberAccess::GetStorageBitRange(DICompositeType *CTy,
DIDerivedType *MemberTy,
uint32_t AccessIndex,
uint32_t &StartBitOffset,
uint32_t &EndBitOffset) {
auto SOff = dyn_cast<ConstantInt>(MemberTy->getStorageOffsetInBits());
assert(SOff);
StartBitOffset = SOff->getZExtValue();
EndBitOffset = CTy->getSizeInBits();
uint32_t Index = AccessIndex + 1;
for (; Index < CTy->getElements().size(); ++Index) {
auto Member = cast<DIDerivedType>(CTy->getElements()[Index]);
if (!Member->getStorageOffsetInBits()) {
EndBitOffset = Member->getOffsetInBits();
break;
}
SOff = dyn_cast<ConstantInt>(Member->getStorageOffsetInBits());
assert(SOff);
unsigned BitOffset = SOff->getZExtValue();
if (BitOffset != StartBitOffset) {
EndBitOffset = BitOffset;
break;
}
}
}
uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
DICompositeType *CTy,
uint32_t AccessIndex,
uint32_t PatchImm) {
if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
return 1;
uint32_t Tag = CTy->getTag();
if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
if (Tag == dwarf::DW_TAG_array_type) {
auto *EltTy = stripQualifiers(CTy->getBaseType());
PatchImm += AccessIndex * calcArraySize(CTy, 1) *
(EltTy->getSizeInBits() >> 3);
} else if (Tag == dwarf::DW_TAG_structure_type) {
auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
if (!MemberTy->isBitField()) {
PatchImm += MemberTy->getOffsetInBits() >> 3;
} else {
auto SOffset = dyn_cast<ConstantInt>(MemberTy->getStorageOffsetInBits());
assert(SOffset);
PatchImm += SOffset->getZExtValue() >> 3;
}
}
return PatchImm;
}
if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
if (Tag == dwarf::DW_TAG_array_type) {
auto *EltTy = stripQualifiers(CTy->getBaseType());
return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
} else {
auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
uint32_t SizeInBits = MemberTy->getSizeInBits();
if (!MemberTy->isBitField())
return SizeInBits >> 3;
unsigned SBitOffset, NextSBitOffset;
GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
SizeInBits = NextSBitOffset - SBitOffset;
if (SizeInBits & (SizeInBits - 1))
report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
return SizeInBits >> 3;
}
}
if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
const DIType *BaseTy;
if (Tag == dwarf::DW_TAG_array_type) {
// Signedness only checked when final array elements are accessed.
if (CTy->getElements().size() != 1)
report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
BaseTy = stripQualifiers(CTy->getBaseType());
} else {
auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
BaseTy = stripQualifiers(MemberTy->getBaseType());
}
// Only basic types and enum types have signedness.
const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
while (!BTy) {
const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
// Report an error if the field expression does not have signedness.
if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
BaseTy = stripQualifiers(CompTy->getBaseType());
BTy = dyn_cast<DIBasicType>(BaseTy);
}
uint32_t Encoding = BTy->getEncoding();
return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
}
if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
// The value is loaded into a value with FIELD_BYTE_SIZE size,
// and then zero or sign extended to U64.
// FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
// to extract the original value.
const Triple &Triple = TM->getTargetTriple();
DIDerivedType *MemberTy = nullptr;
bool IsBitField = false;
uint32_t SizeInBits;
if (Tag == dwarf::DW_TAG_array_type) {
auto *EltTy = stripQualifiers(CTy->getBaseType());
SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
} else {
MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
SizeInBits = MemberTy->getSizeInBits();
IsBitField = MemberTy->isBitField();
}
if (!IsBitField) {
if (SizeInBits > 64)
report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
return 64 - SizeInBits;
}
unsigned SBitOffset, NextSBitOffset;
GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
if (NextSBitOffset - SBitOffset > 64)
report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
unsigned OffsetInBits = MemberTy->getOffsetInBits();
if (Triple.getArch() == Triple::bpfel)
return SBitOffset + 64 - OffsetInBits - SizeInBits;
else
return OffsetInBits + 64 - NextSBitOffset;
}
if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
DIDerivedType *MemberTy = nullptr;
bool IsBitField = false;
uint32_t SizeInBits;
if (Tag == dwarf::DW_TAG_array_type) {
auto *EltTy = stripQualifiers(CTy->getBaseType());
SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
} else {
MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
SizeInBits = MemberTy->getSizeInBits();
IsBitField = MemberTy->isBitField();
}
if (!IsBitField) {
if (SizeInBits > 64)
report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
return 64 - SizeInBits;
}
unsigned SBitOffset, NextSBitOffset;
GetStorageBitRange(CTy, MemberTy, AccessIndex, SBitOffset, NextSBitOffset);
if (NextSBitOffset - SBitOffset > 64)
report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
return 64 - SizeInBits;
}
llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
}
bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
// This is called in error return path, no need to maintain CallStack.
while (CallStack.size()) {
auto StackElem = CallStack.top();
if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
return true;
CallStack.pop();
}
return false;
}
/// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
/// pointer of the first preserve_*_access_index call, and construct the access
/// string, which will be the name of a global variable.
Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
CallInfo &CInfo,
std::string &AccessKey,
MDNode *&TypeMeta) {
Value *Base = nullptr;
std::string TypeName;
CallInfoStack CallStack;
// Put the access chain into a stack with the top as the head of the chain.
while (Call) {
CallStack.push(std::make_pair(Call, CInfo));
CInfo = AIChain[Call].second;
Call = AIChain[Call].first;
}
// The access offset from the base of the head of chain is also
// calculated here as all debuginfo types are available.
// Get type name and calculate the first index.
