reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-utils"

static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   MemorySSAUpdater *MSSAU,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;
        if (isa<CallBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from a callbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);

    if (!NewExitBB)
      LLVM_DEBUG(
          dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                 << *L << "\n");
    else
      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                        << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
  // FIXME: When all loop passes preserve MemorySSA, it can be required and
  // preserved here instead of the individual handling in each pass.
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}

/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  Metadata *MDs[] = {
      MDString::get(Context, Name),
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
  return MDNode::get(Context, MDs);
}

/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
                                   unsigned V) {
  SmallVector<Metadata *, 4> MDs(1);
  // If the loop already has metadata, retain it.
  MDNode *LoopID = TheLoop->getLoopID();
  if (LoopID) {
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
      // If it is of form key = value, try to parse it.
      if (Node->getNumOperands() == 2) {
        MDString *S = dyn_cast<MDString>(Node->getOperand(0));
        if (S && S->getString().equals(StringMD)) {
          ConstantInt *IntMD =
              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
          if (IntMD && IntMD->getSExtValue() == V)
            // It is already in place. Do nothing.
            return;
          // We need to update the value, so just skip it here and it will
          // be added after copying other existed nodes.
          continue;
        }
      }
      MDs.push_back(Node);
    }
  }
  // Add new metadata.
  MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
  // Replace current metadata node with new one.
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  MDNode *NewLoopID = MDNode::get(Context, MDs);
  // Set operand 0 to refer to the loop id itself.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  TheLoop->setLoopID(NewLoopID);
}

/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
                                                            StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    return nullptr;
  case 2:
    return &MD->getOperand(1);
  default:
    llvm_unreachable("loop metadata has 0 or 1 operand");
  }
}

static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
                                                   StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    // When the value is absent it is interpreted as 'attribute set'.
    return true;
  case 2:
    if (ConstantInt *IntMD =
            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
      return IntMD->getZExtValue();
    return true;
  }
  llvm_unreachable("unexpected number of options");
}

static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
  return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
}

llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
                                                      StringRef Name) {
  const MDOperand *AttrMD =
      findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
  if (!AttrMD)
    return None;

  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
  if (!IntMD)
    return None;

  return IntMD->getSExtValue();
}

Optional<MDNode *> llvm::makeFollowupLoopID(
    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
    const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
  if (!OrigLoopID) {
    if (AlwaysNew)
      return nullptr;
    return None;
  }

  assert(OrigLoopID->getOperand(0) == OrigLoopID);

  bool InheritAllAttrs = !InheritOptionsExceptPrefix;
  bool InheritSomeAttrs =
      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
  SmallVector<Metadata *, 8> MDs;
  MDs.push_back(nullptr);

  bool Changed = false;
  if (InheritAllAttrs || InheritSomeAttrs) {
    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
      MDNode *Op = cast<MDNode>(Existing.get());

      auto InheritThisAttribute = [InheritSomeAttrs,
                                   InheritOptionsExceptPrefix](MDNode *Op) {
        if (!InheritSomeAttrs)
          return false;

        // Skip malformatted attribute metadata nodes.
        if (Op->getNumOperands() == 0)
          return true;
        Metadata *NameMD = Op->getOperand(0).get();
        if (!isa<MDString>(NameMD))
          return true;
        StringRef AttrName = cast<MDString>(NameMD)->getString();

        // Do not inherit excluded attributes.
        return !AttrName.startswith(InheritOptionsExceptPrefix);
      };

      if (InheritThisAttribute(Op))
        MDs.push_back(Op);
      else
        Changed = true;
    }
  } else {
    // Modified if we dropped at least one attribute.
    Changed = OrigLoopID->getNumOperands() > 1;
  }

  bool HasAnyFollowup = false;
  for (StringRef OptionName : FollowupOptions) {
    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
    if (!FollowupNode)
      continue;

    HasAnyFollowup = true;
    for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
      MDs.push_back(Option.get());
      Changed = true;
    }
  }

