reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
//===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for peeling loops
// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
// unrolling loops with compile-time constant trip counts.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-unroll"

STATISTIC(NumPeeled, "Number of loops peeled");

static cl::opt<unsigned> UnrollPeelMaxCount(
    "unroll-peel-max-count", cl::init(7), cl::Hidden,
    cl::desc("Max average trip count which will cause loop peeling."));

static cl::opt<unsigned> UnrollForcePeelCount(
    "unroll-force-peel-count", cl::init(0), cl::Hidden,
    cl::desc("Force a peel count regardless of profiling information."));

static cl::opt<bool> UnrollPeelMultiDeoptExit(
    "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
    cl::desc("Allow peeling of loops with multiple deopt exits."));

static const char *PeeledCountMetaData = "llvm.loop.peeled.count";

// Designates that a Phi is estimated to become invariant after an "infinite"
// number of loop iterations (i.e. only may become an invariant if the loop is
// fully unrolled).
static const unsigned InfiniteIterationsToInvariance =
    std::numeric_limits<unsigned>::max();

// Check whether we are capable of peeling this loop.
bool llvm::canPeel(Loop *L) {
  // Make sure the loop is in simplified form
  if (!L->isLoopSimplifyForm())
    return false;

  if (UnrollPeelMultiDeoptExit) {
    SmallVector<BasicBlock *, 4> Exits;
    L->getUniqueNonLatchExitBlocks(Exits);

    if (!Exits.empty()) {
      // Latch's terminator is a conditional branch, Latch is exiting and
      // all non Latch exits ends up with deoptimize.
      const BasicBlock *Latch = L->getLoopLatch();
      const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
      return T && T->isConditional() && L->isLoopExiting(Latch) &&
             all_of(Exits, [](const BasicBlock *BB) {
               return BB->getTerminatingDeoptimizeCall();
             });
    }
  }

  // Only peel loops that contain a single exit
  if (!L->getExitingBlock() || !L->getUniqueExitBlock())
    return false;

  // Don't try to peel loops where the latch is not the exiting block.
  // This can be an indication of two different things:
  // 1) The loop is not rotated.
  // 2) The loop contains irreducible control flow that involves the latch.
  if (L->getLoopLatch() != L->getExitingBlock())
    return false;

  return true;
}

// This function calculates the number of iterations after which the given Phi
// becomes an invariant. The pre-calculated values are memorized in the map. The
// function (shortcut is I) is calculated according to the following definition:
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
//   If %y is a loop invariant, then I(%x) = 1.
//   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
//   Otherwise, I(%x) is infinite.
// TODO: Actually if %y is an expression that depends only on Phi %z and some
//       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
//       looks like:
//         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
//         %y = phi(0, 5),
//         %a = %y + 1.
static unsigned calculateIterationsToInvariance(
    PHINode *Phi, Loop *L, BasicBlock *BackEdge,
    SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
  assert(Phi->getParent() == L->getHeader() &&
         "Non-loop Phi should not be checked for turning into invariant.");
  assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
  // If we already know the answer, take it from the map.
  auto I = IterationsToInvariance.find(Phi);
  if (I != IterationsToInvariance.end())
    return I->second;

  // Otherwise we need to analyze the input from the back edge.
  Value *Input = Phi->getIncomingValueForBlock(BackEdge);
  // Place infinity to map to avoid infinite recursion for cycled Phis. Such
  // cycles can never stop on an invariant.
  IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
  unsigned ToInvariance = InfiniteIterationsToInvariance;

  if (L->isLoopInvariant(Input))
    ToInvariance = 1u;
  else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
    // Only consider Phis in header block.
    if (IncPhi->getParent() != L->getHeader())
      return InfiniteIterationsToInvariance;
    // If the input becomes an invariant after X iterations, then our Phi
    // becomes an invariant after X + 1 iterations.
    unsigned InputToInvariance = calculateIterationsToInvariance(
        IncPhi, L, BackEdge, IterationsToInvariance);
    if (InputToInvariance != InfiniteIterationsToInvariance)
      ToInvariance = InputToInvariance + 1u;
  }

  // If we found that this Phi lies in an invariant chain, update the map.
  if (ToInvariance != InfiniteIterationsToInvariance)
    IterationsToInvariance[Phi] = ToInvariance;
  return ToInvariance;
}

// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
//  for (i = 0; i < n; i++)
//    if (i < 2)
//      ..
//    else
//      ..
//   }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
                                         ScalarEvolution &SE) {
  assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
  unsigned DesiredPeelCount = 0;

  for (auto *BB : L.blocks()) {
    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || BI->isUnconditional())
      continue;

    // Ignore loop exit condition.
    if (L.getLoopLatch() == BB)
      continue;

    Value *Condition = BI->getCondition();
    Value *LeftVal, *RightVal;
    CmpInst::Predicate Pred;
    if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
      continue;

    const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
    const SCEV *RightSCEV = SE.getSCEV(RightVal);

    // Do not consider predicates that are known to be true or false
    // independently of the loop iteration.
    if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
        SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
                            RightSCEV))
      continue;

    // Check if we have a condition with one AddRec and one non AddRec
    // expression. Normalize LeftSCEV to be the AddRec.
    if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
      if (isa<SCEVAddRecExpr>(RightSCEV)) {
        std::swap(LeftSCEV, RightSCEV);
        Pred = ICmpInst::getSwappedPredicate(Pred);
      } else
        continue;
    }

    const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);

    // Avoid huge SCEV computations in the loop below, make sure we only
    // consider AddRecs of the loop we are trying to peel and avoid
    // non-monotonic predicates, as we will not be able to simplify the loop
    // body.
    // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can
    //        simplify the loop, if we peel 1 additional iteration, if there
    //        is no wrapping.
    bool Increasing;
    if (!LeftAR->isAffine() || LeftAR->getLoop() != &L ||
        !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
      continue;
    (void)Increasing;

    // Check if extending the current DesiredPeelCount lets us evaluate Pred
    // or !Pred in the loop body statically.
    unsigned NewPeelCount = DesiredPeelCount;

    const SCEV *IterVal = LeftAR->evaluateAtIteration(
        SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);

    // If the original condition is not known, get the negated predicate
    // (which holds on the else branch) and check if it is known. This allows
    // us to peel of iterations that make the original condition false.
    if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
      Pred = ICmpInst::getInversePredicate(Pred);

    const SCEV *Step = LeftAR->getStepRecurrence(SE);
    while (NewPeelCount < MaxPeelCount &&
           SE.isKnownPredicate(Pred, IterVal, RightSCEV)) {
      IterVal = SE.getAddExpr(IterVal, Step);
      NewPeelCount++;
    }

    // Only peel the loop if the monotonic predicate !Pred becomes known in the
    // first iteration of the loop body after peeling.
    if (NewPeelCount > DesiredPeelCount &&
        SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
                            RightSCEV))
      DesiredPeelCount = NewPeelCount;
  }

  return DesiredPeelCount;
}

// Return the number of iterations we want to peel off.
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
                            TargetTransformInfo::UnrollingPreferences &UP,
                            unsigned &TripCount, ScalarEvolution &SE) {
  assert(LoopSize > 0 && "Zero loop size is not allowed!");
  // Save the UP.PeelCount value set by the target in
  // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
  unsigned TargetPeelCount = UP.PeelCount;
  UP.PeelCount = 0;
  if (!canPeel(L))
    return;

  // Only try to peel innermost loops.
  if (!L->empty())
    return;

  // If the user provided a peel count, use that.
  bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
  if (UserPeelCount) {
    LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
                      << " iterations.\n");
    UP.PeelCount = UnrollForcePeelCount;
    UP.PeelProfiledIterations = true;
    return;
  }

  // Skip peeling if it's disabled.
  if (!UP.AllowPeeling)
    return;

  unsigned AlreadyPeeled = 0;
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
    AlreadyPeeled = *Peeled;
  // Stop if we already peeled off the maximum number of iterations.
  if (AlreadyPeeled >= UnrollPeelMaxCount)
    return;

  // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
  // iterations of the loop. For this we compute the number for iterations after
  // which every Phi is guaranteed to become an invariant, and try to peel the
  // maximum number of iterations among these values, thus turning all those
  // Phis into invariants.
  // First, check that we can peel at least one iteration.
  if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
    // Store the pre-calculated values here.
    SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
    // Now go through all Phis to calculate their the number of iterations they
    // need to become invariants.
    // Start the max computation with the UP.PeelCount value set by the target
    // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
    unsigned DesiredPeelCount = TargetPeelCount;
    BasicBlock *BackEdge = L->getLoopLatch();
    assert(BackEdge && "Loop is not in simplified form?");
    for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
      PHINode *Phi = cast<PHINode>(&*BI);
      unsigned ToInvariance = calculateIterationsToInvariance(
          Phi, L, BackEdge, IterationsToInvariance);
      if (ToInvariance != InfiniteIterationsToInvariance)
        DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
    }

