reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;
using ProfileCount = Function::ProfileCount;

#define DEBUG_TYPE "code-extractor"

// Provide a command-line option to aggregate function arguments into a struct
// for functions produced by the code extractor. This is useful when converting
// extracted functions to pthread-based code, as only one argument (void*) can
// be passed in to pthread_create().
static cl::opt<bool>
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
                 cl::desc("Aggregate arguments to code-extracted functions"));

/// Test whether a block is valid for extraction.
static bool isBlockValidForExtraction(const BasicBlock &BB,
                                      const SetVector<BasicBlock *> &Result,
                                      bool AllowVarArgs, bool AllowAlloca) {
  // taking the address of a basic block moved to another function is illegal
  if (BB.hasAddressTaken())
    return false;

  // don't hoist code that uses another basicblock address, as it's likely to
  // lead to unexpected behavior, like cross-function jumps
  SmallPtrSet<User const *, 16> Visited;
  SmallVector<User const *, 16> ToVisit;

  for (Instruction const &Inst : BB)
    ToVisit.push_back(&Inst);

  while (!ToVisit.empty()) {
    User const *Curr = ToVisit.pop_back_val();
    if (!Visited.insert(Curr).second)
      continue;
    if (isa<BlockAddress const>(Curr))
      return false; // even a reference to self is likely to be not compatible

    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
      continue;

    for (auto const &U : Curr->operands()) {
      if (auto *UU = dyn_cast<User>(U))
        ToVisit.push_back(UU);
    }
  }

  // If explicitly requested, allow vastart and alloca. For invoke instructions
  // verify that extraction is valid.
  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
    if (isa<AllocaInst>(I)) {
       if (!AllowAlloca)
         return false;
       continue;
    }

    if (const auto *II = dyn_cast<InvokeInst>(I)) {
      // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
      // must be a part of the subgraph which is being extracted.
      if (auto *UBB = II->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    // All catch handlers of a catchswitch instruction as well as the unwind
    // destination must be in the subgraph.
    if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
      if (auto *UBB = CSI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      for (auto *HBB : CSI->handlers())
        if (!Result.count(const_cast<BasicBlock*>(HBB)))
          return false;
      continue;
    }

    // Make sure that entire catch handler is within subgraph. It is sufficient
    // to check that catch return's block is in the list.
    if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }

    // And do similar checks for cleanup handler - the entire handler must be
    // in subgraph which is going to be extracted. For cleanup return should
    // additionally check that the unwind destination is also in the subgraph.
    if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
      if (auto *UBB = CRI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (const Function *F = CI->getCalledFunction()) {
        auto IID = F->getIntrinsicID();
        if (IID == Intrinsic::vastart) {
          if (AllowVarArgs)
            continue;
          else
            return false;
        }

        // Currently, we miscompile outlined copies of eh_typid_for. There are
        // proposals for fixing this in llvm.org/PR39545.
        if (IID == Intrinsic::eh_typeid_for)
          return false;
      }
    }
  }

  return true;
}

/// Build a set of blocks to extract if the input blocks are viable.
static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                        bool AllowVarArgs, bool AllowAlloca) {
  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
  SetVector<BasicBlock *> Result;

  // Loop over the blocks, adding them to our set-vector, and aborting with an
  // empty set if we encounter invalid blocks.
  for (BasicBlock *BB : BBs) {
    // If this block is dead, don't process it.
    if (DT && !DT->isReachableFromEntry(BB))
      continue;

    if (!Result.insert(BB))
      llvm_unreachable("Repeated basic blocks in extraction input");
  }

  LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
                    << '\n');

  for (auto *BB : Result) {
    if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
      return {};

    // Make sure that the first block is not a landing pad.
    if (BB == Result.front()) {
      if (BB->isEHPad()) {
        LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
        return {};
      }
      continue;
    }

    // All blocks other than the first must not have predecessors outside of
    // the subgraph which is being extracted.
    for (auto *PBB : predecessors(BB))
      if (!Result.count(PBB)) {
        LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
                             "outside the region except for the first block!\n"
                          << "Problematic source BB: " << BB->getName() << "\n"
                          << "Problematic destination BB: " << PBB->getName()
                          << "\n");
        return {};
      }
  }

  return Result;
}

CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                             bool AggregateArgs, BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             bool AllowVarArgs, bool AllowAlloca,
                             std::string Suffix)
    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
      Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
      Suffix(Suffix) {}

CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
                             BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             std::string Suffix)
    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllowVarArgs(false),
      Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
                                     /* AllowVarArgs */ false,
                                     /* AllowAlloca */ false)),
      Suffix(Suffix) {}

/// definedInRegion - Return true if the specified value is defined in the
/// extracted region.
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (Blocks.count(I->getParent()))
      return true;
  return false;
}