// We only want to get type name from structure or union.
// If user wants a relocation like
// int *p; ... __builtin_preserve_access_index(&p[4]) ...
// or
// int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
// we will skip them.
uint32_t FirstIndex = 0;
uint32_t PatchImm = 0; // AccessOffset or the requested field info
uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
while (CallStack.size()) {
auto StackElem = CallStack.top();
Call = StackElem.first;
CInfo = StackElem.second;
if (!Base)
Base = CInfo.Base;
DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata));
if (CInfo.Kind == BPFPreserveUnionAI ||
CInfo.Kind == BPFPreserveStructAI) {
// struct or union type
TypeName = Ty->getName();
TypeMeta = Ty;
PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
break;
}
assert(CInfo.Kind == BPFPreserveArrayAI);
// Array entries will always be consumed for accumulative initial index.
CallStack.pop();
// BPFPreserveArrayAI
uint64_t AccessIndex = CInfo.AccessIndex;
DIType *BaseTy = nullptr;
bool CheckElemType = false;
if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
// array type
assert(CTy->getTag() == dwarf::DW_TAG_array_type);
FirstIndex += AccessIndex * calcArraySize(CTy, 1);
BaseTy = stripQualifiers(CTy->getBaseType());
CheckElemType = CTy->getElements().size() == 1;
} else {
// pointer type
auto *DTy = cast<DIDerivedType>(Ty);
assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
BaseTy = stripQualifiers(DTy->getBaseType());
CTy = dyn_cast<DICompositeType>(BaseTy);
if (!CTy) {
CheckElemType = true;
} else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
FirstIndex += AccessIndex;
CheckElemType = true;
} else {
FirstIndex += AccessIndex * calcArraySize(CTy, 0);
}
}
if (CheckElemType) {
auto *CTy = dyn_cast<DICompositeType>(BaseTy);
if (!CTy) {
if (HasPreserveFieldInfoCall(CallStack))
report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
return nullptr;
}
unsigned CTag = CTy->getTag();
if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
TypeName = CTy->getName();
} else {
if (HasPreserveFieldInfoCall(CallStack))
report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
return nullptr;
}
TypeMeta = CTy;
PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
break;
}
}
assert(TypeName.size());
AccessKey += std::to_string(FirstIndex);
// Traverse the rest of access chain to complete offset calculation
// and access key construction.
while (CallStack.size()) {
auto StackElem = CallStack.top();
CInfo = StackElem.second;
CallStack.pop();
if (CInfo.Kind == BPFPreserveFieldInfoAI)
break;
// If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
// the action will be extracting field info.
if (CallStack.size()) {
auto StackElem2 = CallStack.top();
CallInfo CInfo2 = StackElem2.second;
if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
InfoKind = CInfo2.AccessIndex;
assert(CallStack.size() == 1);
}
}
// Access Index
uint64_t AccessIndex = CInfo.AccessIndex;
AccessKey += ":" + std::to_string(AccessIndex);
MDNode *MDN = CInfo.Metadata;
// At this stage, it cannot be pointer type.
auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm);
}
// Access key is the type name + reloc type + patched imm + access string,
// uniquely identifying one relocation.
AccessKey = TypeName + ":" + std::to_string(InfoKind) + ":" +
std::to_string(PatchImm) + "$" + AccessKey;
return Base;
}
/// Call/Kind is the base preserve_*_access_index() call. Attempts to do
/// transformation to a chain of relocable GEPs.
bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
CallInfo &CInfo) {
std::string AccessKey;
MDNode *TypeMeta;
Value *Base =
computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
if (!Base)
return false;
BasicBlock *BB = Call->getParent();
GlobalVariable *GV;
if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
IntegerType *VarType;
if (CInfo.Kind == BPFPreserveFieldInfoAI)
VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
else
VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith
GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage,
NULL, AccessKey);
GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
GEPGlobals[AccessKey] = GV;
} else {
GV = GEPGlobals[AccessKey];
}
if (CInfo.Kind == BPFPreserveFieldInfoAI) {
// Load the global variable which represents the returned field info.
auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV);
BB->getInstList().insert(Call->getIterator(), LDInst);
Call->replaceAllUsesWith(LDInst);
Call->eraseFromParent();
return true;
}
// For any original GEP Call and Base %2 like
// %4 = bitcast %struct.net_device** %dev1 to i64*
// it is transformed to:
// %6 = load sk_buff:50:$0:0:0:2:0
// %7 = bitcast %struct.sk_buff* %2 to i8*
// %8 = getelementptr i8, i8* %7, %6
// %9 = bitcast i8* %8 to i64*
// using %9 instead of %4
// The original Call inst is removed.
// Load the global variable.
auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
BB->getInstList().insert(Call->getIterator(), LDInst);
// Generate a BitCast
auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
BB->getInstList().insert(Call->getIterator(), BCInst);
// Generate a GetElementPtr
auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
BCInst, LDInst);
BB->getInstList().insert(Call->getIterator(), GEP);
// Generate a BitCast
auto *BCInst2 = new BitCastInst(GEP, Call->getType());
BB->getInstList().insert(Call->getIterator(), BCInst2);
Call->replaceAllUsesWith(BCInst2);
Call->eraseFromParent();
return true;
}
bool BPFAbstractMemberAccess::doTransformation(Module &M) {
bool Transformed = false;
for (Function &F : M) {
// Collect PreserveDIAccessIndex Intrinsic call chains.
// The call chains will be used to generate the access
// patterns similar to GEP.
collectAICallChains(M, F);
for (auto &C : BaseAICalls)
Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
}
return removePreserveAccessIndexIntrinsic(M) || Transformed;
}
|