1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
| //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "dagcombine"
STATISTIC(NodesCombined , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
STATISTIC(SlicedLoads, "Number of load sliced");
STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Enable DAG combiner's use of IR alias analysis"));
static cl::opt<bool>
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
cl::desc("Enable DAG combiner's use of TBAA"));
#ifndef NDEBUG
static cl::opt<std::string>
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
cl::desc("Only use DAG-combiner alias analysis in this"
" function"));
#endif
/// Hidden option to stress test load slicing, i.e., when this option
/// is enabled, load slicing bypasses most of its profitability guards.
static cl::opt<bool>
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
cl::desc("Bypass the profitability model of load slicing"),
cl::init(false));
static cl::opt<bool>
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
cl::desc("DAG combiner may split indexing from loads"));
static cl::opt<bool>
EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
cl::desc("DAG combiner enable merging multiple stores "
"into a wider store"));
static cl::opt<unsigned> TokenFactorInlineLimit(
"combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
cl::desc("Limit the number of operands to inline for Token Factors"));
static cl::opt<unsigned> StoreMergeDependenceLimit(
"combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
cl::desc("Limit the number of times for the same StoreNode and RootNode "
"to bail out in store merging dependence check"));
namespace {
class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations = false;
bool LegalTypes = false;
bool ForCodeSize;
/// Worklist of all of the nodes that need to be simplified.
///
/// This must behave as a stack -- new nodes to process are pushed onto the
/// back and when processing we pop off of the back.
///
/// The worklist will not contain duplicates but may contain null entries
/// due to nodes being deleted from the underlying DAG.
SmallVector<SDNode *, 64> Worklist;
/// Mapping from an SDNode to its position on the worklist.
///
/// This is used to find and remove nodes from the worklist (by nulling
/// them) when they are deleted from the underlying DAG. It relies on
/// stable indices of nodes within the worklist.
DenseMap<SDNode *, unsigned> WorklistMap;
/// This records all nodes attempted to add to the worklist since we
/// considered a new worklist entry. As we keep do not add duplicate nodes
/// in the worklist, this is different from the tail of the worklist.
SmallSetVector<SDNode *, 32> PruningList;
/// Set of nodes which have been combined (at least once).
///
/// This is used to allow us to reliably add any operands of a DAG node
/// which have not yet been combined to the worklist.
SmallPtrSet<SDNode *, 32> CombinedNodes;
/// Map from candidate StoreNode to the pair of RootNode and count.
/// The count is used to track how many times we have seen the StoreNode
/// with the same RootNode bail out in dependence check. If we have seen
/// the bail out for the same pair many times over a limit, we won't
/// consider the StoreNode with the same RootNode as store merging
/// candidate again.
DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
// AA - Used for DAG load/store alias analysis.
AliasAnalysis *AA;
/// When an instruction is simplified, add all users of the instruction to
/// the work lists because they might get more simplified now.
void AddUsersToWorklist(SDNode *N) {
for (SDNode *Node : N->uses())
AddToWorklist(Node);
}
// Prune potentially dangling nodes. This is called after
// any visit to a node, but should also be called during a visit after any
// failed combine which may have created a DAG node.
void clearAddedDanglingWorklistEntries() {
// Check any nodes added to the worklist to see if they are prunable.
while (!PruningList.empty()) {
auto *N = PruningList.pop_back_val();
if (N->use_empty())
recursivelyDeleteUnusedNodes(N);
}
}
SDNode *getNextWorklistEntry() {
// Before we do any work, remove nodes that are not in use.
clearAddedDanglingWorklistEntries();
SDNode *N = nullptr;
// The Worklist holds the SDNodes in order, but it may contain null
// entries.
while (!N && !Worklist.empty()) {
N = Worklist.pop_back_val();
}
if (N) {
bool GoodWorklistEntry = WorklistMap.erase(N);
(void)GoodWorklistEntry;
assert(GoodWorklistEntry &&
"Found a worklist entry without a corresponding map entry!");
}
return N;
}
/// Call the node-specific routine that folds each particular type of node.
SDValue visit(SDNode *N);
public:
DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
OptLevel(OL), AA(AA) {
ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
MaximumLegalStoreInBits = 0;
for (MVT VT : MVT::all_valuetypes())
if (EVT(VT).isSimple() && VT != MVT::Other &&
TLI.isTypeLegal(EVT(VT)) &&
VT.getSizeInBits() >= MaximumLegalStoreInBits)
MaximumLegalStoreInBits = VT.getSizeInBits();
}
void ConsiderForPruning(SDNode *N) {
// Mark this for potential pruning.
PruningList.insert(N);
}
/// Add to the worklist making sure its instance is at the back (next to be
/// processed.)
void AddToWorklist(SDNode *N) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Deleted Node added to Worklist");
// Skip handle nodes as they can't usefully be combined and confuse the
// zero-use deletion strategy.
if (N->getOpcode() == ISD::HANDLENODE)
return;
ConsiderForPruning(N);
if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
Worklist.push_back(N);
}
/// Remove all instances of N from the worklist.
void removeFromWorklist(SDNode *N) {
CombinedNodes.erase(N);
PruningList.remove(N);
StoreRootCountMap.erase(N);
auto It = WorklistMap.find(N);
if (It == WorklistMap.end())
return; // Not in the worklist.
// Null out the entry rather than erasing it to avoid a linear operation.
Worklist[It->second] = nullptr;
WorklistMap.erase(It);
}
void deleteAndRecombine(SDNode *N);
bool recursivelyDeleteUnusedNodes(SDNode *N);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
return CombineTo(N, &Res, 1, AddTo);
}
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
SDValue To[] = { Res0, Res1 };
return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
private:
unsigned MaximumLegalStoreInBits;
/// Check the specified integer node value to see if it can be simplified or
/// if things it uses can be simplified by bit propagation.
/// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
return SimplifyDemandedBits(Op, DemandedBits);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
EVT VT = Op.getValueType();
unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1;
APInt DemandedElts = APInt::getAllOnesValue(NumElts);
return SimplifyDemandedBits(Op, DemandedBits, DemandedElts);
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the
/// elements. If so, return true.
bool SimplifyDemandedVectorElts(SDValue Op) {
unsigned NumElts = Op.getValueType().getVectorNumElements();
APInt DemandedElts = APInt::getAllOnesValue(NumElts);
return SimplifyDemandedVectorElts(Op, DemandedElts);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts);
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
bool AssumeSingleUse = false);
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
SDValue SplitIndexingFromLoad(LoadSDNode *LD);
bool SliceUpLoad(SDNode *N);
// Scalars have size 0 to distinguish from singleton vectors.
SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
/// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
/// load.
///
/// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
/// \param InVecVT type of the input vector to EVE with bitcasts resolved.
/// \param EltNo index of the vector element to load.
/// \param OriginalLoad load that EVE came from to be replaced.
/// \returns EVE on success SDValue() on failure.
SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
SDValue EltNo,
LoadSDNode *OriginalLoad);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
SDValue PromoteIntBinOp(SDValue Op);
SDValue PromoteIntShiftOp(SDValue Op);
SDValue PromoteExtend(SDValue Op);
bool PromoteLoad(SDValue Op);
/// Call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDValue.getNode() == 0 - No change was made
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
// otherwise - N should be replaced by the returned Operand.