/// definedInCaller - Return true if the specified value is defined in the
/// function being code extracted, but not in the region being extracted.
/// These values must be passed in as live-ins to the function.
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (isa<Argument>(V)) return true;
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (!Blocks.count(I->getParent()))
      return true;
  return false;
}

static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
  BasicBlock *CommonExitBlock = nullptr;
  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
    for (auto *Succ : successors(Block)) {
      // Internal edges, ok.
      if (Blocks.count(Succ))
        continue;
      if (!CommonExitBlock) {
        CommonExitBlock = Succ;
        continue;
      }
      if (CommonExitBlock != Succ)
        return true;
    }
    return false;
  };

  if (any_of(Blocks, hasNonCommonExitSucc))
    return nullptr;

  return CommonExitBlock;
}

CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
  for (BasicBlock &BB : F) {
    for (Instruction &II : BB.instructionsWithoutDebug())
      if (auto *AI = dyn_cast<AllocaInst>(&II))
        Allocas.push_back(AI);

    findSideEffectInfoForBlock(BB);
  }
}

void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
  for (Instruction &II : BB.instructionsWithoutDebug()) {
    unsigned Opcode = II.getOpcode();
    Value *MemAddr = nullptr;
    switch (Opcode) {
    case Instruction::Store:
    case Instruction::Load: {
      if (Opcode == Instruction::Store) {
        StoreInst *SI = cast<StoreInst>(&II);
        MemAddr = SI->getPointerOperand();
      } else {
        LoadInst *LI = cast<LoadInst>(&II);
        MemAddr = LI->getPointerOperand();
      }
      // Global variable can not be aliased with locals.
      if (dyn_cast<Constant>(MemAddr))
        break;
      Value *Base = MemAddr->stripInBoundsConstantOffsets();
      if (!isa<AllocaInst>(Base)) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
      BaseMemAddrs[&BB].insert(Base);
      break;
    }
    default: {
      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
      if (IntrInst) {
        if (IntrInst->isLifetimeStartOrEnd())
          break;
        SideEffectingBlocks.insert(&BB);
        return;
      }
      // Treat all the other cases conservatively if it has side effects.
      if (II.mayHaveSideEffects()) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
    }
    }
  }
}

bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
    BasicBlock &BB, AllocaInst *Addr) const {
  if (SideEffectingBlocks.count(&BB))
    return true;
  auto It = BaseMemAddrs.find(&BB);
  if (It != BaseMemAddrs.end())
    return It->second.count(Addr);
  return false;
}

bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
    const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
  Function *Func = (*Blocks.begin())->getParent();
  for (BasicBlock &BB : *Func) {
    if (Blocks.count(&BB))
      continue;
    if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
      return false;
  }
  return true;
}

BasicBlock *
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
  BasicBlock *SinglePredFromOutlineRegion = nullptr;
  assert(!Blocks.count(CommonExitBlock) &&
         "Expect a block outside the region!");
  for (auto *Pred : predecessors(CommonExitBlock)) {
    if (!Blocks.count(Pred))
      continue;
    if (!SinglePredFromOutlineRegion) {
      SinglePredFromOutlineRegion = Pred;
    } else if (SinglePredFromOutlineRegion != Pred) {
      SinglePredFromOutlineRegion = nullptr;
      break;
    }
  }

  if (SinglePredFromOutlineRegion)
    return SinglePredFromOutlineRegion;

#ifndef NDEBUG
  auto getFirstPHI = [](BasicBlock *BB) {
    BasicBlock::iterator I = BB->begin();
    PHINode *FirstPhi = nullptr;
    while (I != BB->end()) {
      PHINode *Phi = dyn_cast<PHINode>(I);
      if (!Phi)
        break;
      if (!FirstPhi) {
        FirstPhi = Phi;
        break;
      }
    }
    return FirstPhi;
  };
  // If there are any phi nodes, the single pred either exists or has already
  // be created before code extraction.
  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
#endif

  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
      CommonExitBlock->getFirstNonPHI()->getIterator());

  for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
       PI != PE;) {
    BasicBlock *Pred = *PI++;
    if (Blocks.count(Pred))
      continue;
    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
  }
  // Now add the old exit block to the outline region.
  Blocks.insert(CommonExitBlock);
  return CommonExitBlock;
}

// Find the pair of life time markers for address 'Addr' that are either
// defined inside the outline region or can legally be shrinkwrapped into the
// outline region. If there are not other untracked uses of the address, return
// the pair of markers if found; otherwise return a pair of nullptr.
CodeExtractor::LifetimeMarkerInfo
CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
                                  Instruction *Addr,
                                  BasicBlock *ExitBlock) const {
  LifetimeMarkerInfo Info;

  for (User *U : Addr->users()) {
    IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
    if (IntrInst) {
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
        // Do not handle the case where Addr has multiple start markers.
        if (Info.LifeStart)
          return {};
        Info.LifeStart = IntrInst;
      }
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
        if (Info.LifeEnd)
          return {};
        Info.LifeEnd = IntrInst;
      }
      continue;
    }
    // Find untracked uses of the address, bail.
    if (!definedInRegion(Blocks, U))
      return {};
  }

  if (!Info.LifeStart || !Info.LifeEnd)
    return {};

  Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
  Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
  // Do legality check.
  if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
      !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
    return {};

  // Check to see if we have a place to do hoisting, if not, bail.
  if (Info.HoistLifeEnd && !ExitBlock)
    return {};

  return Info;
}

void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
                                ValueSet &SinkCands, ValueSet &HoistCands,
                                BasicBlock *&ExitBlock) const {
  Function *Func = (*Blocks.begin())->getParent();
  ExitBlock = getCommonExitBlock(Blocks);

  auto moveOrIgnoreLifetimeMarkers =
      [&](const LifetimeMarkerInfo &LMI) -> bool {
    if (!LMI.LifeStart)
      return false;
    if (LMI.SinkLifeStart) {
      LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
                        << "\n");
      SinkCands.insert(LMI.LifeStart);
    }
    if (LMI.HoistLifeEnd) {
      LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
      HoistCands.insert(LMI.LifeEnd);
    }
    return true;
  };

  // Look up allocas in the original function in CodeExtractorAnalysisCache, as
  // this is much faster than walking all the instructions.
  for (AllocaInst *AI : CEAC.getAllocas()) {
    BasicBlock *BB = AI->getParent();
    if (Blocks.count(BB))
      continue;

    // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
    // check whether it is actually still in the original function.
    Function *AIFunc = BB->getParent();
    if (AIFunc != Func)
      continue;

    LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
    bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
    if (Moved) {
      LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
      SinkCands.insert(AI);
      continue;
    }

    // Follow any bitcasts.
    SmallVector<Instruction *, 2> Bitcasts;
    SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
    for (User *U : AI->users()) {
      if (U->stripInBoundsConstantOffsets() == AI) {
        Instruction *Bitcast = cast<Instruction>(U);
        LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
        if (LMI.LifeStart) {
          Bitcasts.push_back(Bitcast);
          BitcastLifetimeInfo.push_back(LMI);
          continue;
        }
      }

      // Found unknown use of AI.
      if (!definedInRegion(Blocks, U)) {
        Bitcasts.clear();
        break;
      }
    }

    // Either no bitcasts reference the alloca or there are unknown uses.
    if (Bitcasts.empty())
      continue;

    LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
    SinkCands.insert(AI);
    for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
      Instruction *BitcastAddr = Bitcasts[I];
      const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
      assert(LMI.LifeStart &&
             "Unsafe to sink bitcast without lifetime markers");
      moveOrIgnoreLifetimeMarkers(LMI);
      if (!definedInRegion(Blocks, BitcastAddr)) {
        LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
                          << "\n");
        SinkCands.insert(BitcastAddr);
      }
    }
  }
}

bool CodeExtractor::isEligible() const {
  if (Blocks.empty())
    return false;
  BasicBlock *Header = *Blocks.begin();
  Function *F = Header->getParent();

  // For functions with varargs, check that varargs handling is only done in the
  // outlined function, i.e vastart and vaend are only used in outlined blocks.
  if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
    auto containsVarArgIntrinsic = [](const Instruction &I) {
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
        if (const Function *Callee = CI->getCalledFunction())
          return Callee->getIntrinsicID() == Intrinsic::vastart ||
                 Callee->getIntrinsicID() == Intrinsic::vaend;
      return false;
    };

    for (auto &BB : *F) {
      if (Blocks.count(&BB))
        continue;
      if (llvm::any_of(BB, containsVarArgIntrinsic))
        return false;
    }
  }
  return true;
}

void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
                                      const ValueSet &SinkCands) const {
  for (BasicBlock *BB : Blocks) {
    // If a used value is defined outside the region, it's an input.  If an
    // instruction is used outside the region, it's an output.
    for (Instruction &II : *BB) {
      for (auto &OI : II.operands()) {
        Value *V = OI;
        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
          Inputs.insert(V);
      }

      for (User *U : II.users())
        if (!definedInRegion(Blocks, U)) {
          Outputs.insert(&II);
          break;
        }
    }
  }
}

/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
/// of the region, we need to split the entry block of the region so that the
/// PHI node is easier to deal with.
void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
  unsigned NumPredsFromRegion = 0;
  unsigned NumPredsOutsideRegion = 0;

  if (Header != &Header->getParent()->getEntryBlock()) {
    PHINode *PN = dyn_cast<PHINode>(Header->begin());
    if (!PN) return;  // No PHI nodes.

    // If the header node contains any PHI nodes, check to see if there is more
    // than one entry from outside the region.  If so, we need to sever the
    // header block into two.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i)))
        ++NumPredsFromRegion;
      else
        ++NumPredsOutsideRegion;

    // If there is one (or fewer) predecessor from outside the region, we don't
    // need to do anything special.
    if (NumPredsOutsideRegion <= 1) return;
  }

  // Otherwise, we need to split the header block into two pieces: one
  // containing PHI nodes merging values from outside of the region, and a
  // second that contains all of the code for the block and merges back any
  // incoming values from inside of the region.
  BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);

  // We only want to code extract the second block now, and it becomes the new
  // header of the region.
  BasicBlock *OldPred = Header;
  Blocks.remove(OldPred);
  Blocks.insert(NewBB);
  Header = NewBB;

  // Okay, now we need to adjust the PHI nodes and any branches from within the
  // region to go to the new header block instead of the old header block.
  if (NumPredsFromRegion) {
    PHINode *PN = cast<PHINode>(OldPred->begin());
    // Loop over all of the predecessors of OldPred that are in the region,
    // changing them to branch to NewBB instead.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i))) {
        Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
        TI->replaceUsesOfWith(OldPred, NewBB);
      }

    // Okay, everything within the region is now branching to the right block, we
    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    BasicBlock::iterator AfterPHIs;
    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
      PHINode *PN = cast<PHINode>(AfterPHIs);
      // Create a new PHI node in the new region, which has an incoming value
      // from OldPred of PN.
      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
                                       PN->getName() + ".ce", &NewBB->front());
      PN->replaceAllUsesWith(NewPN);
      NewPN->addIncoming(PN, OldPred);

      // Loop over all of the incoming value in PN, moving them to NewPN if they
      // are from the extracted region.
      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
        if (Blocks.count(PN->getIncomingBlock(i))) {
          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
          PN->removeIncomingValue(i);
          --i;
        }
      }
    }
  }
}