  // Attributes of the followup loop not specified explicity, so signal to the
  // transformation pass to add suitable attributes.
  if (!AlwaysNew && !HasAnyFollowup)
    return None;

  // If no attributes were added or remove, the previous loop Id can be reused.
  if (!AlwaysNew && !Changed)
    return OrigLoopID;

  // No attributes is equivalent to having no !llvm.loop metadata at all.
  if (MDs.size() == 1)
    return nullptr;

  // Build the new loop ID.
  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
  FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
  return FollowupLoopID;
}

bool llvm::hasDisableAllTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}

bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}

TransformationMode llvm::hasUnrollTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
    return TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
  Optional<bool> Enable =
      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");

  if (Enable == false)
    return TM_SuppressedByUser;

  Optional<int> VectorizeWidth =
      getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
  Optional<int> InterleaveCount =
      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");

  // 'Forcing' vector width and interleave count to one effectively disables
  // this tranformation.
  if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
    return TM_SuppressedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
    return TM_Disable;

  if (Enable == true)
    return TM_ForcedByUser;

  if (VectorizeWidth == 1 && InterleaveCount == 1)
    return TM_Disable;

  if (VectorizeWidth > 1 || InterleaveCount > 1)
    return TM_Enable;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasDistributeTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
    return TM_SuppressedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++)
    for (DomTreeNode *Child : Worklist[I]->getChildren())
      AddRegionToWorklist(Child);

  return Worklist;
}

void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
                          ScalarEvolution *SE = nullptr,
                          LoopInfo *LI = nullptr) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE)
    SE->forgetLoop(L);

  auto *ExitBlock = L->getUniqueExitBlock();
  assert(ExitBlock && "Should have a unique exit block!");
  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
  assert(OldBr && "Preheader must end with a branch");
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldBr);
  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
  // Remove the old branch. The conditional branch becomes a new terminator.
  OldBr->eraseFromParent();

  // Rewrite phis in the exit block to get their inputs from the Preheader
  // instead of the exiting block.
  for (PHINode &P : ExitBlock->phis()) {
    // Set the zero'th element of Phi to be from the preheader and remove all
    // other incoming values. Given the loop has dedicated exits, all other
    // incoming values must be from the exiting blocks.
    int PredIndex = 0;
    P.setIncomingBlock(PredIndex, Preheader);
    // Removes all incoming values from all other exiting blocks (including
    // duplicate values from an exiting block).
    // Nuke all entries except the zero'th entry which is the preheader entry.
    // NOTE! We need to remove Incoming Values in the reverse order as done
    // below, to keep the indices valid for deletion (removeIncomingValues
    // updates getNumIncomingValues and shifts all values down into the operand
    // being deleted).
    for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
      P.removeIncomingValue(e - i, false);

    assert((P.getNumIncomingValues() == 1 &&
            P.getIncomingBlock(PredIndex) == Preheader) &&
           "Should have exactly one value and that's from the preheader!");
  }

  // Disconnect the loop body by branching directly to its exit.
  Builder.SetInsertPoint(Preheader->getTerminator());
  Builder.CreateBr(ExitBlock);
  // Remove the old branch.
  Preheader->getTerminator()->eraseFromParent();

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  if (DT) {
    // Update the dominator tree by informing it about the new edge from the
    // preheader to the exit and the removed edge.
    DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
                      {DominatorTree::Delete, Preheader, L->getHeader()}});
  }

  // Use a map to unique and a vector to guarantee deterministic ordering.
  llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;

