reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
//===- ValueLattice.h - Value constraint analysis ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_VALUELATTICE_H
#define LLVM_ANALYSIS_VALUELATTICE_H

#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
//
//===----------------------------------------------------------------------===//
//                               ValueLatticeElement
//===----------------------------------------------------------------------===//

/// This class represents lattice values for constants.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///

namespace llvm {
class ValueLatticeElement {
  enum ValueLatticeElementTy {
    /// This Value has no known value yet.  As a result, this implies the
    /// producing instruction is dead.  Caution: We use this as the starting
    /// state in our local meet rules.  In this usage, it's taken to mean
    /// "nothing known yet".
    undefined,

    /// This Value has a specific constant value.  (For constant integers,
    /// constantrange is used instead.  Integer typed constantexprs can appear
    /// as constant.)
    constant,

    /// This Value is known to not have the specified value.  (For constant
    /// integers, constantrange is used instead.  As above, integer typed
    /// constantexprs can appear here.)
    notconstant,

    /// The Value falls within this range. (Used only for integer typed values.)
    constantrange,

    /// We can not precisely model the dynamic values this value might take.
    overdefined
  };

  ValueLatticeElementTy Tag;

  /// The union either stores a pointer to a constant or a constant range,
  /// associated to the lattice element. We have to ensure that Range is
  /// initialized or destroyed when changing state to or from constantrange.
  union {
    Constant *ConstVal;
    ConstantRange Range;
  };

public:
  // Const and Range are initialized on-demand.
  ValueLatticeElement() : Tag(undefined) {}

  /// Custom destructor to ensure Range is properly destroyed, when the object
  /// is deallocated.
  ~ValueLatticeElement() {
    switch (Tag) {
    case overdefined:
    case undefined:
    case constant:
    case notconstant:
      break;
    case constantrange:
      Range.~ConstantRange();
      break;
    };
  }

  /// Custom copy constructor, to ensure Range gets initialized when
  /// copying a constant range lattice element.
  ValueLatticeElement(const ValueLatticeElement &Other) : Tag(undefined) {
    *this = Other;
  }

  /// Custom assignment operator, to ensure Range gets initialized when
  /// assigning a constant range lattice element.
  ValueLatticeElement &operator=(const ValueLatticeElement &Other) {
    // If we change the state of this from constant range to non constant range,
    // destroy Range.
    if (isConstantRange() && !Other.isConstantRange())
      Range.~ConstantRange();

    // If we change the state of this from a valid ConstVal to another a state
    // without a valid ConstVal, zero the pointer.
    if ((isConstant() || isNotConstant()) && !Other.isConstant() &&
        !Other.isNotConstant())
      ConstVal = nullptr;

    switch (Other.Tag) {
    case constantrange:
      if (!isConstantRange())
        new (&Range) ConstantRange(Other.Range);
      else
        Range = Other.Range;
      break;
    case constant:
    case notconstant:
      ConstVal = Other.ConstVal;
      break;
    case overdefined:
    case undefined:
      break;
    }
    Tag = Other.Tag;
    return *this;
  }

  static ValueLatticeElement get(Constant *C) {
    ValueLatticeElement Res;
    if (!isa<UndefValue>(C))
      Res.markConstant(C);
    return Res;
  }
  static ValueLatticeElement getNot(Constant *C) {
    ValueLatticeElement Res;
    if (!isa<UndefValue>(C))
      Res.markNotConstant(C);
    return Res;
  }
  static ValueLatticeElement getRange(ConstantRange CR) {
    ValueLatticeElement Res;
    Res.markConstantRange(std::move(CR));
    return Res;
  }
  static ValueLatticeElement getOverdefined() {
    ValueLatticeElement Res;
    Res.markOverdefined();
    return Res;
  }

  bool isUndefined() const { return Tag == undefined; }
  bool isConstant() const { return Tag == constant; }
  bool isNotConstant() const { return Tag == notconstant; }
  bool isConstantRange() const { return Tag == constantrange; }
  bool isOverdefined() const { return Tag == overdefined; }

  Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return ConstVal;
  }

  Constant *getNotConstant() const {
    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    return ConstVal;
  }

  const ConstantRange &getConstantRange() const {
    assert(isConstantRange() &&
           "Cannot get the constant-range of a non-constant-range!");
    return Range;
  }