/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
/// outlined region, we split these PHIs on two: one with inputs from region
/// and other with remaining incoming blocks; then first PHIs are placed in
/// outlined region.
void CodeExtractor::severSplitPHINodesOfExits(
    const SmallPtrSetImpl<BasicBlock *> &Exits) {
  for (BasicBlock *ExitBB : Exits) {
    BasicBlock *NewBB = nullptr;

    for (PHINode &PN : ExitBB->phis()) {
      // Find all incoming values from the outlining region.
      SmallVector<unsigned, 2> IncomingVals;
      for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
        if (Blocks.count(PN.getIncomingBlock(i)))
          IncomingVals.push_back(i);

      // Do not process PHI if there is one (or fewer) predecessor from region.
      // If PHI has exactly one predecessor from region, only this one incoming
      // will be replaced on codeRepl block, so it should be safe to skip PHI.
      if (IncomingVals.size() <= 1)
        continue;

      // Create block for new PHIs and add it to the list of outlined if it
      // wasn't done before.
      if (!NewBB) {
        NewBB = BasicBlock::Create(ExitBB->getContext(),
                                   ExitBB->getName() + ".split",
                                   ExitBB->getParent(), ExitBB);
        SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
                                           pred_end(ExitBB));
        for (BasicBlock *PredBB : Preds)
          if (Blocks.count(PredBB))
            PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
        BranchInst::Create(ExitBB, NewBB);
        Blocks.insert(NewBB);
      }

      // Split this PHI.
      PHINode *NewPN =
          PHINode::Create(PN.getType(), IncomingVals.size(),
                          PN.getName() + ".ce", NewBB->getFirstNonPHI());
      for (unsigned i : IncomingVals)
        NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
      for (unsigned i : reverse(IncomingVals))
        PN.removeIncomingValue(i, false);
      PN.addIncoming(NewPN, NewBB);
    }
  }
}

void CodeExtractor::splitReturnBlocks() {
  for (BasicBlock *Block : Blocks)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
      BasicBlock *New =
          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
      if (DT) {
        // Old dominates New. New node dominates all other nodes dominated
        // by Old.
        DomTreeNode *OldNode = DT->getNode(Block);
        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
                                               OldNode->end());

        DomTreeNode *NewNode = DT->addNewBlock(New, Block);

        for (DomTreeNode *I : Children)
          DT->changeImmediateDominator(I, NewNode);
      }
    }
}

/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
                                           const ValueSet &outputs,
                                           BasicBlock *header,
                                           BasicBlock *newRootNode,
                                           BasicBlock *newHeader,
                                           Function *oldFunction,
                                           Module *M) {
  LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
  LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");

  // This function returns unsigned, outputs will go back by reference.
  switch (NumExitBlocks) {
  case 0:
  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
  default: RetTy = Type::getInt16Ty(header->getContext()); break;
  }

  std::vector<Type *> paramTy;

  // Add the types of the input values to the function's argument list
  for (Value *value : inputs) {
    LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
    paramTy.push_back(value->getType());
  }

  // Add the types of the output values to the function's argument list.
  for (Value *output : outputs) {
    LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
    if (AggregateArgs)
      paramTy.push_back(output->getType());
    else
      paramTy.push_back(PointerType::getUnqual(output->getType()));
  }

  LLVM_DEBUG({
    dbgs() << "Function type: " << *RetTy << " f(";
    for (Type *i : paramTy)
      dbgs() << *i << ", ";
    dbgs() << ")\n";
  });

  StructType *StructTy;
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    StructTy = StructType::get(M->getContext(), paramTy);
    paramTy.clear();
    paramTy.push_back(PointerType::getUnqual(StructTy));
  }
  FunctionType *funcType =
                  FunctionType::get(RetTy, paramTy,
                                    AllowVarArgs && oldFunction->isVarArg());

  std::string SuffixToUse =
      Suffix.empty()
          ? (header->getName().empty() ? "extracted" : header->getName().str())
          : Suffix;
  // Create the new function
  Function *newFunction = Function::Create(
      funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
      oldFunction->getName() + "." + SuffixToUse, M);
  // If the old function is no-throw, so is the new one.
  if (oldFunction->doesNotThrow())
    newFunction->setDoesNotThrow();

  // Inherit the uwtable attribute if we need to.
  if (oldFunction->hasUWTable())
    newFunction->setHasUWTable();

