reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass tries to expand memcmp() calls into optimally-sized loads and
// compares for the target.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/IRBuilder.h"

using namespace llvm;

#define DEBUG_TYPE "expandmemcmp"

STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
STATISTIC(NumMemCmpGreaterThanMax,
          "Number of memcmp calls with size greater than max size");
STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");

static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
    "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
    cl::desc("The number of loads per basic block for inline expansion of "
             "memcmp that is only being compared against zero."));

static cl::opt<unsigned> MaxLoadsPerMemcmp(
    "max-loads-per-memcmp", cl::Hidden,
    cl::desc("Set maximum number of loads used in expanded memcmp"));

static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
    "max-loads-per-memcmp-opt-size", cl::Hidden,
    cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));

namespace {


// This class provides helper functions to expand a memcmp library call into an
// inline expansion.
class MemCmpExpansion {
  struct ResultBlock {
    BasicBlock *BB = nullptr;
    PHINode *PhiSrc1 = nullptr;
    PHINode *PhiSrc2 = nullptr;

    ResultBlock() = default;
  };

  CallInst *const CI;
  ResultBlock ResBlock;
  const uint64_t Size;
  unsigned MaxLoadSize;
  uint64_t NumLoadsNonOneByte;
  const uint64_t NumLoadsPerBlockForZeroCmp;
  std::vector<BasicBlock *> LoadCmpBlocks;
  BasicBlock *EndBlock;
  PHINode *PhiRes;
  const bool IsUsedForZeroCmp;
  const DataLayout &DL;
  IRBuilder<> Builder;
  // Represents the decomposition in blocks of the expansion. For example,
  // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
  // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
  struct LoadEntry {
    LoadEntry(unsigned LoadSize, uint64_t Offset)
        : LoadSize(LoadSize), Offset(Offset) {
    }

    // The size of the load for this block, in bytes.
    unsigned LoadSize;
    // The offset of this load from the base pointer, in bytes.
    uint64_t Offset;
  };
  using LoadEntryVector = SmallVector<LoadEntry, 8>;
  LoadEntryVector LoadSequence;

  void createLoadCmpBlocks();
  void createResultBlock();
  void setupResultBlockPHINodes();
  void setupEndBlockPHINodes();
  Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
  void emitLoadCompareBlock(unsigned BlockIndex);
  void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
                                         unsigned &LoadIndex);
  void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
  void emitMemCmpResultBlock();
  Value *getMemCmpExpansionZeroCase();
  Value *getMemCmpEqZeroOneBlock();
  Value *getMemCmpOneBlock();
  Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
                                 uint64_t OffsetBytes);

  static LoadEntryVector
  computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
                            unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
  static LoadEntryVector
  computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
                                 unsigned MaxNumLoads,
                                 unsigned &NumLoadsNonOneByte);

public:
  MemCmpExpansion(CallInst *CI, uint64_t Size,
                  const TargetTransformInfo::MemCmpExpansionOptions &Options,
                  const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);

  unsigned getNumBlocks();
  uint64_t getNumLoads() const { return LoadSequence.size(); }

  Value *getMemCmpExpansion();
};

MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
    uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
    const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
  NumLoadsNonOneByte = 0;
  LoadEntryVector LoadSequence;
  uint64_t Offset = 0;
  while (Size && !LoadSizes.empty()) {
    const unsigned LoadSize = LoadSizes.front();
    const uint64_t NumLoadsForThisSize = Size / LoadSize;
    if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
      // Do not expand if the total number of loads is larger than what the
      // target allows. Note that it's important that we exit before completing
      // the expansion to avoid using a ton of memory to store the expansion for
      // large sizes.
      return {};
    }
    if (NumLoadsForThisSize > 0) {
      for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
        LoadSequence.push_back({LoadSize, Offset});
        Offset += LoadSize;
      }
      if (LoadSize > 1)
        ++NumLoadsNonOneByte;
      Size = Size % LoadSize;
    }
    LoadSizes = LoadSizes.drop_front();
  }
  return LoadSequence;
}

MemCmpExpansion::LoadEntryVector
MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
                                                const unsigned MaxLoadSize,
                                                const unsigned MaxNumLoads,
                                                unsigned &NumLoadsNonOneByte) {
  // These are already handled by the greedy approach.
  if (Size < 2 || MaxLoadSize < 2)
    return {};