//
SDValue visitTokenFactor(SDNode *N);
SDValue visitMERGE_VALUES(SDNode *N);
SDValue visitADD(SDNode *N);
SDValue visitADDLike(SDNode *N);
SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
SDValue visitSUB(SDNode *N);
SDValue visitADDSAT(SDNode *N);
SDValue visitSUBSAT(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitADDO(SDNode *N);
SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitSUBO(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitADDCARRY(SDNode *N);
SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitSUBCARRY(SDNode *N);
SDValue visitMUL(SDNode *N);
SDValue visitMULFIX(SDNode *N);
SDValue useDivRem(SDNode *N);
SDValue visitSDIV(SDNode *N);
SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitUDIV(SDNode *N);
SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitREM(SDNode *N);
SDValue visitMULHU(SDNode *N);
SDValue visitMULHS(SDNode *N);
SDValue visitSMUL_LOHI(SDNode *N);
SDValue visitUMUL_LOHI(SDNode *N);
SDValue visitMULO(SDNode *N);
SDValue visitIMINMAX(SDNode *N);
SDValue visitAND(SDNode *N);
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitOR(SDNode *N);
SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitXOR(SDNode *N);
SDValue SimplifyVBinOp(SDNode *N);
SDValue visitSHL(SDNode *N);
SDValue visitSRA(SDNode *N);
SDValue visitSRL(SDNode *N);
SDValue visitFunnelShift(SDNode *N);
SDValue visitRotate(SDNode *N);
SDValue visitABS(SDNode *N);
SDValue visitBSWAP(SDNode *N);
SDValue visitBITREVERSE(SDNode *N);
SDValue visitCTLZ(SDNode *N);
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTTZ(SDNode *N);
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTPOP(SDNode *N);
SDValue visitSELECT(SDNode *N);
SDValue visitVSELECT(SDNode *N);
SDValue visitSELECT_CC(SDNode *N);
SDValue visitSETCC(SDNode *N);
SDValue visitSETCCCARRY(SDNode *N);
SDValue visitSIGN_EXTEND(SDNode *N);
SDValue visitZERO_EXTEND(SDNode *N);
SDValue visitANY_EXTEND(SDNode *N);
SDValue visitAssertExt(SDNode *N);
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
SDValue visitTRUNCATE(SDNode *N);
SDValue visitBITCAST(SDNode *N);
SDValue visitBUILD_PAIR(SDNode *N);
SDValue visitFADD(SDNode *N);
SDValue visitFSUB(SDNode *N);
SDValue visitFMUL(SDNode *N);
SDValue visitFMA(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
SDValue visitFSQRT(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitFPOW(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
SDValue visitFP_TO_SINT(SDNode *N);
SDValue visitFP_TO_UINT(SDNode *N);
SDValue visitFP_ROUND(SDNode *N);
SDValue visitFP_EXTEND(SDNode *N);
SDValue visitFNEG(SDNode *N);
SDValue visitFABS(SDNode *N);
SDValue visitFCEIL(SDNode *N);
SDValue visitFTRUNC(SDNode *N);
SDValue visitFFLOOR(SDNode *N);
SDValue visitFMINNUM(SDNode *N);
SDValue visitFMAXNUM(SDNode *N);
SDValue visitFMINIMUM(SDNode *N);
SDValue visitFMAXIMUM(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
SDValue visitSTORE(SDNode *N);
SDValue visitLIFETIME_END(SDNode *N);
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
SDValue visitBUILD_VECTOR(SDNode *N);
SDValue visitCONCAT_VECTORS(SDNode *N);
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitSCALAR_TO_VECTOR(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
SDValue visitMLOAD(SDNode *N);
SDValue visitMSTORE(SDNode *N);
SDValue visitMGATHER(SDNode *N);
SDValue visitMSCATTER(SDNode *N);
SDValue visitFP_TO_FP16(SDNode *N);
SDValue visitFP16_TO_FP(SDNode *N);
SDValue visitVECREDUCE(SDNode *N);
SDValue visitFADDForFMACombine(SDNode *N);
SDValue visitFSUBForFMACombine(SDNode *N);
SDValue visitFMULForFMADistributiveCombine(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
bool reassociationCanBreakAddressingModePattern(unsigned Opc,
const SDLoc &DL, SDValue N0,
SDValue N1);
SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1);
SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags);
SDValue visitShiftByConstant(SDNode *N);
SDValue foldSelectOfConstants(SDNode *N);
SDValue foldVSelectOfConstants(SDNode *N);
SDValue foldBinOpIntoSelect(SDNode *BO);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
SDValue convertSelectOfFPConstantsToLoadOffset(
const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC);
SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC);
SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL);
SDValue unfoldMaskedMerge(SDNode *N);
SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, bool foldBooleans);
SDValue rebuildSetCC(SDValue N);
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const;
bool isOneUseSetCC(SDValue N) const;
bool isCheaperToUseNegatedFPOps(SDValue X, SDValue Y);
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
SDValue CombineExtLoad(SDNode *N);
SDValue CombineZExtLogicopShiftLoad(SDNode *N);
SDValue combineRepeatedFPDivisors(SDNode *N);
SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits = true);
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
SDValue InnerPos, SDValue InnerNeg,
unsigned PosOpcode, unsigned NegOpcode,
const SDLoc &DL);
SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
SDValue MatchLoadCombine(SDNode *N);
SDValue MatchStoreCombine(StoreSDNode *N);
SDValue ReduceLoadWidth(SDNode *N);
SDValue ReduceLoadOpStoreWidth(SDNode *N);
SDValue splitMergedValStore(StoreSDNode *ST);
SDValue TransformFPLoadStorePair(SDNode *N);
SDValue convertBuildVecZextToZext(SDNode *N);
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
SDValue reduceBuildVecToShuffle(SDNode *N);
SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
ArrayRef<int> VectorMask, SDValue VecIn1,
SDValue VecIn2, unsigned LeftIdx,
bool DidSplitVec);
SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases);
/// Return true if there is any possibility that the two addresses overlap.
bool isAlias(SDNode *Op0, SDNode *Op1) const;
/// Walk up chain skipping non-aliasing memory nodes, looking for a better
/// chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// Try to replace a store and any possibly adjacent stores on
/// consecutive chains with better chains. Return true only if St is
/// replaced.
///
/// Notice that other chains may still be replaced even if the function
/// returns false.
bool findBetterNeighborChains(StoreSDNode *St);
// Helper for findBetterNeighborChains. Walk up store chain add additional
// chained stores that do not overlap and can be parallelized.
bool parallelizeChainedStores(StoreSDNode *St);
/// Holds a pointer to an LSBaseSDNode as well as information on where it
/// is located in a sequence of memory operations connected by a chain.
struct MemOpLink {
// Ptr to the mem node.
LSBaseSDNode *MemNode;
// Offset from the base ptr.
int64_t OffsetFromBase;
MemOpLink(LSBaseSDNode *N, int64_t Offset)
: MemNode(N), OffsetFromBase(Offset) {}
};
/// This is a helper function for visitMUL to check the profitability
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// MulNode is the original multiply, AddNode is (add x, c1),
/// and ConstNode is c2.
bool isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode);
/// This is a helper function for visitAND and visitZERO_EXTEND. Returns
/// true if the (and (load x) c) pattern matches an extload. ExtVT returns
/// the type of the loaded value to be extended.
bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT);
/// Helper function to calculate whether the given Load/Store can have its
/// width reduced to ExtVT.
bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
EVT &MemVT, unsigned ShAmt = 0);
/// Used by BackwardsPropagateMask to find suitable loads.
bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask, SDNode *&NodeToMask);
/// Attempt to propagate a given AND node back to load leaves so that they
/// can be combined into narrow loads.
bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
/// Helper function for MergeConsecutiveStores which merges the
/// component store chains.
SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumStores);
/// This is a helper function for MergeConsecutiveStores. When the
/// source elements of the consecutive stores are all constants or
/// all extracted vector elements, try to merge them into one
/// larger store introducing bitcasts if necessary. \return True
/// if a merged store was created.
bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector,
bool UseTrunc);
/// This is a helper function for MergeConsecutiveStores. Stores
/// that potentially may be merged with St are placed in
/// StoreNodes. RootNode is a chain predecessor to all store
/// candidates.
void getStoreMergeCandidates(StoreSDNode *St,
SmallVectorImpl<MemOpLink> &StoreNodes,
SDNode *&Root);
/// Helper function for MergeConsecutiveStores. Checks if
/// candidate stores have indirect dependency through their
/// operands. RootNode is the predecessor to all stores calculated
/// by getStoreMergeCandidates and is used to prune the dependency check.
/// \return True if safe to merge.
bool checkMergeStoreCandidatesForDependencies(
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
SDNode *RootNode);
/// Merge consecutive store operations into a wide store.
/// This optimization uses wide integers or vectors when possible.