  // Inherit all of the target dependent attributes and white-listed
  // target independent attributes.
  //  (e.g. If the extracted region contains a call to an x86.sse
  //  instruction we need to make sure that the extracted region has the
  //  "target-features" attribute allowing it to be lowered.
  // FIXME: This should be changed to check to see if a specific
  //           attribute can not be inherited.
  for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
    if (Attr.isStringAttribute()) {
      if (Attr.getKindAsString() == "thunk")
        continue;
    } else
      switch (Attr.getKindAsEnum()) {
      // Those attributes cannot be propagated safely. Explicitly list them
      // here so we get a warning if new attributes are added. This list also
      // includes non-function attributes.
      case Attribute::Alignment:
      case Attribute::AllocSize:
      case Attribute::ArgMemOnly:
      case Attribute::Builtin:
      case Attribute::ByVal:
      case Attribute::Convergent:
      case Attribute::Dereferenceable:
      case Attribute::DereferenceableOrNull:
      case Attribute::InAlloca:
      case Attribute::InReg:
      case Attribute::InaccessibleMemOnly:
      case Attribute::InaccessibleMemOrArgMemOnly:
      case Attribute::JumpTable:
      case Attribute::Naked:
      case Attribute::Nest:
      case Attribute::NoAlias:
      case Attribute::NoBuiltin:
      case Attribute::NoCapture:
      case Attribute::NoReturn:
      case Attribute::NoSync:
      case Attribute::None:
      case Attribute::NonNull:
      case Attribute::ReadNone:
      case Attribute::ReadOnly:
      case Attribute::Returned:
      case Attribute::ReturnsTwice:
      case Attribute::SExt:
      case Attribute::Speculatable:
      case Attribute::StackAlignment:
      case Attribute::StructRet:
      case Attribute::SwiftError:
      case Attribute::SwiftSelf:
      case Attribute::WillReturn:
      case Attribute::WriteOnly:
      case Attribute::ZExt:
      case Attribute::ImmArg:
      case Attribute::EndAttrKinds:
        continue;
      // Those attributes should be safe to propagate to the extracted function.
      case Attribute::AlwaysInline:
      case Attribute::Cold:
      case Attribute::NoRecurse:
      case Attribute::InlineHint:
      case Attribute::MinSize:
      case Attribute::NoDuplicate:
      case Attribute::NoFree:
      case Attribute::NoImplicitFloat:
      case Attribute::NoInline:
      case Attribute::NonLazyBind:
      case Attribute::NoRedZone:
      case Attribute::NoUnwind:
      case Attribute::OptForFuzzing:
      case Attribute::OptimizeNone:
      case Attribute::OptimizeForSize:
      case Attribute::SafeStack:
      case Attribute::ShadowCallStack:
      case Attribute::SanitizeAddress:
      case Attribute::SanitizeMemory:
      case Attribute::SanitizeThread:
      case Attribute::SanitizeHWAddress:
      case Attribute::SanitizeMemTag:
      case Attribute::SpeculativeLoadHardening:
      case Attribute::StackProtect:
      case Attribute::StackProtectReq:
      case Attribute::StackProtectStrong:
      case Attribute::StrictFP:
      case Attribute::UWTable:
      case Attribute::NoCfCheck:
        break;
      }

    newFunction->addFnAttr(Attr);
  }
  newFunction->getBasicBlockList().push_back(newRootNode);

  // Create an iterator to name all of the arguments we inserted.
  Function::arg_iterator AI = newFunction->arg_begin();

  // Rewrite all users of the inputs in the extracted region to use the
  // arguments (or appropriate addressing into struct) instead.
  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    Value *RewriteVal;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
      Instruction *TI = newFunction->begin()->getTerminator();
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
      RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
                                "loadgep_" + inputs[i]->getName(), TI);
    } else
      RewriteVal = &*AI++;

    std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    for (User *use : Users)
      if (Instruction *inst = dyn_cast<Instruction>(use))
        if (Blocks.count(inst->getParent()))
          inst->replaceUsesOfWith(inputs[i], RewriteVal);
  }

  // Set names for input and output arguments.
  if (!AggregateArgs) {
    AI = newFunction->arg_begin();
    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
      AI->setName(inputs[i]->getName());
    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
      AI->setName(outputs[i]->getName()+".out");
  }

  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
  // within the new function. This must be done before we lose track of which
  // blocks were originally in the code region.
  std::vector<User *> Users(header->user_begin(), header->user_end());
  for (auto &U : Users)
    // The BasicBlock which contains the branch is not in the region
    // modify the branch target to a new block
    if (Instruction *I = dyn_cast<Instruction>(U))
      if (I->isTerminator() && I->getFunction() == oldFunction &&
          !Blocks.count(I->getParent()))
        I->replaceUsesOfWith(header, newHeader);

  return newFunction;
}

/// Erase lifetime.start markers which reference inputs to the extraction
/// region, and insert the referenced memory into \p LifetimesStart.
///
/// The extraction region is defined by a set of blocks (\p Blocks), and a set
/// of allocas which will be moved from the caller function into the extracted
/// function (\p SunkAllocas).
static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
                                         const SetVector<Value *> &SunkAllocas,
                                         SetVector<Value *> &LifetimesStart) {
  for (BasicBlock *BB : Blocks) {
    for (auto It = BB->begin(), End = BB->end(); It != End;) {
      auto *II = dyn_cast<IntrinsicInst>(&*It);
      ++It;
      if (!II || !II->isLifetimeStartOrEnd())
        continue;

      // Get the memory operand of the lifetime marker. If the underlying
      // object is a sunk alloca, or is otherwise defined in the extraction
      // region, the lifetime marker must not be erased.
      Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
      if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
        continue;

      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
        LifetimesStart.insert(Mem);
      II->eraseFromParent();
    }
  }
}

/// Insert lifetime start/end markers surrounding the call to the new function
/// for objects defined in the caller.
static void insertLifetimeMarkersSurroundingCall(
    Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
    CallInst *TheCall) {
  LLVMContext &Ctx = M->getContext();
  auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
  auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
  Instruction *Term = TheCall->getParent()->getTerminator();

  // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
  // needed to satisfy this requirement so they may be reused.
  DenseMap<Value *, Value *> Bitcasts;

  // Emit lifetime markers for the pointers given in \p Objects. Insert the
  // markers before the call if \p InsertBefore, and after the call otherwise.
  auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
                           bool InsertBefore) {
    for (Value *Mem : Objects) {
      assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
                                            TheCall->getFunction()) &&
             "Input memory not defined in original function");
      Value *&MemAsI8Ptr = Bitcasts[Mem];
      if (!MemAsI8Ptr) {
        if (Mem->getType() == Int8PtrTy)
          MemAsI8Ptr = Mem;
        else
          MemAsI8Ptr =
              CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
      }

      auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
      if (InsertBefore)
        Marker->insertBefore(TheCall);
      else
        Marker->insertBefore(Term);
    }
  };

  if (!LifetimesStart.empty()) {
    auto StartFn = llvm::Intrinsic::getDeclaration(
        M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
    insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
  }

  if (!LifetimesEnd.empty()) {
    auto EndFn = llvm::Intrinsic::getDeclaration(
        M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
    insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
  }
}