  // We try to do as many non-overlapping loads as possible starting from the
  // beginning.
  const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
  assert(NumNonOverlappingLoads && "there must be at least one load");
  // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
  // an overlapping load.
  Size = Size - NumNonOverlappingLoads * MaxLoadSize;
  // Bail if we do not need an overloapping store, this is already handled by
  // the greedy approach.
  if (Size == 0)
    return {};
  // Bail if the number of loads (non-overlapping + potential overlapping one)
  // is larger than the max allowed.
  if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
    return {};

  // Add non-overlapping loads.
  LoadEntryVector LoadSequence;
  uint64_t Offset = 0;
  for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
    LoadSequence.push_back({MaxLoadSize, Offset});
    Offset += MaxLoadSize;
  }

  // Add the last overlapping load.
  assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
  LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
  NumLoadsNonOneByte = 1;
  return LoadSequence;
}

// Initialize the basic block structure required for expansion of memcmp call
// with given maximum load size and memcmp size parameter.
// This structure includes:
// 1. A list of load compare blocks - LoadCmpBlocks.
// 2. An EndBlock, split from original instruction point, which is the block to
// return from.
// 3. ResultBlock, block to branch to for early exit when a
// LoadCmpBlock finds a difference.
MemCmpExpansion::MemCmpExpansion(
    CallInst *const CI, uint64_t Size,
    const TargetTransformInfo::MemCmpExpansionOptions &Options,
    const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
    : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
      NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
      IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
  assert(Size > 0 && "zero blocks");
  // Scale the max size down if the target can load more bytes than we need.
  llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
  while (!LoadSizes.empty() && LoadSizes.front() > Size) {
    LoadSizes = LoadSizes.drop_front();
  }
  assert(!LoadSizes.empty() && "cannot load Size bytes");
  MaxLoadSize = LoadSizes.front();
  // Compute the decomposition.
  unsigned GreedyNumLoadsNonOneByte = 0;
  LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
                                           GreedyNumLoadsNonOneByte);
  NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
  // If we allow overlapping loads and the load sequence is not already optimal,
  // use overlapping loads.
  if (Options.AllowOverlappingLoads &&
      (LoadSequence.empty() || LoadSequence.size() > 2)) {
    unsigned OverlappingNumLoadsNonOneByte = 0;
    auto OverlappingLoads = computeOverlappingLoadSequence(
        Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
    if (!OverlappingLoads.empty() &&
        (LoadSequence.empty() ||
         OverlappingLoads.size() < LoadSequence.size())) {
      LoadSequence = OverlappingLoads;
      NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
    }
  }
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
}

unsigned MemCmpExpansion::getNumBlocks() {
  if (IsUsedForZeroCmp)
    return getNumLoads() / NumLoadsPerBlockForZeroCmp +
           (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
  return getNumLoads();
}

void MemCmpExpansion::createLoadCmpBlocks() {
  for (unsigned i = 0; i < getNumBlocks(); i++) {
    BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
                                        EndBlock->getParent(), EndBlock);
    LoadCmpBlocks.push_back(BB);
  }
}

void MemCmpExpansion::createResultBlock() {
  ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
                                   EndBlock->getParent(), EndBlock);
}

/// Return a pointer to an element of type `LoadSizeType` at offset
/// `OffsetBytes`.
Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
                                                Type *LoadSizeType,
                                                uint64_t OffsetBytes) {
  if (OffsetBytes > 0) {
    auto *ByteType = Type::getInt8Ty(CI->getContext());
    Source = Builder.CreateGEP(
        ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
        ConstantInt::get(ByteType, OffsetBytes));
  }
  return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
}

// This function creates the IR instructions for loading and comparing 1 byte.
// It loads 1 byte from each source of the memcmp parameters with the given
// GEPIndex. It then subtracts the two loaded values and adds this result to the
// final phi node for selecting the memcmp result.
void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
                                               unsigned OffsetBytes) {
  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
  Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
  Value *Source1 =
      getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
  Value *Source2 =
      getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);

  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);

  LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
  LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
  Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);

  PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);

  if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
    // Early exit branch if difference found to EndBlock. Otherwise, continue to
    // next LoadCmpBlock,
    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
                                    ConstantInt::get(Diff->getType(), 0));
    BranchInst *CmpBr =
        BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
    Builder.Insert(CmpBr);
  } else {
    // The last block has an unconditional branch to EndBlock.
    BranchInst *CmpBr = BranchInst::Create(EndBlock);
    Builder.Insert(CmpBr);
  }
}

/// Generate an equality comparison for one or more pairs of loaded values.
/// This is used in the case where the memcmp() call is compared equal or not
/// equal to zero.
Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
                                            unsigned &LoadIndex) {
  assert(LoadIndex < getNumLoads() &&
         "getCompareLoadPairs() called with no remaining loads");
  std::vector<Value *> XorList, OrList;
  Value *Diff = nullptr;

  const unsigned NumLoads =
      std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);

  // For a single-block expansion, start inserting before the memcmp call.
  if (LoadCmpBlocks.empty())
    Builder.SetInsertPoint(CI);
  else
    Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);

  Value *Cmp = nullptr;
  // If we have multiple loads per block, we need to generate a composite
  // comparison using xor+or. The type for the combinations is the largest load
  // type.
  IntegerType *const MaxLoadType =
      NumLoads == 1 ? nullptr
                    : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
  for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
    const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];

    IntegerType *LoadSizeType =
        IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);

    Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
                                             CurLoadEntry.Offset);
    Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
                                             CurLoadEntry.Offset);

    // Get a constant or load a value for each source address.
    Value *LoadSrc1 = nullptr;
    if (auto *Source1C = dyn_cast<Constant>(Source1))
      LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
    if (!LoadSrc1)
      LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);

    Value *LoadSrc2 = nullptr;
    if (auto *Source2C = dyn_cast<Constant>(Source2))
      LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
    if (!LoadSrc2)
      LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);

    if (NumLoads != 1) {
      if (LoadSizeType != MaxLoadType) {
        LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
        LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
      }
      // If we have multiple loads per block, we need to generate a composite
      // comparison using xor+or.
      Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
      Diff = Builder.CreateZExt(Diff, MaxLoadType);
      XorList.push_back(Diff);
    } else {
      // If there's only one load per block, we just compare the loaded values.
      Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
    }
  }

  auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
    std::vector<Value *> OutList;
    for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
      Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
      OutList.push_back(Or);
    }
    if (InList.size() % 2 != 0)
      OutList.push_back(InList.back());
    return OutList;
  };

  if (!Cmp) {
    // Pairwise OR the XOR results.
    OrList = pairWiseOr(XorList);

    // Pairwise OR the OR results until one result left.
    while (OrList.size() != 1) {
      OrList = pairWiseOr(OrList);
    }

    assert(Diff && "Failed to find comparison diff");
    Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
  }

  return Cmp;
}

void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
                                                        unsigned &LoadIndex) {
  Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);

  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
                           ? EndBlock
                           : LoadCmpBlocks[BlockIndex + 1];
  // Early exit branch if difference found to ResultBlock. Otherwise,
  // continue to next LoadCmpBlock or EndBlock.
  BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
  Builder.Insert(CmpBr);

  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
  // since early exit to ResultBlock was not taken (no difference was found in
  // any of the bytes).
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
  }
}

// This function creates the IR intructions for loading and comparing using the
// given LoadSize. It loads the number of bytes specified by LoadSize from each
// source of the memcmp parameters. It then does a subtract to see if there was
// a difference in the loaded values. If a difference is found, it branches
// with an early exit to the ResultBlock for calculating which source was
// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
// a special case through emitLoadCompareByteBlock. The special handling can
// simply subtract the loaded values and add it to the result phi node.
void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
  // There is one load per block in this case, BlockIndex == LoadIndex.
  const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];

  if (CurLoadEntry.LoadSize == 1) {
    MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
    return;
  }

  Type *LoadSizeType =
      IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
  assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");

  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);

  Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
                                           CurLoadEntry.Offset);
  Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
                                           CurLoadEntry.Offset);

  // Load LoadSizeType from the base address.
  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);

  if (DL.isLittleEndian()) {
    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
                                                Intrinsic::bswap, LoadSizeType);
    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
  }

  if (LoadSizeType != MaxLoadType) {
    LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
    LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
  }