    // Pay respect to limitations implied by loop size and the max peel count.
    unsigned MaxPeelCount = UnrollPeelMaxCount;
    MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);

    DesiredPeelCount = std::max(DesiredPeelCount,
                                countToEliminateCompares(*L, MaxPeelCount, SE));

    if (DesiredPeelCount > 0) {
      DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
      // Consider max peel count limitation.
      assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
      if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
        LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
                          << " iteration(s) to turn"
                          << " some Phis into invariants.\n");
        UP.PeelCount = DesiredPeelCount;
        UP.PeelProfiledIterations = false;
        return;
      }
    }
  }

  // Bail if we know the statically calculated trip count.
  // In this case we rather prefer partial unrolling.
  if (TripCount)
    return;

  // Do not apply profile base peeling if it is disabled.
  if (!UP.PeelProfiledIterations)
    return;
  // If we don't know the trip count, but have reason to believe the average
  // trip count is low, peeling should be beneficial, since we will usually
  // hit the peeled section.
  // We only do this in the presence of profile information, since otherwise
  // our estimates of the trip count are not reliable enough.
  if (L->getHeader()->getParent()->hasProfileData()) {
    Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
    if (!PeelCount)
      return;

    LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
                      << "\n");

    if (*PeelCount) {
      if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
          (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
        LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
                          << " iterations.\n");
        UP.PeelCount = *PeelCount;
        return;
      }
      LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
      LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
      LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
      LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
                        << "\n");
      LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
    }
  }
}

/// Update the branch weights of the latch of a peeled-off loop
/// iteration.
/// This sets the branch weights for the latch of the recently peeled off loop
/// iteration correctly.
/// Let F is a weight of the edge from latch to header.
/// Let E is a weight of the edge from latch to exit.
/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
/// go to exit.
/// Then, Estimated TripCount = F / E.
/// For I-th (counting from 0) peeled off iteration we set the the weights for
/// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
/// The probability to go to exit 1/(TC-I) increases. At the same time
/// the estimated trip count of remaining loop reduces by I.
/// To avoid dealing with division rounding we can just multiple both part
/// of weights to E and use weight as (F - I * E, E).
///
/// \param Header The copy of the header block that belongs to next iteration.
/// \param LatchBR The copy of the latch branch that belongs to this iteration.
/// \param[in,out] FallThroughWeight The weight of the edge from latch to
/// header before peeling (in) and after peeled off one iteration (out).
static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
                                uint64_t ExitWeight,
                                uint64_t &FallThroughWeight) {
  // FallThroughWeight is 0 means that there is no branch weights on original
  // latch block or estimated trip count is zero.
  if (!FallThroughWeight)
    return;

  unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
  MDBuilder MDB(LatchBR->getContext());
  MDNode *WeightNode =
      HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
                : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
  LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
  FallThroughWeight =
      FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
}

/// Initialize the weights.
///
/// \param Header The header block.
/// \param LatchBR The latch branch.
/// \param[out] ExitWeight The weight of the edge from Latch to Exit.
/// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
                              uint64_t &ExitWeight,
                              uint64_t &FallThroughWeight) {
  uint64_t TrueWeight, FalseWeight;
  if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
    return;
  unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
  ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
  FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
}

/// Update the weights of original Latch block after peeling off all iterations.
///
/// \param Header The header block.
/// \param LatchBR The latch branch.
/// \param ExitWeight The weight of the edge from Latch to Exit.
/// \param FallThroughWeight The weight of the edge from Latch to Header.
static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
                               uint64_t ExitWeight,
                               uint64_t FallThroughWeight) {
  // FallThroughWeight is 0 means that there is no branch weights on original
  // latch block or estimated trip count is zero.
  if (!FallThroughWeight)
    return;

  // Sets the branch weights on the loop exit.
  MDBuilder MDB(LatchBR->getContext());
  unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
  MDNode *WeightNode =
      HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
                : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
  LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
}