/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
                                                    BasicBlock *codeReplacer,
                                                    ValueSet &inputs,
                                                    ValueSet &outputs) {
  // Emit a call to the new function, passing in: *pointer to struct (if
  // aggregating parameters), or plan inputs and allocated memory for outputs
  std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;

  Module *M = newFunction->getParent();
  LLVMContext &Context = M->getContext();
  const DataLayout &DL = M->getDataLayout();
  CallInst *call = nullptr;

  // Add inputs as params, or to be filled into the struct
  unsigned ArgNo = 0;
  SmallVector<unsigned, 1> SwiftErrorArgs;
  for (Value *input : inputs) {
    if (AggregateArgs)
      StructValues.push_back(input);
    else {
      params.push_back(input);
      if (input->isSwiftError())
        SwiftErrorArgs.push_back(ArgNo);
    }
    ++ArgNo;
  }

  // Create allocas for the outputs
  for (Value *output : outputs) {
    if (AggregateArgs) {
      StructValues.push_back(output);
    } else {
      AllocaInst *alloca =
        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
                       nullptr, output->getName() + ".loc",
                       &codeReplacer->getParent()->front().front());
      ReloadOutputs.push_back(alloca);
      params.push_back(alloca);
    }
  }

  StructType *StructArgTy = nullptr;
  AllocaInst *Struct = nullptr;
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    std::vector<Type *> ArgTypes;
    for (ValueSet::iterator v = StructValues.begin(),
           ve = StructValues.end(); v != ve; ++v)
      ArgTypes.push_back((*v)->getType());

    // Allocate a struct at the beginning of this function
    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
                            "structArg",
                            &codeReplacer->getParent()->front().front());
    params.push_back(Struct);

    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      StoreInst *SI = new StoreInst(StructValues[i], GEP);
      codeReplacer->getInstList().push_back(SI);
    }
  }

  // Emit the call to the function
  call = CallInst::Create(newFunction, params,
                          NumExitBlocks > 1 ? "targetBlock" : "");
  // Add debug location to the new call, if the original function has debug
  // info. In that case, the terminator of the entry block of the extracted
  // function contains the first debug location of the extracted function,
  // set in extractCodeRegion.
  if (codeReplacer->getParent()->getSubprogram()) {
    if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
      call->setDebugLoc(DL);
  }
  codeReplacer->getInstList().push_back(call);

  // Set swifterror parameter attributes.
  for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
    call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
    newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
  }

  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
  unsigned FirstOut = inputs.size();
  if (!AggregateArgs)
    std::advance(OutputArgBegin, inputs.size());

  // Reload the outputs passed in by reference.
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    Value *Output = nullptr;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      Output = GEP;
    } else {
      Output = ReloadOutputs[i];
    }
    LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
                                  outputs[i]->getName() + ".reload");
    Reloads.push_back(load);
    codeReplacer->getInstList().push_back(load);
    std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
      Instruction *inst = cast<Instruction>(Users[u]);
      if (!Blocks.count(inst->getParent()))
        inst->replaceUsesOfWith(outputs[i], load);
    }
  }

  // Now we can emit a switch statement using the call as a value.
  SwitchInst *TheSwitch =
      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
                         codeReplacer, 0, codeReplacer);

  // Since there may be multiple exits from the original region, make the new
  // function return an unsigned, switch on that number.  This loop iterates
  // over all of the blocks in the extracted region, updating any terminator
  // instructions in the to-be-extracted region that branch to blocks that are
  // not in the region to be extracted.
  std::map<BasicBlock *, BasicBlock *> ExitBlockMap;

  unsigned switchVal = 0;
  for (BasicBlock *Block : Blocks) {
    Instruction *TI = Block->getTerminator();
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      if (!Blocks.count(TI->getSuccessor(i))) {
        BasicBlock *OldTarget = TI->getSuccessor(i);
        // add a new basic block which returns the appropriate value
        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
        if (!NewTarget) {
          // If we don't already have an exit stub for this non-extracted
          // destination, create one now!
          NewTarget = BasicBlock::Create(Context,
                                         OldTarget->getName() + ".exitStub",
                                         newFunction);
          unsigned SuccNum = switchVal++;

          Value *brVal = nullptr;
          switch (NumExitBlocks) {
          case 0:
          case 1: break;  // No value needed.
          case 2:         // Conditional branch, return a bool
            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
            break;
          default:
            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
            break;
          }

          ReturnInst::Create(Context, brVal, NewTarget);

          // Update the switch instruction.
          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
                                              SuccNum),
                             OldTarget);
        }

        // rewrite the original branch instruction with this new target
        TI->setSuccessor(i, NewTarget);
      }
  }

  // Store the arguments right after the definition of output value.
  // This should be proceeded after creating exit stubs to be ensure that invoke
  // result restore will be placed in the outlined function.
  Function::arg_iterator OAI = OutputArgBegin;
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    auto *OutI = dyn_cast<Instruction>(outputs[i]);
    if (!OutI)
      continue;

    // Find proper insertion point.
    BasicBlock::iterator InsertPt;
    // In case OutI is an invoke, we insert the store at the beginning in the
    // 'normal destination' BB. Otherwise we insert the store right after OutI.
    if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
      InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
    else if (auto *Phi = dyn_cast<PHINode>(OutI))
      InsertPt = Phi->getParent()->getFirstInsertionPt();
    else
      InsertPt = std::next(OutI->getIterator());