  // Add the loaded values to the phi nodes for calculating memcmp result only
  // if result is not used in a zero equality.
  if (!IsUsedForZeroCmp) {
    ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
    ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
  }

  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
                           ? EndBlock
                           : LoadCmpBlocks[BlockIndex + 1];
  // Early exit branch if difference found to ResultBlock. Otherwise, continue
  // to next LoadCmpBlock or EndBlock.
  BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
  Builder.Insert(CmpBr);

  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
  // since early exit to ResultBlock was not taken (no difference was found in
  // any of the bytes).
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
  }
}

// This function populates the ResultBlock with a sequence to calculate the
// memcmp result. It compares the two loaded source values and returns -1 if
// src1 < src2 and 1 if src1 > src2.
void MemCmpExpansion::emitMemCmpResultBlock() {
  // Special case: if memcmp result is used in a zero equality, result does not
  // need to be calculated and can simply return 1.
  if (IsUsedForZeroCmp) {
    BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
    Builder.SetInsertPoint(ResBlock.BB, InsertPt);
    Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
    PhiRes->addIncoming(Res, ResBlock.BB);
    BranchInst *NewBr = BranchInst::Create(EndBlock);
    Builder.Insert(NewBr);
    return;
  }
  BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
  Builder.SetInsertPoint(ResBlock.BB, InsertPt);

  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
                                  ResBlock.PhiSrc2);

  Value *Res =
      Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
                           ConstantInt::get(Builder.getInt32Ty(), 1));

  BranchInst *NewBr = BranchInst::Create(EndBlock);
  Builder.Insert(NewBr);
  PhiRes->addIncoming(Res, ResBlock.BB);
}

void MemCmpExpansion::setupResultBlockPHINodes() {
  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
  Builder.SetInsertPoint(ResBlock.BB);
  // Note: this assumes one load per block.
  ResBlock.PhiSrc1 =
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
  ResBlock.PhiSrc2 =
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
}

void MemCmpExpansion::setupEndBlockPHINodes() {
  Builder.SetInsertPoint(&EndBlock->front());
  PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
}

Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
  unsigned LoadIndex = 0;
  // This loop populates each of the LoadCmpBlocks with the IR sequence to
  // handle multiple loads per block.
  for (unsigned I = 0; I < getNumBlocks(); ++I) {
    emitLoadCompareBlockMultipleLoads(I, LoadIndex);
  }

  emitMemCmpResultBlock();
  return PhiRes;
}

/// A memcmp expansion that compares equality with 0 and only has one block of
/// load and compare can bypass the compare, branch, and phi IR that is required
/// in the general case.
Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
  unsigned LoadIndex = 0;
  Value *Cmp = getCompareLoadPairs(0, LoadIndex);
  assert(LoadIndex == getNumLoads() && "some entries were not consumed");
  return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
}

/// A memcmp expansion that only has one block of load and compare can bypass
/// the compare, branch, and phi IR that is required in the general case.
Value *MemCmpExpansion::getMemCmpOneBlock() {
  Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
  Value *Source1 = CI->getArgOperand(0);
  Value *Source2 = CI->getArgOperand(1);

  // Cast source to LoadSizeType*.
  if (Source1->getType() != LoadSizeType)
    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
  if (Source2->getType() != LoadSizeType)
    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());

  // Load LoadSizeType from the base address.
  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);

  if (DL.isLittleEndian() && Size != 1) {
    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
                                                Intrinsic::bswap, LoadSizeType);
    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
  }

  if (Size < 4) {
    // The i8 and i16 cases don't need compares. We zext the loaded values and
    // subtract them to get the suitable negative, zero, or positive i32 result.
    LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
    LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
    return Builder.CreateSub(LoadSrc1, LoadSrc2);
  }

  // The result of memcmp is negative, zero, or positive, so produce that by
  // subtracting 2 extended compare bits: sub (ugt, ult).
  // If a target prefers to use selects to get -1/0/1, they should be able
  // to transform this later. The inverse transform (going from selects to math)
  // may not be possible in the DAG because the selects got converted into
  // branches before we got there.
  Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
  Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
  Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
  Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
  return Builder.CreateSub(ZextUGT, ZextULT);
}