/// \return number of stores that were merged into a merged store (the
/// affected nodes are stored as a prefix in \p StoreNodes).
bool MergeConsecutiveStores(StoreSDNode *St);
/// Try to transform a truncation where C is a constant:
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
///
/// \p N needs to be a truncation and its first operand an AND. Other
/// requirements are checked by the function (e.g. that trunc is
/// single-use) and if missed an empty SDValue is returned.
SDValue distributeTruncateThroughAnd(SDNode *N);
/// Helper function to determine whether the target supports operation
/// given by \p Opcode for type \p VT, that is, whether the operation
/// is legal or custom before legalizing operations, and whether is
/// legal (but not custom) after legalization.
bool hasOperation(unsigned Opcode, EVT VT) {
if (LegalOperations)
return TLI.isOperationLegal(Opcode, VT);
return TLI.isOperationLegalOrCustom(Opcode, VT);
}
public:
/// Runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
SelectionDAG &getDAG() const { return DAG; }
/// Returns a type large enough to hold any valid shift amount - before type
/// legalization these can be huge.
EVT getShiftAmountTy(EVT LHSTy) {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
}
/// This method returns true if we are running before type legalization or
/// if the specified VT is legal.
bool isTypeLegal(const EVT &VT) {
if (!LegalTypes) return true;
return TLI.isTypeLegal(VT);
}
/// Convenience wrapper around TargetLowering::getSetCCResultType
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue OrigLoad, SDValue ExtLoad,
ISD::NodeType ExtType);
};
/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistRemover(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
DC.removeFromWorklist(N);
}
};
class WorklistInserter : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistInserter(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
// FIXME: Ideally we could add N to the worklist, but this causes exponential
// compile time costs in large DAGs, e.g. Halide.
void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorklist(N);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}
bool TargetLowering::DAGCombinerInfo::
recursivelyDeleteUnusedNodes(SDNode *N) {
return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
}
void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
void DAGCombiner::deleteAndRecombine(SDNode *N) {
removeFromWorklist(N);
// If the operands of this node are only used by the node, they will now be
// dead. Make sure to re-visit them and recursively delete dead nodes.
for (const SDValue &Op : N->ops())
// For an operand generating multiple values, one of the values may
// become dead allowing further simplification (e.g. split index
// arithmetic from an indexed load).
if (Op->hasOneUse() || Op->getNumValues() > 1)
AddToWorklist(Op.getNode());
DAG.DeleteNode(N);
}
// APInts must be the same size for most operations, this helper
// function zero extends the shorter of the pair so that they match.
// We provide an Offset so that we can create bitwidths that won't overflow.
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
LHS = LHS.zextOrSelf(Bits);
RHS = RHS.zextOrSelf(Bits);
}
// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
// simplifies life a bit for the callers.
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (N.getOpcode() != ISD::SELECT_CC ||
!TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
!TLI.isConstFalseVal(N.getOperand(3).getNode()))
return false;
if (TLI.getBooleanContents(N.getValueType()) ==
TargetLowering::UndefinedBooleanContent)
return false;
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
/// Return true if this is a SetCC-equivalent operation with only one use.
/// If this is true, it allows the users to invert the operation for free when
/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
return true;
return false;
}
// Returns the SDNode if it is a constant float BuildVector
// or constant float.
static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
if (isa<ConstantFPSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
return N.getNode();
return nullptr;
}
// Determines if it is a constant integer or a build vector of constant
// integers (and undefs).
// Do not permit build vector implicit truncation.
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
return !(Const->isOpaque() && NoOpaques);
if (N.getOpcode() != ISD::BUILD_VECTOR)
return false;
unsigned BitWidth = N.getScalarValueSizeInBits();
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
(Const->isOpaque() && NoOpaques))
return false;
}
return true;
}
// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
// undef's.
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
if (V.getOpcode() != ISD::BUILD_VECTOR)
return false;
return isConstantOrConstantVector(V, NoOpaques) ||
ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
}
bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
const SDLoc &DL,
SDValue N0,
SDValue N1) {
// Currently this only tries to ensure we don't undo the GEP splits done by
// CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
// we check if the following transformation would be problematic:
// (load/store (add, (add, x, offset1), offset2)) ->
// (load/store (add, x, offset1+offset2)).
if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
return false;
if (N0.hasOneUse())
return false;
auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
auto *C2 = dyn_cast<ConstantSDNode>(N1);
if (!C1 || !C2)
return false;
const APInt &C1APIntVal = C1->getAPIntValue();
const APInt &C2APIntVal = C2->getAPIntValue();
if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
return false;
const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
if (CombinedValueIntVal.getBitWidth() > 64)
return false;
const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
for (SDNode *Node : N0->uses()) {
auto LoadStore = dyn_cast<MemSDNode>(Node);
if (LoadStore) {
// Is x[offset2] already not a legal addressing mode? If so then
// reassociating the constants breaks nothing (we test offset2 because
// that's the one we hope to fold into the load or store).
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = C2APIntVal.getSExtValue();
EVT VT = LoadStore->getMemoryVT();
unsigned AS = LoadStore->getAddressSpace();
Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
continue;
// Would x[offset1+offset2] still be a legal addressing mode?
AM.BaseOffs = CombinedValue;
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
return true;
}
}
return false;
}
// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
SDValue N0, SDValue N1) {
EVT VT = N0.getValueType();
if (N0.getOpcode() != Opc)
return SDValue();
// Don't reassociate reductions.
if (N0->getFlags().hasVectorReduction())
return SDValue();
if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2))
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
return SDValue();
}
if (N0.hasOneUse()) {
// Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
// iff (op x, c1) has one use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
if (!OpNode.getNode())
return SDValue();
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
}
}
return SDValue();
}
// Try to reassociate commutative binops.
SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags) {
assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
// Don't reassociate reductions.
if (Flags.hasVectorReduction())
return SDValue();
// Floating-point reassociation is not allowed without loose FP math.
if (N0.getValueType().isFloatingPoint() ||
N1.getValueType().isFloatingPoint())
if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
return SDValue();
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
return Combined;
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
return Combined;
return SDValue();
}
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
To[0].getNode()->dump(&DAG);
dbgs() << " and " << NumTo - 1 << " other values\n");
for (unsigned i = 0, e = NumTo; i != e; ++i)
assert((!To[i].getNode() ||
N->getValueType(i) == To[i].getValueType()) &&
"Cannot combine value to value of different type!");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To);
if (AddTo) {
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = NumTo; i != e; ++i) {
if (To[i].getNode()) {
AddToWorklist(To[i].getNode());
AddUsersToWorklist(To[i].getNode());
}
}
}
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0);
}
void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Replace all uses. If any nodes become isomorphic to other nodes and
// are deleted, make sure to remove them from our worklist.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
// Push the new node and any (possibly new) users onto the worklist.
AddToWorklist(TLO.New.getNode());
AddUsersToWorklist(TLO.New.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (TLO.Old.getNode()->use_empty())
deleteAndRecombine(TLO.Old.getNode());
}
/// Check the specified integer node value to see if it can be simplified or if
/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
KnownBits Known;
if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the elements.
/// If so, return true.
bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
const APInt &DemandedElts,
bool AssumeSingleUse) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
APInt KnownUndef, KnownZero;
if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
TLO, 0, AssumeSingleUse))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
}
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
SDLoc DL(Load);
EVT VT = Load->getValueType(0);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
Trunc.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
deleteAndRecombine(Load);
AddToWorklist(Trunc.getNode());
}
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = false;
SDLoc DL(Op);
if (ISD::isUNINDEXEDLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
Replace = true;
return DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
}
unsigned Opc = Op.getOpcode();
switch (Opc) {
default: break;
case ISD::AssertSext:
if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::AssertZext:
if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::Constant: {
unsigned ExtOpc =
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
return DAG.getNode(ExtOpc, DL, PVT, Op);
}
}
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
return SDValue();
return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
}
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
return SDValue();
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
DAG.getValueType(OldVT));
}
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
}
/// Promote the specified integer binary operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
bool Replace0 = false;
SDValue N0 = Op.getOperand(0);
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
bool Replace1 = false;
SDValue N1 = Op.getOperand(1);
SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
SDLoc DL(Op);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
// We are always replacing N0/N1's use in N and only need
// additional replacements if there are additional uses.