    Instruction *InsertBefore = &*InsertPt;
    assert((InsertBefore->getFunction() == newFunction ||
            Blocks.count(InsertBefore->getParent())) &&
           "InsertPt should be in new function");
    assert(OAI != newFunction->arg_end() &&
           "Number of output arguments should match "
           "the amount of defined values");
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
          InsertBefore);
      new StoreInst(outputs[i], GEP, InsertBefore);
      // Since there should be only one struct argument aggregating
      // all the output values, we shouldn't increment OAI, which always
      // points to the struct argument, in this case.
    } else {
      new StoreInst(outputs[i], &*OAI, InsertBefore);
      ++OAI;
    }
  }

  // Now that we've done the deed, simplify the switch instruction.
  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
  switch (NumExitBlocks) {
  case 0:
    // There are no successors (the block containing the switch itself), which
    // means that previously this was the last part of the function, and hence
    // this should be rewritten as a `ret'

    // Check if the function should return a value
    if (OldFnRetTy->isVoidTy()) {
      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
      // return what we have
      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    } else {
      // Otherwise we must have code extracted an unwind or something, just
      // return whatever we want.
      ReturnInst::Create(Context,
                         Constant::getNullValue(OldFnRetTy), TheSwitch);
    }

    TheSwitch->eraseFromParent();
    break;
  case 1:
    // Only a single destination, change the switch into an unconditional
    // branch.
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  case 2:
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
                       call, TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  default:
    // Otherwise, make the default destination of the switch instruction be one
    // of the other successors.
    TheSwitch->setCondition(call);
    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    // Remove redundant case
    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    break;
  }

  // Insert lifetime markers around the reloads of any output values. The
  // allocas output values are stored in are only in-use in the codeRepl block.
  insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);

  return call;
}

void CodeExtractor::moveCodeToFunction(Function *newFunction) {
  Function *oldFunc = (*Blocks.begin())->getParent();
  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();

  for (BasicBlock *Block : Blocks) {
    // Delete the basic block from the old function, and the list of blocks
    oldBlocks.remove(Block);

    // Insert this basic block into the new function
    newBlocks.push_back(Block);
  }
}

void CodeExtractor::calculateNewCallTerminatorWeights(
    BasicBlock *CodeReplacer,
    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
    BranchProbabilityInfo *BPI) {
  using Distribution = BlockFrequencyInfoImplBase::Distribution;
  using BlockNode = BlockFrequencyInfoImplBase::BlockNode;

  // Update the branch weights for the exit block.
  Instruction *TI = CodeReplacer->getTerminator();
  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);

  // Block Frequency distribution with dummy node.
  Distribution BranchDist;

  // Add each of the frequencies of the successors.
  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
    BlockNode ExitNode(i);
    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
    if (ExitFreq != 0)
      BranchDist.addExit(ExitNode, ExitFreq);
    else
      BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
  }

  // Check for no total weight.
  if (BranchDist.Total == 0)
    return;

  // Normalize the distribution so that they can fit in unsigned.
  BranchDist.normalize();

  // Create normalized branch weights and set the metadata.
  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
    const auto &Weight = BranchDist.Weights[I];

    // Get the weight and update the current BFI.
    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
    BranchProbability BP(Weight.Amount, BranchDist.Total);
    BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
  }
  TI->setMetadata(
      LLVMContext::MD_prof,
      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
}

Function *
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
  if (!isEligible())
    return nullptr;

  // Assumption: this is a single-entry code region, and the header is the first
  // block in the region.
  BasicBlock *header = *Blocks.begin();
  Function *oldFunction = header->getParent();

  // Calculate the entry frequency of the new function before we change the root
  //   block.
  BlockFrequency EntryFreq;
  if (BFI) {
    assert(BPI && "Both BPI and BFI are required to preserve profile info");
    for (BasicBlock *Pred : predecessors(header)) {
      if (Blocks.count(Pred))
        continue;
      EntryFreq +=
          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
    }
  }

  if (AC) {
    // Remove @llvm.assume calls that were moved to the new function from the
    // old function's assumption cache.
    for (BasicBlock *Block : Blocks)
      for (auto &I : *Block)
        if (match(&I, m_Intrinsic<Intrinsic::assume>()))
          AC->unregisterAssumption(cast<CallInst>(&I));
  }

  // If we have any return instructions in the region, split those blocks so
  // that the return is not in the region.
  splitReturnBlocks();

  // Calculate the exit blocks for the extracted region and the total exit
  // weights for each of those blocks.
  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
  for (BasicBlock *Block : Blocks) {
    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
         ++SI) {
      if (!Blocks.count(*SI)) {
        // Update the branch weight for this successor.
        if (BFI) {
          BlockFrequency &BF = ExitWeights[*SI];
          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
        }
        ExitBlocks.insert(*SI);
      }
    }
  }
  NumExitBlocks = ExitBlocks.size();

  // If we have to split PHI nodes of the entry or exit blocks, do so now.
  severSplitPHINodesOfEntry(header);
  severSplitPHINodesOfExits(ExitBlocks);

  // This takes place of the original loop
  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
                                                "codeRepl", oldFunction,
                                                header);