/// Clones the body of the loop L, putting it between \p InsertTop and \p
/// InsertBot.
/// \param IterNumber The serial number of the iteration currently being
/// peeled off.
/// \param ExitEdges The exit edges of the original loop.
/// \param[out] NewBlocks A list of the blocks in the newly created clone
/// \param[out] VMap The value map between the loop and the new clone.
/// \param LoopBlocks A helper for DFS-traversal of the loop.
/// \param LVMap A value-map that maps instructions from the original loop to
/// instructions in the last peeled-off iteration.
static void cloneLoopBlocks(
    Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
    SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
    SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
    ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
    LoopInfo *LI) {
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  BasicBlock *PreHeader = L->getLoopPreheader();

  Function *F = Header->getParent();
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
  Loop *ParentLoop = L->getParentLoop();

  // For each block in the original loop, create a new copy,
  // and update the value map with the newly created values.
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
    NewBlocks.push_back(NewBB);

    if (ParentLoop)
      ParentLoop->addBasicBlockToLoop(NewBB, *LI);

    VMap[*BB] = NewBB;

    // If dominator tree is available, insert nodes to represent cloned blocks.
    if (DT) {
      if (Header == *BB)
        DT->addNewBlock(NewBB, InsertTop);
      else {
        DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
        // VMap must contain entry for IDom, as the iteration order is RPO.
        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
      }
    }
  }

  // Hook-up the control flow for the newly inserted blocks.
  // The new header is hooked up directly to the "top", which is either
  // the original loop preheader (for the first iteration) or the previous
  // iteration's exiting block (for every other iteration)
  InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));

  // Similarly, for the latch:
  // The original exiting edge is still hooked up to the loop exit.
  // The backedge now goes to the "bottom", which is either the loop's real
  // header (for the last peeled iteration) or the copied header of the next
  // iteration (for every other iteration)
  BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
  BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
  for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
    if (LatchBR->getSuccessor(idx) == Header) {
      LatchBR->setSuccessor(idx, InsertBot);
      break;
    }
  if (DT)
    DT->changeImmediateDominator(InsertBot, NewLatch);

  // The new copy of the loop body starts with a bunch of PHI nodes
  // that pick an incoming value from either the preheader, or the previous
  // loop iteration. Since this copy is no longer part of the loop, we
  // resolve this statically:
  // For the first iteration, we use the value from the preheader directly.
  // For any other iteration, we replace the phi with the value generated by
  // the immediately preceding clone of the loop body (which represents
  // the previous iteration).
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
    if (IterNumber == 0) {
      VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
    } else {
      Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
      if (LatchInst && L->contains(LatchInst))
        VMap[&*I] = LVMap[LatchInst];
      else
        VMap[&*I] = LatchVal;
    }
    cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
  }

  // Fix up the outgoing values - we need to add a value for the iteration
  // we've just created. Note that this must happen *after* the incoming
  // values are adjusted, since the value going out of the latch may also be
  // a value coming into the header.
  for (auto Edge : ExitEdges)
    for (PHINode &PHI : Edge.second->phis()) {
      Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
      if (LatchInst && L->contains(LatchInst))
        LatchVal = VMap[LatchVal];
      PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
    }

  // LastValueMap is updated with the values for the current loop
  // which are used the next time this function is called.
  for (const auto &KV : VMap)
    LVMap[KV.first] = KV.second;
}

/// Peel off the first \p PeelCount iterations of loop \p L.
///
/// Note that this does not peel them off as a single straight-line block.
/// Rather, each iteration is peeled off separately, and needs to check the
/// exit condition.
/// For loops that dynamically execute \p PeelCount iterations or less
/// this provides a benefit, since the peeled off iterations, which account
/// for the bulk of dynamic execution, can be further simplified by scalar
/// optimizations.
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
                    ScalarEvolution *SE, DominatorTree *DT,
                    AssumptionCache *AC, bool PreserveLCSSA) {
  assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
  assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");

  LoopBlocksDFS LoopBlocks(L);
  LoopBlocks.perform(LI);

  BasicBlock *Header = L->getHeader();
  BasicBlock *PreHeader = L->getLoopPreheader();
  BasicBlock *Latch = L->getLoopLatch();
  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
  L->getExitEdges(ExitEdges);

  DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
  if (DT) {
    // We'd like to determine the idom of exit block after peeling one
    // iteration.
    // Let Exit is exit block.
    // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
    // blocks.
    // Let Latch' and ExitingSet' are copies after a peeling.
    // We'd like to find an idom'(Exit) - idom of Exit after peeling.
    // It is an evident that idom'(Exit) will be the nearest common dominator
    // of ExitingSet and ExitingSet'.
    // idom(Exit) is a nearest common dominator of ExitingSet.
    // idom(Exit)' is a nearest common dominator of ExitingSet'.
    // Taking into account that we have a single Latch, Latch' will dominate
    // Header and idom(Exit).
    // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
    // All these basic blocks are in the same loop, so what we find is
    // (nearest common dominator of idom(Exit) and Latch)'.
    // In the loop below we remember nearest common dominator of idom(Exit) and
    // Latch to update idom of Exit later.
    assert(L->hasDedicatedExits() && "No dedicated exits?");
    for (auto Edge : ExitEdges) {
      if (ExitIDom.count(Edge.second))
        continue;
      BasicBlock *BB = DT->findNearestCommonDominator(
          DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
      assert(L->contains(BB) && "IDom is not in a loop");
      ExitIDom[Edge.second] = BB;
    }
  }

  Function *F = Header->getParent();

  // Set up all the necessary basic blocks. It is convenient to split the
  // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
  // body, and a new preheader for the "real" loop.

  // Peeling the first iteration transforms.
  //
  // PreHeader:
  // ...
  // Header:
  //   LoopBody
  //   If (cond) goto Header
  // Exit:
  //
  // into
  //
  // InsertTop:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot:
  // NewPreHeader:
  // ...
  // Header:
  //  LoopBody
  //  If (cond) goto Header
  // Exit:
  //
  // Each following iteration will split the current bottom anchor in two,
  // and put the new copy of the loop body between these two blocks. That is,
  // after peeling another iteration from the example above, we'll split
  // InsertBot, and get:
  //
  // InsertTop:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot.next:
  // NewPreHeader:
  // ...
  // Header:
  //  LoopBody
  //  If (cond) goto Header
  // Exit:

  BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
  BasicBlock *InsertBot =
      SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
  BasicBlock *NewPreHeader =
      SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);

  InsertTop->setName(Header->getName() + ".peel.begin");
  InsertBot->setName(Header->getName() + ".peel.next");
  NewPreHeader->setName(PreHeader->getName() + ".peel.newph");

  ValueToValueMapTy LVMap;

  // If we have branch weight information, we'll want to update it for the
  // newly created branches.
  BranchInst *LatchBR =
      cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
  uint64_t ExitWeight = 0, FallThroughWeight = 0;
  initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);

  // For each peeled-off iteration, make a copy of the loop.
  for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    ValueToValueMapTy VMap;

    cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
                    LoopBlocks, VMap, LVMap, DT, LI);

    // Remap to use values from the current iteration instead of the
    // previous one.
    remapInstructionsInBlocks(NewBlocks, VMap);

    if (DT) {
      // Latches of the cloned loops dominate over the loop exit, so idom of the
      // latter is the first cloned loop body, as original PreHeader dominates
      // the original loop body.
      if (Iter == 0)
        for (auto Exit : ExitIDom)
          DT->changeImmediateDominator(Exit.first,
                                       cast<BasicBlock>(LVMap[Exit.second]));
#ifdef EXPENSIVE_CHECKS
      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
#endif
    }

    auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
    updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
    // Remove Loop metadata from the latch branch instruction
    // because it is not the Loop's latch branch anymore.
    LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);

    InsertTop = InsertBot;
    InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
    InsertBot->setName(Header->getName() + ".peel.next");

    F->getBasicBlockList().splice(InsertTop->getIterator(),
                                  F->getBasicBlockList(),
                                  NewBlocks[0]->getIterator(), F->end());
  }

  // Now adjust the phi nodes in the loop header to get their initial values
  // from the last peeled-off iteration instead of the preheader.
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PHI = cast<PHINode>(I);
    Value *NewVal = PHI->getIncomingValueForBlock(Latch);
    Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
    if (LatchInst && L->contains(LatchInst))
      NewVal = LVMap[LatchInst];

    PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
  }

  fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);

  // Update Metadata for count of peeled off iterations.
  unsigned AlreadyPeeled = 0;
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
    AlreadyPeeled = *Peeled;
  addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);

  if (Loop *ParentLoop = L->getParentLoop())
    L = ParentLoop;

  // We modified the loop, update SE.
  SE->forgetTopmostLoop(L);

  // Finally DomtTree must be correct.
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));

  // FIXME: Incrementally update loop-simplify
  simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);

  NumPeeled++;

  return true;
}