Replace0 &= !N0->hasOneUse();
Replace1 &= (N0 != N1) && !N1->hasOneUse();
// Combine Op here so it is preserved past replacements.
CombineTo(Op.getNode(), RV);
// If operands have a use ordering, make sure we deal with
// predecessor first.
if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
std::swap(N0, N1);
std::swap(NN0, NN1);
}
if (Replace0) {
AddToWorklist(NN0.getNode());
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
}
if (Replace1) {
AddToWorklist(NN1.getNode());
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
}
return Op;
}
return SDValue();
}
/// Promote the specified integer shift operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
bool Replace = false;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
if (Opc == ISD::SRA)
N0 = SExtPromoteOperand(N0, PVT);
else if (Opc == ISD::SRL)
N0 = ZExtPromoteOperand(N0, PVT);
else
N0 = PromoteOperand(N0, PVT, Replace);
if (!N0.getNode())
return SDValue();
SDLoc DL(Op);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
// Deal with Op being deleted.
if (Op && Op.getOpcode() != ISD::DELETED_NODE)
return RV;
}
return SDValue();
}
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
}
return SDValue();
}
bool DAGCombiner::PromoteLoad(SDValue Op) {
if (!LegalOperations)
return false;
if (!ISD::isUNINDEXEDLoad(Op.getNode()))
return false;
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return false;
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return false;
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
SDLoc DL(Op);
SDNode *N = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
Result.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
deleteAndRecombine(N);
AddToWorklist(Result.getNode());
return true;
}
return false;
}
/// Recursively delete a node which has no uses and any operands for
/// which it is the only use.
///
/// Note that this both deletes the nodes and removes them from the worklist.
/// It also adds any nodes who have had a user deleted to the worklist as they
/// may now have only one use and subject to other combines.
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
if (!N->use_empty())
return false;
SmallSetVector<SDNode *, 16> Nodes;
Nodes.insert(N);
do {
N = Nodes.pop_back_val();
if (!N)
continue;
if (N->use_empty()) {
for (const SDValue &ChildN : N->op_values())
Nodes.insert(ChildN.getNode());
removeFromWorklist(N);
DAG.DeleteNode(N);
} else {
AddToWorklist(N);
}
} while (!Nodes.empty());
return true;
}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
//===----------------------------------------------------------------------===//
void DAGCombiner::Run(CombineLevel AtLevel) {
// set the instance variables, so that the various visit routines may use it.
Level = AtLevel;
LegalOperations = Level >= AfterLegalizeVectorOps;
LegalTypes = Level >= AfterLegalizeTypes;
WorklistInserter AddNodes(*this);
// Add all the dag nodes to the worklist.
for (SDNode &Node : DAG.allnodes())
AddToWorklist(&Node);
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// While we have a valid worklist entry node, try to combine it.
while (SDNode *N = getNextWorklistEntry()) {
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (recursivelyDeleteUnusedNodes(N))
continue;
WorklistRemover DeadNodes(*this);
// If this combine is running after legalizing the DAG, re-legalize any
// nodes pulled off the worklist.
if (Level == AfterLegalizeDAG) {
SmallSetVector<SDNode *, 16> UpdatedNodes;
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
for (SDNode *LN : UpdatedNodes) {
AddUsersToWorklist(LN);
AddToWorklist(LN);
}
if (!NIsValid)
continue;
}
LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
// Add any operands of the new node which have not yet been combined to the
// worklist as well. Because the worklist uniques things already, this
// won't repeatedly process the same operand.
CombinedNodes.insert(N);
for (const SDValue &ChildN : N->op_values())
if (!CombinedNodes.count(ChildN.getNode()))
AddToWorklist(ChildN.getNode());
SDValue RV = combine(N);
if (!RV.getNode())
continue;
++NodesCombined;
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.getNode() == N)
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
RV.getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode());
else {
assert(N->getValueType(0) == RV.getValueType() &&
N->getNumValues() == 1 && "Type mismatch");
DAG.ReplaceAllUsesWith(N, &RV);
}
// Push the new node and any users onto the worklist
AddToWorklist(RV.getNode());
AddUsersToWorklist(RV.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node. This will also take care of adding any
// operands which have lost a user to the worklist.
recursivelyDeleteUnusedNodes(N);
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
DAG.RemoveDeadNodes();
}
SDValue DAGCombiner::visit(SDNode *N) {
switch (N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::SADDSAT:
case ISD::UADDSAT: return visitADDSAT(N);
case ISD::SSUBSAT:
case ISD::USUBSAT: return visitSUBSAT(N);
case ISD::ADDC: return visitADDC(N);
case ISD::SADDO:
case ISD::UADDO: return visitADDO(N);
case ISD::SUBC: return visitSUBC(N);
case ISD::SSUBO:
case ISD::USUBO: return visitSUBO(N);
case ISD::ADDE: return visitADDE(N);
case ISD::ADDCARRY: return visitADDCARRY(N);
case ISD::SUBE: return visitSUBE(N);
case ISD::SUBCARRY: return visitSUBCARRY(N);
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: return visitMULFIX(N);
case ISD::MUL: return visitMUL(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM:
case ISD::UREM: return visitREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
case ISD::SMULO:
case ISD::UMULO: return visitMULO(N);
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: return visitIMINMAX(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::ROTR:
case ISD::ROTL: return visitRotate(N);
case ISD::FSHL:
case ISD::FSHR: return visitFunnelShift(N);
case ISD::ABS: return visitABS(N);
case ISD::BSWAP: return visitBSWAP(N);
case ISD::BITREVERSE: return visitBITREVERSE(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::VSELECT: return visitVSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::SETCCCARRY: return visitSETCCCARRY(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
case ISD::AssertSext:
case ISD::AssertZext: return visitAssertExt(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::BITCAST: return visitBITCAST(N);
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
case ISD::FADD: return visitFADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FMA: return visitFMA(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::FSQRT: return visitFSQRT(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::FPOW: return visitFPOW(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::FFLOOR: return visitFFLOOR(N);
case ISD::FMINNUM: return visitFMINNUM(N);
case ISD::FMAXNUM: return visitFMAXNUM(N);
case ISD::FMINIMUM: return visitFMINIMUM(N);
case ISD::FMAXIMUM: return visitFMAXIMUM(N);
case ISD::FCEIL: return visitFCEIL(N);
case ISD::FTRUNC: return visitFTRUNC(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
case ISD::MGATHER: return visitMGATHER(N);
case ISD::MLOAD: return visitMLOAD(N);
case ISD::MSCATTER: return visitMSCATTER(N);
case ISD::MSTORE: return visitMSTORE(N);
case ISD::LIFETIME_END: return visitLIFETIME_END(N);
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
}
return SDValue();
}
SDValue DAGCombiner::combine(SDNode *N) {
SDValue RV = visit(N);
// If nothing happened, try a target-specific DAG combine.
if (!RV.getNode()) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned NULL!");
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
}
// If nothing happened still, try promoting the operation.
if (!RV.getNode()) {
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
RV = PromoteIntBinOp(SDValue(N, 0));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
RV = PromoteIntShiftOp(SDValue(N, 0));
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
RV = PromoteExtend(SDValue(N, 0));
break;
case ISD::LOAD:
if (PromoteLoad(SDValue(N, 0)))
RV = SDValue(N, 0);
break;
}
}
// If N is a commutative binary node, try to eliminate it if the commuted
// version is already present in the DAG.
if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
N->getNumValues() == 1) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Constant operands are canonicalized to RHS.
if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
SDValue Ops[] = {N1, N0};
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
N->getFlags());
if (CSENode)
return SDValue(CSENode, 0);
}
}
return RV;
}
/// Given a node, return its input chain if it has one, otherwise return a null
/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
return N->getOperand(0);
if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
return N->getOperand(NumOps-1);
for (unsigned i = 1; i < NumOps-1; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
return N->getOperand(i);
}
return SDValue();
}
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
// If N has two operands, where one has an input chain equal to the other,
// the 'other' chain is redundant.
if (N->getNumOperands() == 2) {
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
return N->getOperand(0);
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
return N->getOperand(1);
}
// Don't simplify token factors if optnone.
if (OptLevel == CodeGenOpt::None)
return SDValue();
// If the sole user is a token factor, we should make sure we have a
// chance to merge them together. This prevents TF chains from inhibiting
// optimizations.
if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
AddToWorklist(*(N->use_begin()));
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
SmallPtrSet<SDNode*, 16> SeenOps;
bool Changed = false; // If we should replace this token factor.