// This function expands the memcmp call into an inline expansion and returns
// the memcmp result.
Value *MemCmpExpansion::getMemCmpExpansion() {
  // Create the basic block framework for a multi-block expansion.
  if (getNumBlocks() != 1) {
    BasicBlock *StartBlock = CI->getParent();
    EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
    setupEndBlockPHINodes();
    createResultBlock();

    // If return value of memcmp is not used in a zero equality, we need to
    // calculate which source was larger. The calculation requires the
    // two loaded source values of each load compare block.
    // These will be saved in the phi nodes created by setupResultBlockPHINodes.
    if (!IsUsedForZeroCmp) setupResultBlockPHINodes();

    // Create the number of required load compare basic blocks.
    createLoadCmpBlocks();

    // Update the terminator added by splitBasicBlock to branch to the first
    // LoadCmpBlock.
    StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
  }

  Builder.SetCurrentDebugLocation(CI->getDebugLoc());

  if (IsUsedForZeroCmp)
    return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
                               : getMemCmpExpansionZeroCase();

  if (getNumBlocks() == 1)
    return getMemCmpOneBlock();

  for (unsigned I = 0; I < getNumBlocks(); ++I) {
    emitLoadCompareBlock(I);
  }

  emitMemCmpResultBlock();
  return PhiRes;
}

// This function checks to see if an expansion of memcmp can be generated.
// It checks for constant compare size that is less than the max inline size.
// If an expansion cannot occur, returns false to leave as a library call.
// Otherwise, the library call is replaced with a new IR instruction sequence.
/// We want to transform:
/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
/// To:
/// loadbb:
///  %0 = bitcast i32* %buffer2 to i8*
///  %1 = bitcast i32* %buffer1 to i8*
///  %2 = bitcast i8* %1 to i64*
///  %3 = bitcast i8* %0 to i64*
///  %4 = load i64, i64* %2
///  %5 = load i64, i64* %3
///  %6 = call i64 @llvm.bswap.i64(i64 %4)
///  %7 = call i64 @llvm.bswap.i64(i64 %5)
///  %8 = sub i64 %6, %7
///  %9 = icmp ne i64 %8, 0
///  br i1 %9, label %res_block, label %loadbb1
/// res_block:                                        ; preds = %loadbb2,
/// %loadbb1, %loadbb
///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
///  %10 = icmp ult i64 %phi.src1, %phi.src2
///  %11 = select i1 %10, i32 -1, i32 1
///  br label %endblock
/// loadbb1:                                          ; preds = %loadbb
///  %12 = bitcast i32* %buffer2 to i8*
///  %13 = bitcast i32* %buffer1 to i8*
///  %14 = bitcast i8* %13 to i32*
///  %15 = bitcast i8* %12 to i32*
///  %16 = getelementptr i32, i32* %14, i32 2
///  %17 = getelementptr i32, i32* %15, i32 2
///  %18 = load i32, i32* %16
///  %19 = load i32, i32* %17
///  %20 = call i32 @llvm.bswap.i32(i32 %18)
///  %21 = call i32 @llvm.bswap.i32(i32 %19)
///  %22 = zext i32 %20 to i64
///  %23 = zext i32 %21 to i64
///  %24 = sub i64 %22, %23
///  %25 = icmp ne i64 %24, 0
///  br i1 %25, label %res_block, label %loadbb2
/// loadbb2:                                          ; preds = %loadbb1
///  %26 = bitcast i32* %buffer2 to i8*
///  %27 = bitcast i32* %buffer1 to i8*
///  %28 = bitcast i8* %27 to i16*
///  %29 = bitcast i8* %26 to i16*
///  %30 = getelementptr i16, i16* %28, i16 6
///  %31 = getelementptr i16, i16* %29, i16 6
///  %32 = load i16, i16* %30
///  %33 = load i16, i16* %31
///  %34 = call i16 @llvm.bswap.i16(i16 %32)
///  %35 = call i16 @llvm.bswap.i16(i16 %33)
///  %36 = zext i16 %34 to i64
///  %37 = zext i16 %35 to i64
///  %38 = sub i64 %36, %37
///  %39 = icmp ne i64 %38, 0
///  br i1 %39, label %res_block, label %loadbb3
/// loadbb3:                                          ; preds = %loadbb2
///  %40 = bitcast i32* %buffer2 to i8*
///  %41 = bitcast i32* %buffer1 to i8*
///  %42 = getelementptr i8, i8* %41, i8 14
///  %43 = getelementptr i8, i8* %40, i8 14
///  %44 = load i8, i8* %42
///  %45 = load i8, i8* %43
///  %46 = zext i8 %44 to i32
///  %47 = zext i8 %45 to i32
///  %48 = sub i32 %46, %47
///  br label %endblock
/// endblock:                                         ; preds = %res_block,
/// %loadbb3
///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
///  ret i32 %phi.res
static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
                         const TargetLowering *TLI, const DataLayout *DL) {
  NumMemCmpCalls++;