  // The new function needs a root node because other nodes can branch to the
  // head of the region, but the entry node of a function cannot have preds.
  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
                                               "newFuncRoot");
  auto *BranchI = BranchInst::Create(header);
  // If the original function has debug info, we have to add a debug location
  // to the new branch instruction from the artificial entry block.
  // We use the debug location of the first instruction in the extracted
  // blocks, as there is no other equivalent line in the source code.
  if (oldFunction->getSubprogram()) {
    any_of(Blocks, [&BranchI](const BasicBlock *BB) {
      return any_of(*BB, [&BranchI](const Instruction &I) {
        if (!I.getDebugLoc())
          return false;
        BranchI->setDebugLoc(I.getDebugLoc());
        return true;
      });
    });
  }
  newFuncRoot->getInstList().push_back(BranchI);

  ValueSet inputs, outputs, SinkingCands, HoistingCands;
  BasicBlock *CommonExit = nullptr;
  findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
  assert(HoistingCands.empty() || CommonExit);

  // Find inputs to, outputs from the code region.
  findInputsOutputs(inputs, outputs, SinkingCands);

  // Now sink all instructions which only have non-phi uses inside the region.
  // Group the allocas at the start of the block, so that any bitcast uses of
  // the allocas are well-defined.
  AllocaInst *FirstSunkAlloca = nullptr;
  for (auto *II : SinkingCands) {
    if (auto *AI = dyn_cast<AllocaInst>(II)) {
      AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
      if (!FirstSunkAlloca)
        FirstSunkAlloca = AI;
    }
  }
  assert((SinkingCands.empty() || FirstSunkAlloca) &&
         "Did not expect a sink candidate without any allocas");
  for (auto *II : SinkingCands) {
    if (!isa<AllocaInst>(II)) {
      cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
    }
  }

  if (!HoistingCands.empty()) {
    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
    Instruction *TI = HoistToBlock->getTerminator();
    for (auto *II : HoistingCands)
      cast<Instruction>(II)->moveBefore(TI);
  }

  // Collect objects which are inputs to the extraction region and also
  // referenced by lifetime start markers within it. The effects of these
  // markers must be replicated in the calling function to prevent the stack
  // coloring pass from merging slots which store input objects.
  ValueSet LifetimesStart;
  eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);

  // Construct new function based on inputs/outputs & add allocas for all defs.
  Function *newFunction =
      constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
                        oldFunction, oldFunction->getParent());

  // Update the entry count of the function.
  if (BFI) {
    auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
    if (Count.hasValue())
      newFunction->setEntryCount(
          ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
  }

  CallInst *TheCall =
      emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);

  moveCodeToFunction(newFunction);

  // Replicate the effects of any lifetime start/end markers which referenced
  // input objects in the extraction region by placing markers around the call.
  insertLifetimeMarkersSurroundingCall(
      oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);

  // Propagate personality info to the new function if there is one.
  if (oldFunction->hasPersonalityFn())
    newFunction->setPersonalityFn(oldFunction->getPersonalityFn());

  // Update the branch weights for the exit block.
  if (BFI && NumExitBlocks > 1)
    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);

  // Loop over all of the PHI nodes in the header and exit blocks, and change
  // any references to the old incoming edge to be the new incoming edge.
  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!Blocks.count(PN->getIncomingBlock(i)))
        PN->setIncomingBlock(i, newFuncRoot);
  }

  for (BasicBlock *ExitBB : ExitBlocks)
    for (PHINode &PN : ExitBB->phis()) {
      Value *IncomingCodeReplacerVal = nullptr;
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
        // Ignore incoming values from outside of the extracted region.
        if (!Blocks.count(PN.getIncomingBlock(i)))
          continue;

        // Ensure that there is only one incoming value from codeReplacer.
        if (!IncomingCodeReplacerVal) {
          PN.setIncomingBlock(i, codeReplacer);
          IncomingCodeReplacerVal = PN.getIncomingValue(i);
        } else
          assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
                 "PHI has two incompatbile incoming values from codeRepl");
      }
    }

  // Erase debug info intrinsics. Variable updates within the new function are
  // invisible to debuggers. This could be improved by defining a DISubprogram
  // for the new function.
  for (BasicBlock &BB : *newFunction) {
    auto BlockIt = BB.begin();
    // Remove debug info intrinsics from the new function.
    while (BlockIt != BB.end()) {
      Instruction *Inst = &*BlockIt;
      ++BlockIt;
      if (isa<DbgInfoIntrinsic>(Inst))
        Inst->eraseFromParent();
    }
    // Remove debug info intrinsics which refer to values in the new function
    // from the old function.
    SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
    for (Instruction &I : BB)
      findDbgUsers(DbgUsers, &I);
    for (DbgVariableIntrinsic *DVI : DbgUsers)
      DVI->eraseFromParent();
  }

  // Mark the new function `noreturn` if applicable. Terminators which resume
  // exception propagation are treated as returning instructions. This is to
  // avoid inserting traps after calls to outlined functions which unwind.
  bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
    const Instruction *Term = BB.getTerminator();
    return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
  });
  if (doesNotReturn)
    newFunction->setDoesNotReturn();

  LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
    newFunction->dump();
    report_fatal_error("verification of newFunction failed!");
  });
  LLVM_DEBUG(if (verifyFunction(*oldFunction))
             report_fatal_error("verification of oldFunction failed!"));
  LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, AC))
             report_fatal_error("Stale Asumption cache for old Function!"));
  return newFunction;
}

bool CodeExtractor::verifyAssumptionCache(const Function& F,
                                          AssumptionCache *AC) {
  for (auto AssumeVH : AC->assumptions()) {
    CallInst *I = cast<CallInst>(AssumeVH);
    if (I->getFunction() != &F)
      return true;
  }
  return false;
}