// Start out with this token factor.
TFs.push_back(N);
// Iterate through token factors. The TFs grows when new token factors are
// encountered.
for (unsigned i = 0; i < TFs.size(); ++i) {
// Limit number of nodes to inline, to avoid quadratic compile times.
// We have to add the outstanding Token Factors to Ops, otherwise we might
// drop Ops from the resulting Token Factors.
if (Ops.size() > TokenFactorInlineLimit) {
for (unsigned j = i; j < TFs.size(); j++)
Ops.emplace_back(TFs[j], 0);
// Drop unprocessed Token Factors from TFs, so we do not add them to the
// combiner worklist later.
TFs.resize(i);
break;
}
SDNode *TF = TFs[i];
// Check each of the operands.
for (const SDValue &Op : TF->op_values()) {
switch (Op.getOpcode()) {
case ISD::EntryToken:
// Entry tokens don't need to be added to the list. They are
// redundant.
Changed = true;
break;
case ISD::TokenFactor:
if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
// Queue up for processing.
TFs.push_back(Op.getNode());
Changed = true;
break;
}
LLVM_FALLTHROUGH;
default:
// Only add if it isn't already in the list.
if (SeenOps.insert(Op.getNode()).second)
Ops.push_back(Op);
else
Changed = true;
break;
}
}
}
// Re-visit inlined Token Factors, to clean them up in case they have been
// removed. Skip the first Token Factor, as this is the current node.
for (unsigned i = 1, e = TFs.size(); i < e; i++)
AddToWorklist(TFs[i]);
// Remove Nodes that are chained to another node in the list. Do so
// by walking up chains breath-first stopping when we've seen
// another operand. In general we must climb to the EntryNode, but we can exit
// early if we find all remaining work is associated with just one operand as
// no further pruning is possible.
// List of nodes to search through and original Ops from which they originate.
SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
SmallPtrSet<SDNode *, 16> SeenChains;
bool DidPruneOps = false;
unsigned NumLeftToConsider = 0;
for (const SDValue &Op : Ops) {
Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
OpWorkCount.push_back(1);
}
auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
// If this is an Op, we can remove the op from the list. Remark any
// search associated with it as from the current OpNumber.
if (SeenOps.count(Op) != 0) {
Changed = true;
DidPruneOps = true;
unsigned OrigOpNumber = 0;
while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
OrigOpNumber++;
assert((OrigOpNumber != Ops.size()) &&
"expected to find TokenFactor Operand");
// Re-mark worklist from OrigOpNumber to OpNumber
for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
if (Worklist[i].second == OrigOpNumber) {
Worklist[i].second = OpNumber;
}
}
OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
OpWorkCount[OrigOpNumber] = 0;
NumLeftToConsider--;
}
// Add if it's a new chain
if (SeenChains.insert(Op).second) {
OpWorkCount[OpNumber]++;
Worklist.push_back(std::make_pair(Op, OpNumber));
}
};
for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
// We need at least be consider at least 2 Ops to prune.
if (NumLeftToConsider <= 1)
break;
auto CurNode = Worklist[i].first;
auto CurOpNumber = Worklist[i].second;
assert((OpWorkCount[CurOpNumber] > 0) &&
"Node should not appear in worklist");
switch (CurNode->getOpcode()) {
case ISD::EntryToken:
// Hitting EntryToken is the only way for the search to terminate without
// hitting
// another operand's search. Prevent us from marking this operand
// considered.
NumLeftToConsider++;
break;
case ISD::TokenFactor:
for (const SDValue &Op : CurNode->op_values())
AddToWorklist(i, Op.getNode(), CurOpNumber);
break;
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
case ISD::CopyFromReg:
case ISD::CopyToReg:
AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
break;
default:
if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
break;
}
OpWorkCount[CurOpNumber]--;
if (OpWorkCount[CurOpNumber] == 0)
NumLeftToConsider--;
}
// If we've changed things around then replace token factor.
if (Changed) {
SDValue Result;
if (Ops.empty()) {
// The entry token is the only possible outcome.
Result = DAG.getEntryNode();
} else {
if (DidPruneOps) {
SmallVector<SDValue, 8> PrunedOps;
//
for (const SDValue &Op : Ops) {
if (SeenChains.count(Op.getNode()) == 0)
PrunedOps.push_back(Op);
}
Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
} else {
Result = DAG.getTokenFactor(SDLoc(N), Ops);
}
}
return Result;
}
return SDValue();
}
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorklistRemover DeadNodes(*this);
// Replacing results may cause a different MERGE_VALUES to suddenly
// be CSE'd with N, and carry its uses with it. Iterate until no
// uses remain, to ensure that the node can be safely deleted.
// First add the users of this node to the work list so that they
// can be tried again once they have new operands.
AddUsersToWorklist(N);
do {
// Do as a single replacement to avoid rewalking use lists.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
DAG.ReplaceAllUsesWith(N, Ops.data());
} while (!N->use_empty());
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
/// ConstantSDNode pointer else nullptr.
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
}
SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
"Unexpected binary operator");
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
// TODO: Handle ISD::SELECT_CC.
unsigned SelOpNo = 0;
SDValue Sel = BO->getOperand(0);
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
SelOpNo = 1;
Sel = BO->getOperand(1);
}
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
return SDValue();
SDValue CT = Sel.getOperand(1);
if (!isConstantOrConstantVector(CT, true) &&
!isConstantFPBuildVectorOrConstantFP(CT))
return SDValue();
SDValue CF = Sel.getOperand(2);
if (!isConstantOrConstantVector(CF, true) &&
!isConstantFPBuildVectorOrConstantFP(CF))
return SDValue();
// Bail out if any constants are opaque because we can't constant fold those.
// The exception is "and" and "or" with either 0 or -1 in which case we can
// propagate non constant operands into select. I.e.:
// and (select Cond, 0, -1), X --> select Cond, 0, X
// or X, (select Cond, -1, 0) --> select Cond, -1, X
auto BinOpcode = BO->getOpcode();
bool CanFoldNonConst =
(BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
(isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
(isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
SDValue CBO = BO->getOperand(SelOpNo ^ 1);
if (!CanFoldNonConst &&
!isConstantOrConstantVector(CBO, true) &&
!isConstantFPBuildVectorOrConstantFP(CBO))
return SDValue();
EVT VT = Sel.getValueType();
// In case of shift value and shift amount may have different VT. For instance
// on x86 shift amount is i8 regardles of LHS type. Bail out if we have
// swapped operands and value types do not match. NB: x86 is fine if operands
// are not swapped with shift amount VT being not bigger than shifted value.
// TODO: that is possible to check for a shift operation, correct VTs and
// still perform optimization on x86 if needed.
if (SelOpNo && VT != CBO.getValueType())
return SDValue();
// We have a select-of-constants followed by a binary operator with a
// constant. Eliminate the binop by pulling the constant math into the select.
// Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
SDLoc DL(Sel);
SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
: DAG.getNode(BinOpcode, DL, VT, CT, CBO);
if (!CanFoldNonConst && !NewCT.isUndef() &&
!isConstantOrConstantVector(NewCT, true) &&
!isConstantFPBuildVectorOrConstantFP(NewCT))
return SDValue();
SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
: DAG.getNode(BinOpcode, DL, VT, CF, CBO);
if (!CanFoldNonConst && !NewCF.isUndef() &&
!isConstantOrConstantVector(NewCF, true) &&
!isConstantFPBuildVectorOrConstantFP(NewCF))
return SDValue();
SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
SelectOp->setFlags(BO->getFlags());
return SelectOp;
}
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// Match a constant operand and a zext operand for the math instruction:
// add Z, C
// sub C, Z
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
auto *CN = dyn_cast<ConstantSDNode>(C);
if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
// Match the zext operand as a setcc of a boolean.
if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
Z.getOperand(0).getValueType() != MVT::i1)
return SDValue();
// Match the compare as: setcc (X & 1), 0, eq.