  Optional<APInt> asConstantInteger() const {
    if (isConstant() && isa<ConstantInt>(getConstant())) {
      return cast<ConstantInt>(getConstant())->getValue();
    } else if (isConstantRange() && getConstantRange().isSingleElement()) {
      return *getConstantRange().getSingleElement();
    }
    return None;
  }

private:
  void markOverdefined() {
    if (isOverdefined())
      return;
    if (isConstant() || isNotConstant())
      ConstVal = nullptr;
    if (isConstantRange())
      Range.~ConstantRange();
    Tag = overdefined;
  }

  void markConstant(Constant *V) {
    assert(V && "Marking constant with NULL");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      markConstantRange(ConstantRange(CI->getValue()));
      return;
    }
    if (isa<UndefValue>(V))
      return;

    assert((!isConstant() || getConstant() == V) &&
           "Marking constant with different value");
    assert(isUndefined());
    Tag = constant;
    ConstVal = V;
  }

  void markNotConstant(Constant *V) {
    assert(V && "Marking constant with NULL");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      markConstantRange(ConstantRange(CI->getValue() + 1, CI->getValue()));
      return;
    }
    if (isa<UndefValue>(V))
      return;

    assert((!isConstant() || getConstant() != V) &&
           "Marking constant !constant with same value");
    assert((!isNotConstant() || getNotConstant() == V) &&
           "Marking !constant with different value");
    assert(isUndefined() || isConstant());
    Tag = notconstant;
    ConstVal = V;
  }

  void markConstantRange(ConstantRange NewR) {
    if (isConstantRange()) {
      if (NewR.isEmptySet())
        markOverdefined();
      else {
        Range = std::move(NewR);
      }
      return;
    }

    assert(isUndefined());
    if (NewR.isEmptySet())
      markOverdefined();
    else {
      Tag = constantrange;
      new (&Range) ConstantRange(std::move(NewR));
    }
  }

public:
  /// Updates this object to approximate both this object and RHS. Returns
  /// true if this object has been changed.
  bool mergeIn(const ValueLatticeElement &RHS, const DataLayout &DL) {
    if (RHS.isUndefined() || isOverdefined())
      return false;
    if (RHS.isOverdefined()) {
      markOverdefined();
      return true;
    }

    if (isUndefined()) {
      *this = RHS;
      return !RHS.isUndefined();
    }

    if (isConstant()) {
      if (RHS.isConstant() && getConstant() == RHS.getConstant())
        return false;
      markOverdefined();
      return true;
    }

    if (isNotConstant()) {
      if (RHS.isNotConstant() && getNotConstant() == RHS.getNotConstant())
        return false;
      markOverdefined();
      return true;
    }

    assert(isConstantRange() && "New ValueLattice type?");
    if (!RHS.isConstantRange()) {
      // We can get here if we've encountered a constantexpr of integer type
      // and merge it with a constantrange.
      markOverdefined();
      return true;
    }
    ConstantRange NewR = getConstantRange().unionWith(RHS.getConstantRange());
    if (NewR.isFullSet())
      markOverdefined();
    else if (NewR == getConstantRange())
      return false;
    else
      markConstantRange(std::move(NewR));
    return true;
  }

  ConstantInt *getConstantInt() const {
    assert(isConstant() && isa<ConstantInt>(getConstant()) &&
           "No integer constant");
    return cast<ConstantInt>(getConstant());
  }

  /// Compares this symbolic value with Other using Pred and returns either
  /// true, false or undef constants, or nullptr if the comparison cannot be
  /// evaluated.
  Constant *getCompare(CmpInst::Predicate Pred, Type *Ty,
                       const ValueLatticeElement &Other) const {
    if (isUndefined() || Other.isUndefined())
      return UndefValue::get(Ty);

    if (isConstant() && Other.isConstant())
      return ConstantExpr::getCompare(Pred, getConstant(), Other.getConstant());

    // Integer constants are represented as ConstantRanges with single
    // elements.
    if (!isConstantRange() || !Other.isConstantRange())
      return nullptr;

    const auto &CR = getConstantRange();
    const auto &OtherCR = Other.getConstantRange();
    if (ConstantRange::makeSatisfyingICmpRegion(Pred, OtherCR).contains(CR))
      return ConstantInt::getTrue(Ty);
    if (ConstantRange::makeSatisfyingICmpRegion(
            CmpInst::getInversePredicate(Pred), OtherCR)
            .contains(CR))
      return ConstantInt::getFalse(Ty);

    return nullptr;
  }
};

raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val);

} // end namespace llvm
#endif