  // Given LCSSA form is satisfied, we should not have users of instructions
  // within the dead loop outside of the loop. However, LCSSA doesn't take
  // unreachable uses into account. We handle them here.
  // We could do it after drop all references (in this case all users in the
  // loop will be already eliminated and we have less work to do but according
  // to API doc of User::dropAllReferences only valid operation after dropping
  // references, is deletion. So let's substitute all usages of
  // instruction from the loop with undef value of corresponding type first.
  for (auto *Block : L->blocks())
    for (Instruction &I : *Block) {
      auto *Undef = UndefValue::get(I.getType());
      for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
        Use &U = *UI;
        ++UI;
        if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
          if (L->contains(Usr->getParent()))
            continue;
        // If we have a DT then we can check that uses outside a loop only in
        // unreachable block.
        if (DT)
          assert(!DT->isReachableFromEntry(U) &&
                 "Unexpected user in reachable block");
        U.set(Undef);
      }
      auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
      if (!DVI)
        continue;
      auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
      if (Key != DeadDebugSet.end())
        continue;
      DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
      DeadDebugInst.push_back(DVI);
    }

  // After the loop has been deleted all the values defined and modified
  // inside the loop are going to be unavailable.
  // Since debug values in the loop have been deleted, inserting an undef
  // dbg.value truncates the range of any dbg.value before the loop where the
  // loop used to be. This is particularly important for constant values.
  DIBuilder DIB(*ExitBlock->getModule());
  Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
  assert(InsertDbgValueBefore &&
         "There should be a non-PHI instruction in exit block, else these "
         "instructions will have no parent.");
  for (auto *DVI : DeadDebugInst)
    DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
                                DVI->getVariable(), DVI->getExpression(),
                                DVI->getDebugLoc(), InsertDbgValueBefore);

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
         LpI != LpE; ++LpI)
      (*LpI)->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    LI->erase(L);
  }
}

Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
  // Support loops with an exiting latch and other existing exists only
  // deoptimize.

  // Get the branch weights for the loop's backedge.
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return None;
  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
    return None;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getUniqueNonLatchExitBlocks(ExitBlocks);
  if (any_of(ExitBlocks, [](const BasicBlock *EB) {
        return !EB->getTerminatingDeoptimizeCall();
      }))
    return None;

  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t TrueVal, FalseVal;
  if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
    return None;

  if (!TrueVal || !FalseVal)
    return 0;

  // Divide the count of the backedge by the count of the edge exiting the loop,
  // rounding to nearest.
  if (LatchBR->getSuccessor(0) == L->getHeader())
    return (TrueVal + (FalseVal / 2)) / FalseVal;
  else
    return (FalseVal + (TrueVal / 2)) / TrueVal;
}

bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
                                              ScalarEvolution &SE) {
  Loop *OuterL = InnerLoop->getParentLoop();
  if (!OuterL)
    return true;

  // Get the backedge taken count for the inner loop
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
      !InnerLoopBECountSC->getType()->isIntegerTy())
    return false;

  // Get whether count is invariant to the outer loop
  ScalarEvolution::LoopDisposition LD =
      SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
  if (LD != ScalarEvolution::LoopInvariant)
    return false;

  return true;
}

Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
                            RecurrenceDescriptor::MinMaxRecurrenceKind RK,
                            Value *Left, Value *Right) {
  CmpInst::Predicate P = CmpInst::ICMP_NE;
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case RecurrenceDescriptor::MRK_UIntMin:
    P = CmpInst::ICMP_ULT;
    break;
  case RecurrenceDescriptor::MRK_UIntMax:
    P = CmpInst::ICMP_UGT;
    break;
  case RecurrenceDescriptor::MRK_SIntMin:
    P = CmpInst::ICMP_SLT;
    break;
  case RecurrenceDescriptor::MRK_SIntMax:
    P = CmpInst::ICMP_SGT;
    break;
  case RecurrenceDescriptor::MRK_FloatMin:
    P = CmpInst::FCMP_OLT;
    break;
  case RecurrenceDescriptor::MRK_FloatMax:
    P = CmpInst::FCMP_OGT;
    break;
  }

  // We only match FP sequences that are 'fast', so we can unconditionally
  // set it on any generated instructions.
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
  FastMathFlags FMF;
  FMF.setFast();
  Builder.setFastMathFlags(FMF);