SDValue SetCC = Z.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
SetCC.getOperand(0).getOpcode() != ISD::AND ||
!isOneConstant(SetCC.getOperand(0).getOperand(1)))
return SDValue();
// We are adding/subtracting a constant and an inverted low bit. Turn that
// into a subtract/add of the low bit with incremented/decremented constant:
// add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
// sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
EVT VT = C.getValueType();
SDLoc DL(N);
SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
}
/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
/// a shift and add with a different constant.
static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// We need a constant operand for the add/sub, and the other operand is a
// logical shift right: add (srl), C or sub C, (srl).
// TODO - support non-uniform vector amounts.
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
if (!C || ShiftOp.getOpcode() != ISD::SRL)
return SDValue();
// The shift must be of a 'not' value.
SDValue Not = ShiftOp.getOperand(0);
if (!Not.hasOneUse() || !isBitwiseNot(Not))
return SDValue();
// The shift must be moving the sign bit to the least-significant-bit.
EVT VT = ShiftOp.getValueType();
SDValue ShAmt = ShiftOp.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
return SDValue();
// Eliminate the 'not' by adjusting the shift and add/sub constant:
// add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
// sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
SDLoc DL(N);
auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
}
/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
/// are no common bits set in the operands).
SDValue DAGCombiner::visitADDLike(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (add x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
}
// fold (add x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
// canonicalize constant to RHS
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
// fold (add c1, c2) -> c1+c2
return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
N1.getNode());
}
// fold (add x, 0) -> x
if (isNullConstant(N1))
return N0;
if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
// fold ((A-c1)+c2) -> (A+(c2-c1))
if (N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(),
N0.getOperand(1).getNode());
assert(Sub && "Constant folding failed");
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
}
// fold ((c1-A)+c2) -> (c1+c2)-A
if (N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(),
N0.getOperand(0).getNode());
assert(Add && "Constant folding failed");
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
}
// add (sext i1 X), 1 -> zext (not i1 X)
// We don't transform this pattern:
// add (zext i1 X), -1 -> sext (not i1 X)
// because most (?) targets generate better code for the zext form.
if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
isOneOrOneSplat(N1)) {
SDValue X = N0.getOperand(0);
if ((!LegalOperations ||
(TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
X.getScalarValueSizeInBits() == 1) {
SDValue Not = DAG.getNOT(DL, X, X.getValueType());
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
}
}
// Undo the add -> or combine to merge constant offsets from a frame index.
if (N0.getOpcode() == ISD::OR &&
isa<FrameIndexSDNode>(N0.getOperand(0)) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
}
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate add
if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
return RADD;
}
// fold ((0-A) + B) -> B-A
if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
// fold (A + (0-B)) -> A-B
if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
// fold ((B-A)+A) -> B
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
return N0.getOperand(0);
// fold ((A-B)+(C-A)) -> (C-B)
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
N0.getOperand(0) == N1.getOperand(1))
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N0.getOperand(1));
// fold ((A-B)+(B-C)) -> (A-C)
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
N0.getOperand(1) == N1.getOperand(0))
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
N1.getOperand(1));
// fold (A+(B-(A+C))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(0))
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(1));
// fold (A+(B-(C+A))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(1))
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(0));
// fold (A+((B-A)+or-C)) to (B+or-C)
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
N1.getOperand(0).getOpcode() == ISD::SUB &&
N0 == N1.getOperand(0).getOperand(1))
return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
N1.getOperand(1));
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
}
// fold (add (umax X, C), -C) --> (usubsat X, C)
if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
return (!Max && !Op) ||
(Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
};
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
/*AllowUndefs*/ true))
return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
N0.getOperand(1));
}
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (isOneOrOneSplat(N1)) {
// fold (add (xor a, -1), 1) -> (sub 0, a)
if (isBitwiseNot(N0))
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
N0.getOperand(0));
// fold (add (add (xor a, -1), b), 1) -> (sub b, a)
if (N0.getOpcode() == ISD::ADD ||
N0.getOpcode() == ISD::UADDO ||
N0.getOpcode() == ISD::SADDO) {
SDValue A, Xor;
if (isBitwiseNot(N0.getOperand(0))) {
A = N0.getOperand(1);
Xor = N0.getOperand(0);
} else if (isBitwiseNot(N0.getOperand(1))) {
A = N0.getOperand(0);
Xor = N0.getOperand(1);
}
if (Xor)
return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
}
// Look for:
// add (add x, y), 1
// And if the target does not like this form then turn into:
// sub y, (xor x, -1)
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
N0.getOpcode() == ISD::ADD) {
SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
DAG.getAllOnesConstant(DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
}
}
// (x - y) + -1 -> add (xor y, -1), x
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
isAllOnesOrAllOnesSplat(N1)) {
SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
}
if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
return Combined;
if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
return Combined;
return SDValue();
}
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
if (SDValue Combined = visitADDLike(N))
return Combined;
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DAG))
return V;
// fold (a+b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
DAG.haveNoCommonBitsSet(N0, N1))
return DAG.getNode(ISD::OR, DL, VT, N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitADDSAT(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
// TODO SimplifyVBinOp
// fold (add_sat x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
}
// fold (add_sat x, undef) -> -1
if (N0.isUndef() || N1.isUndef())
return DAG.getAllOnesConstant(DL, VT);
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
// canonicalize constant to RHS
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(Opcode, DL, VT, N1, N0);
// fold (add_sat c1, c2) -> c3
return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
N1.getNode());
}
// fold (add_sat x, 0) -> x
if (isNullConstant(N1))
return N0;
// If it cannot overflow, transform into an add.
if (Opcode == ISD::UADDSAT)
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
return SDValue();
}
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
bool Masked = false;
// First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
while (true) {
if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
V = V.getOperand(0);
continue;
}
if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
Masked = true;
V = V.getOperand(0);
continue;
}
break;
}
// If this is not a carry, return.
if (V.getResNo() != 1)
return SDValue();
if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
return SDValue();
EVT VT = V.getNode()->getValueType(0);
if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
return SDValue();
// If the result is masked, then no matter what kind of bool it is we can
// return. If it isn't, then we need to make sure the bool type is either 0 or
// 1 and not other values.
if (Masked ||
TLI.getBooleanContents(V.getValueType()) ==
TargetLoweringBase::ZeroOrOneBooleanContent)
return V;
return SDValue();
}
/// Given the operands of an add/sub operation, see if the 2nd operand is a
/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
/// the opcode and bypass the mask operation.
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
SelectionDAG &DAG, const SDLoc &DL) {
if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
return SDValue();
EVT VT = N0.getValueType();
if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
return SDValue();
// add N0, (and (AssertSext X, i1), 1) --> sub N0, X
// sub N0, (and (AssertSext X, i1), 1) --> add N0, X
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
}
/// Helper for doing combines based on N0 and N1 being added to each other.
SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
SDNode *LocReference) {
EVT VT = N0.getValueType();
SDLoc DL(LocReference);
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N0,
DAG.getNode(ISD::SHL, DL, VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1)));
if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
return V;
// Look for:
// add (add x, 1), y
// And if the target does not like this form then turn into:
// sub y, (xor x, -1)
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
DAG.getAllOnesConstant(DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
}
// Hoist one-use subtraction by non-opaque constant:
// (x - C) + y -> (x + y) - C
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
}
// Hoist one-use subtraction from non-opaque constant:
// (C - x) + y -> (y - x) + C
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
}
// If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
// rather than 'add 0/-1' (the zext should get folded).
// add (sext i1 Y), X --> sub X, (zext i1 Y)
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
// add X, (sextinreg Y i1) -> sub X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
}
}
// (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
N1.getResNo() == 0)
return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
N0, N1.getOperand(0), N1.getOperand(2));
// (add X, Carry) -> (addcarry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::ADDCARRY, DL,
DAG.getVTList(VT, Carry.getValueType()), N0,
DAG.getConstant(0, DL, VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// canonicalize constant to RHS.