  // Early exit from expansion if -Oz.
  if (CI->getFunction()->hasMinSize())
    return false;

  // Early exit from expansion if size is not a constant.
  ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
  if (!SizeCast) {
    NumMemCmpNotConstant++;
    return false;
  }
  const uint64_t SizeVal = SizeCast->getZExtValue();

  if (SizeVal == 0) {
    return false;
  }
  // TTI call to check if target would like to expand memcmp. Also, get the
  // available load sizes.
  const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
  auto Options = TTI->enableMemCmpExpansion(CI->getFunction()->hasOptSize(),
                                            IsUsedForZeroCmp);
  if (!Options) return false;

  if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
    Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;

  if (CI->getFunction()->hasOptSize() &&
      MaxLoadsPerMemcmpOptSize.getNumOccurrences())
    Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;

  if (!CI->getFunction()->hasOptSize() && MaxLoadsPerMemcmp.getNumOccurrences())
    Options.MaxNumLoads = MaxLoadsPerMemcmp;

  MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);

  // Don't expand if this will require more loads than desired by the target.
  if (Expansion.getNumLoads() == 0) {
    NumMemCmpGreaterThanMax++;
    return false;
  }

  NumMemCmpInlined++;

  Value *Res = Expansion.getMemCmpExpansion();

  // Replace call with result of expansion and erase call.
  CI->replaceAllUsesWith(Res);
  CI->eraseFromParent();

  return true;
}



class ExpandMemCmpPass : public FunctionPass {
public:
  static char ID;

  ExpandMemCmpPass() : FunctionPass(ID) {
    initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F)) return false;

    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
    if (!TPC) {
      return false;
    }
    const TargetLowering* TL =
        TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();

    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    const TargetTransformInfo *TTI =
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto PA = runImpl(F, TLI, TTI, TL);
    return !PA.areAllPreserved();
  }

private:
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

  PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
                            const TargetTransformInfo *TTI,
                            const TargetLowering* TL);
  // Returns true if a change was made.
  bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
                  const TargetTransformInfo *TTI, const TargetLowering* TL,
                  const DataLayout& DL);
};

bool ExpandMemCmpPass::runOnBlock(
    BasicBlock &BB, const TargetLibraryInfo *TLI,
    const TargetTransformInfo *TTI, const TargetLowering* TL,
    const DataLayout& DL) {
  for (Instruction& I : BB) {
    CallInst *CI = dyn_cast<CallInst>(&I);
    if (!CI) {
      continue;
    }
    LibFunc Func;
    if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
        (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
        expandMemCmp(CI, TTI, TL, &DL)) {
      return true;
    }
  }
  return false;
}


PreservedAnalyses ExpandMemCmpPass::runImpl(
    Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
    const TargetLowering* TL) {
  const DataLayout& DL = F.getParent()->getDataLayout();
  bool MadeChanges = false;
  for (auto BBIt = F.begin(); BBIt != F.end();) {
    if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
      MadeChanges = true;
      // If changes were made, restart the function from the beginning, since
      // the structure of the function was changed.
      BBIt = F.begin();
    } else {
      ++BBIt;
    }
  }
  return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
}

} // namespace

char ExpandMemCmpPass::ID = 0;
INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
                      "Expand memcmp() to load/stores", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
                    "Expand memcmp() to load/stores", false, false)

FunctionPass *llvm::createExpandMemCmpPass() {
  return new ExpandMemCmpPass();
}