  Value *Cmp;
  if (RK == RecurrenceDescriptor::MRK_FloatMin ||
      RK == RecurrenceDescriptor::MRK_FloatMax)
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
  else
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");

  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

// Helper to generate an ordered reduction.
Value *
llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
                          unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = Src->getType()->getVectorNumElements();

  // Extract and apply reduction ops in ascending order:
  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
  Value *Result = Acc;
  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
    Value *Ext =
        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
                                   "bin.rdx");
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
    }

    if (!RedOps.empty())
      propagateIRFlags(Result, RedOps);
  }

  return Result;
}

// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = Src->getType()->getVectorNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  Value *TmpVec = Src;
  SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = Builder.getInt32(i / 2 + j);

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
              UndefValue::get(Builder.getInt32Ty()));

    Value *Shuf = Builder.CreateShuffleVector(
        TmpVec, UndefValue::get(TmpVec->getType()),
        ConstantVector::get(ShuffleMask), "rdx.shuf");

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      // The builder propagates its fast-math-flags setting.
      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
                                   "bin.rdx");
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
    }
    if (!RedOps.empty())
      propagateIRFlags(TmpVec, RedOps);
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
    IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
    Value *Src, TargetTransformInfo::ReductionFlags Flags,
    ArrayRef<Value *> RedOps) {
  assert(isa<VectorType>(Src->getType()) && "Type must be a vector");

  std::function<Value *()> BuildFunc;
  using RD = RecurrenceDescriptor;
  RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;

  switch (Opcode) {
  case Instruction::Add:
    BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
    break;
  case Instruction::Mul:
    BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
    break;
  case Instruction::And:
    BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
    break;
  case Instruction::Or:
    BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
    break;
  case Instruction::Xor:
    BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
    break;
  case Instruction::FAdd:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFAddReduce(
          Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
      return Rdx;
    };
    break;
  case Instruction::FMul:
    BuildFunc = [&]() {
      Type *Ty = Src->getType()->getVectorElementType();
      auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
      return Rdx;
    };
    break;
  case Instruction::ICmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
      BuildFunc = [&]() {
        return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
      };
    } else {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
      BuildFunc = [&]() {
        return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
      };
    }
    break;
  case Instruction::FCmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = RD::MRK_FloatMax;
      BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
    } else {
      MinMaxKind = RD::MRK_FloatMin;
      BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
    }
    break;
  default:
    llvm_unreachable("Unhandled opcode");
    break;
  }
  if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
    return BuildFunc();
  return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}

/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilder<> &B,
                                   const TargetTransformInfo *TTI,
                                   RecurrenceDescriptor &Desc, Value *Src,
                                   bool NoNaN) {
  // TODO: Support in-order reductions based on the recurrence descriptor.
  using RD = RecurrenceDescriptor;
  RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
  TargetTransformInfo::ReductionFlags Flags;
  Flags.NoNaN = NoNaN;

  // All ops in the reduction inherit fast-math-flags from the recurrence
  // descriptor.
  IRBuilder<>::FastMathFlagGuard FMFGuard(B);
  B.setFastMathFlags(Desc.getFastMathFlags());

  switch (RecKind) {
  case RD::RK_FloatAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
  case RD::RK_FloatMult:
    return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
  case RD::RK_IntegerAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
  case RD::RK_IntegerMult:
    return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
  case RD::RK_IntegerAnd:
    return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
  case RD::RK_IntegerOr:
    return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
  case RD::RK_IntegerXor:
    return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
  case RD::RK_IntegerMinMax: {
    RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
    Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
    Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
    return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
  }
  case RD::RK_FloatMinMax: {
    Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
    return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
  }
  default:
    llvm_unreachable("Unhandled RecKind");
  }
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}

bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
                                 ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}

bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
                                    ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}

bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
    APInt::getMinValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Min));
}

bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    APInt::getMaxValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Max));
}