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
// fold (addc x, 0) -> x + no carry out
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
DL, MVT::Glue));
// If it cannot overflow, transform into an add.
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
static SDValue flipBoolean(SDValue V, const SDLoc &DL,
SelectionDAG &DAG, const TargetLowering &TLI) {
EVT VT = V.getValueType();
SDValue Cst;
switch (TLI.getBooleanContents(VT)) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
Cst = DAG.getConstant(1, DL, VT);
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
Cst = DAG.getAllOnesConstant(DL, VT);
break;
}
return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
}
/**
* Flips a boolean if it is cheaper to compute. If the Force parameters is set,
* then the flip also occurs if computing the inverse is the same cost.
* This function returns an empty SDValue in case it cannot flip the boolean
* without increasing the cost of the computation. If you want to flip a boolean
* no matter what, use flipBoolean.
*/
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
const TargetLowering &TLI,
bool Force) {
if (Force && isa<ConstantSDNode>(V))
return flipBoolean(V, SDLoc(V), DAG, TLI);
if (V.getOpcode() != ISD::XOR)
return SDValue();
ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
if (!Const)
return SDValue();
EVT VT = V.getValueType();
bool IsFlip = false;
switch(TLI.getBooleanContents(VT)) {
case TargetLowering::ZeroOrOneBooleanContent:
IsFlip = Const->isOne();
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
IsFlip = Const->isAllOnesValue();
break;
case TargetLowering::UndefinedBooleanContent:
IsFlip = (Const->getAPIntValue() & 0x01) == 1;
break;
}
if (IsFlip)
return V.getOperand(0);
if (Force)
return flipBoolean(V, SDLoc(V), DAG, TLI);
return SDValue();
}
SDValue DAGCombiner::visitADDO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SADDO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
// fold (addo x, 0) -> x + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
if (!IsSigned) {
// If it cannot overflow, transform into an add.
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getConstant(0, DL, CarryVT));
// fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
DAG.getConstant(0, DL, VT), N0.getOperand(0));
return CombineTo(N, Sub,
flipBoolean(Sub.getValue(1), DL, DAG, TLI));
}
if (SDValue Combined = visitUADDOLike(N0, N1, N))
return Combined;
if (SDValue Combined = visitUADDOLike(N1, N0, N))
return Combined;
}
return SDValue();
}
SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N0.getValueType();
if (VT.isVector())
return SDValue();
// (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
// If Y + 1 cannot overflow.
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
SDValue Y = N1.getOperand(0);
SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
N1.getOperand(2));
}
// (uaddo X, Carry) -> (addcarry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
DAG.getConstant(0, SDLoc(N), VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
N1, N0, CarryIn);
// fold (adde x, y, false) -> (addc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
SDLoc DL(N);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
// fold (addcarry x, y, false) -> (uaddo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
}
// fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
if (isNullConstant(N0) && isNullConstant(N1)) {
EVT VT = N0.getValueType();
EVT CarryVT = CarryIn.getValueType();
SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
AddToWorklist(CarryExt.getNode());
return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
DAG.getConstant(1, DL, VT)),
DAG.getConstant(0, DL, CarryVT));
}
if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
return Combined;
if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
return Combined;
return SDValue();
}
/**
* If we are facing some sort of diamond carry propapagtion pattern try to
* break it up to generate something like:
* (addcarry X, 0, (addcarry A, B, Z):Carry)
*
* The end result is usually an increase in operation required, but because the
* carry is now linearized, other tranforms can kick in and optimize the DAG.
*
* Patterns typically look something like
* (uaddo A, B)
* / \
* Carry Sum
* | \
* | (addcarry *, 0, Z)
* | /
* \ Carry
* | /
* (addcarry X, *, *)
*
* But numerous variation exist. Our goal is to identify A, B, X and Z and
* produce a combine with a single path for carry propagation.
*/
static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
SDValue X, SDValue Carry0, SDValue Carry1,
SDNode *N) {
if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
return SDValue();
if (Carry1.getOpcode() != ISD::UADDO)
return SDValue();
SDValue Z;
/**
* First look for a suitable Z. It will present itself in the form of
* (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
*/
if (Carry0.getOpcode() == ISD::ADDCARRY &&
isNullConstant(Carry0.getOperand(1))) {
Z = Carry0.getOperand(2);
} else if (Carry0.getOpcode() == ISD::UADDO &&
isOneConstant(Carry0.getOperand(1))) {
EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
} else {
// We couldn't find a suitable Z.
return SDValue();
}
auto cancelDiamond = [&](SDValue A,SDValue B) {
SDLoc DL(N);
SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
Combiner.AddToWorklist(NewY.getNode());
return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
DAG.getConstant(0, DL, X.getValueType()),
NewY.getValue(1));
};
/**
* (uaddo A, B)
* |
* Sum
* |
* (addcarry *, 0, Z)
*/
if (Carry0.getOperand(0) == Carry1.getValue(0)) {
return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
}
/**
* (addcarry A, 0, Z)
* |
* Sum
* |
* (uaddo *, B)
*/
if (Carry1.getOperand(0) == Carry0.getValue(0)) {
return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
}
if (Carry1.getOperand(1) == Carry0.getValue(0)) {
return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
}
return SDValue();
}
SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
SDNode *N) {
// fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
if (isBitwiseNot(N0))
if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
SDLoc DL(N);
SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
N0.getOperand(0), NotC);
return CombineTo(N, Sub,
flipBoolean(Sub.getValue(1), DL, DAG, TLI));
}
// Iff the flag result is dead:
// (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
// Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
// or the dependency between the instructions.
if ((N0.getOpcode() == ISD::ADD ||
(N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
N0.getValue(1) != CarryIn)) &&
isNullConstant(N1) && !N->hasAnyUseOfValue(1))
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
N0.getOperand(0), N0.getOperand(1), CarryIn);
/**
* When one of the addcarry argument is itself a carry, we may be facing
* a diamond carry propagation. In which case we try to transform the DAG
* to ensure linear carry propagation if that is possible.
*/
if (auto Y = getAsCarry(TLI, N1)) {
// Because both are carries, Y and Z can be swapped.
if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
return R;
if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
return R;
}
return SDValue();
}
// Since it may not be valid to emit a fold to zero for vector initializers
// check if we can before folding.
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
SelectionDAG &DAG, bool LegalOperations) {
if (!VT.isVector())
return DAG.getConstant(0, DL, VT);
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (sub x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (sub x, x) -> 0
// FIXME: Refactor this and xor and other similar operations together.
if (N0 == N1)
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// fold (sub c1, c2) -> c1-c2
return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
N1.getNode());
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
// fold (sub x, c) -> (add x, -c)
if (N1C) {
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
}
if (isNullOrNullSplat(N0)) {
unsigned BitWidth = VT.getScalarSizeInBits();
// Right-shifting everything out but the sign bit followed by negation is
// the same as flipping arithmetic/logical shift type without the negation:
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
}
}
// 0 - X --> 0 if the sub is NUW.
if (N->getFlags().hasNoUnsignedWrap())
return N0;
if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
// N1 is either 0 or the minimum signed value. If the sub is NSW, then
// N1 must be 0 because negating the minimum signed value is undefined.
if (N->getFlags().hasNoSignedWrap())
return N0;
// 0 - X --> X if X is 0 or the minimum signed value.
return N1;
}
}
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
if (isAllOnesOrAllOnesSplat(N0))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
// fold (A - (0-B)) -> A+B
if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
// fold A-(A-B) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
return N1.getOperand(1);
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
// fold (A+C1)-C2 -> A+(C1-C2)
if (N0.getOpcode() == ISD::ADD &&
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
SDValue NewC = DAG.FoldConstantArithmetic(
ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
assert(NewC && "Constant folding failed");
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
}
// fold C2-(A+C1) -> (C2-C1)-A
if (N1.getOpcode() == ISD::ADD) {
SDValue N11 = N1.getOperand(1);
if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
N11.getNode());
assert(NewC && "Constant folding failed");
return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
}
}
// fold (A-C1)-C2 -> A-(C1+C2)
if (N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
SDValue NewC = DAG.FoldConstantArithmetic(
ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
assert(NewC && "Constant folding failed");
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
}
// fold (c1-A)-c2 -> (c1-c2)-A
if (N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
SDValue NewC = DAG.FoldConstantArithmetic(
ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode());
assert(NewC && "Constant folding failed");
return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
}
// fold ((A+(B+or-C))-B) -> A+or-C
if (N0.getOpcode() == ISD::ADD &&
(N0.getOperand(1).getOpcode() == ISD::SUB ||
N0.getOperand(1).getOpcode() == ISD::ADD) &&
N0.getOperand(1).getOperand(0) == N1)
return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(1));
// fold ((A+(C+B))-B) -> A+C
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(0));
// fold ((A-(B-C))-C) -> A-B
if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(0));
// fold (A-(B-C)) -> A+(C-B)
if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
N1.getOperand(0)));
// fold (X - (-Y * Z)) -> (X + (Y * Z))
if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
if (N1.getOperand(0).getOpcode() == ISD::SUB &&
isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
}
if (N1.getOperand(1).getOpcode() == ISD::SUB &&
isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
N1.getOperand(0),
N1.getOperand(1).getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
}
}
// If either operand of a sub is undef, the result is undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DAG))
return V;
if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
return V;
// (x - y) - 1 -> add (xor y, -1), x
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
DAG.getAllOnesConstant(DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
}
// Look for:
// sub y, (xor x, -1)
// And if the target does not like this form then turn into:
// add (add x, y), 1
if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
}
// Hoist one-use addition by non-opaque constant:
// (x + C) - y -> (x - y) + C
if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
}
// y - (x + C) -> (y - x) - C
if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
}
// (x - C) - y -> (x - y) - C
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
}
// (C - x) - y -> C - (x + y)
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
}
// If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
// rather than 'sub 0/1' (the sext should get folded).
// sub X, (zext i1 Y) --> add X, (sext i1 Y)
if (N1.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
TLI.getBooleanContents(VT) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
}
// fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
SDValue S0 = N1.getOperand(0);
if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
unsigned OpSizeInBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
if (C->getAPIntValue() == (OpSizeInBits - 1))
return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
}
}
}
// If the relocation model supports it, consider symbol offsets.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
// fold (sub Sym, c) -> Sym-c
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
GA->getOffset() -
(uint64_t)N1C->getSExtValue());
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
DL, VT);
}
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
}
}
// Prefer an add for more folding potential and possibly better codegen:
// sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
SDValue ShAmt = N1.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (ShAmtC &&
ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
}
}
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
// (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
if (SDValue Carry = getAsCarry(TLI, N0)) {
SDValue X = N1;
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
return DAG.getNode(ISD::ADDCARRY, DL,
DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
Carry);
}
}
return SDValue();
}
SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
// TODO SimplifyVBinOp
// fold (sub_sat x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (sub_sat x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (sub_sat x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, DL, VT);
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// fold (sub_sat c1, c2) -> c3
return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
N1.getNode());
}
// fold (sub_sat x, 0) -> x
if (isNullConstant(N1))
return N0;
return SDValue();
}
SDValue DAGCombiner::visitSUBC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, 0) -> x + no borrow
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (isAllOnesConstant(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
SDValue DAGCombiner::visitSUBO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SSUBO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// fold (subo x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
// fold (subox, c) -> (addo x, -c)
if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
}
// fold (subo x, 0) -> x + no borrow
if (isNullOrNullSplat(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
// Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getConstant(0, DL, CarryVT));
return SDValue();
}
SDValue DAGCombiner::visitSUBE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (sube x, y, false) -> (subc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (subcarry x, y, false) -> (usubo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
}
return SDValue();
}
// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
// UMULFIXSAT here.
SDValue DAGCombiner::visitMULFIX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Scale = N->getOperand(2);
EVT VT = N0.getValueType();
// fold (mulfix x, undef, scale) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
// Canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
// fold (mulfix x, 0, scale) -> 0
if (isNullConstant(N1))
return DAG.getConstant(0, SDLoc(N), VT);
return SDValue();
}
SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold (mul x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
bool N0IsConst = false;
bool N1IsConst = false;
bool N1IsOpaqueConst = false;
bool N0IsOpaqueConst = false;
APInt ConstValue0, ConstValue1;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
assert((!N0IsConst ||
ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
"Splat APInt should be element width");
assert((!N1IsConst ||
ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
"Splat APInt should be element width");
} else {
N0IsConst = isa<ConstantSDNode>(N0);
if (N0IsConst) {
ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
}
N1IsConst = isa<ConstantSDNode>(N1);
if (N1IsConst) {
ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
}
}
// fold (mul c1, c2) -> c1*c2
if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
N0.getNode(), N1.getNode());
// canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
// fold (mul x, 0) -> 0
if (N1IsConst && ConstValue1.isNullValue())
return N1;
// fold (mul x, 1) -> x
if (N1IsConst && ConstValue1.isOneValue())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (mul x, -1) -> 0-x
if (N1IsConst && ConstValue1.isAllOnesValue()) {
SDLoc DL(N);
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), N0);
}
// fold (mul x, (1 << c)) -> x << c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1) &&
(!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
SDLoc DL(N);
SDValue LogBase2 = BuildLogBase2(N1, DL);
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
}
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
unsigned Log2Val = (-ConstValue1).logBase2();
SDLoc DL(N);
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(Log2Val, DL,
getShiftAmountTy(N0.getValueType()))));
}
// Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
// mul x, (2^N + 1) --> add (shl x, N), x
// mul x, (2^N - 1) --> sub (shl x, N), x
// Examples: x * 33 --> (x << 5) + x
// x * 15 --> (x << 4) - x
// x * -33 --> -((x << 5) + x)
// x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
// TODO: We could handle more general decomposition of any constant by
// having the target set a limit on number of ops and making a
// callback to determine that sequence (similar to sqrt expansion).
unsigned MathOp = ISD::DELETED_NODE;
APInt MulC = ConstValue1.abs();
if ((MulC - 1).isPowerOf2())
MathOp = ISD::ADD;
else if ((MulC + 1).isPowerOf2())
MathOp = ISD::SUB;
if (MathOp != ISD::DELETED_NODE) {
unsigned ShAmt =
MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
assert(ShAmt < VT.getScalarSizeInBits() &&
"multiply-by-constant generated out of bounds shift");
SDLoc DL(N);
SDValue Shl =
DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
if (ConstValue1.isNegative())
R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
return R;
}
}
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
if (N0.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
if (isConstantOrConstantVector(C3))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh(nullptr, 0), Y(nullptr, 0);
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (N0.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N0.getOperand(1)) &&
N0.getNode()->hasOneUse()) {
Sh = N0; Y = N1;
} else if (N1.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N1.getOperand(1)) &&
N1.getNode()->hasOneUse()) {
Sh = N1; Y = N0;
}
if (Sh.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
}
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
N0.getOpcode() == ISD::ADD &&
DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
isMulAddWithConstProfitable(N, N0, N1))
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
N0.getOperand(1), N1));
// reassociate mul
if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
return RMUL;
return SDValue();
}
/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
EVT NodeType = Node->getValueType(0);
if (!NodeType.isSimple())
return false;
switch (NodeType.getSimpleVT().SimpleTy) {
default: return false; // No libcall for vector types.
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Issue divrem if both quotient and remainder are needed.
SDValue DAGCombiner::useDivRem(SDNode *Node) {
if (Node->use_empty())
return SDValue(); // This is a dead node, leave it alone.
unsigned Opcode = Node->getOpcode();
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
// DivMod lib calls can still work on non-legal types if using lib-calls.
EVT VT = Node->getValueType(0);
if (VT.isVector() || !VT.isInteger())
return SDValue();
if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
return SDValue();
// If DIVREM is going to get expanded into a libcall,
// but there is no libcall available, then don't combine.
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
!isDivRemLibcallAvailable(Node, isSigned, TLI))
return SDValue();
// If div is legal, it's better to do the normal expansion
unsigned OtherOpcode = 0;
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
if (TLI.isOperationLegalOrCustom(Opcode, VT))
return SDValue();
} else {
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
return SDValue();
}
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDValue combined;
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
User->use_empty())
continue;
// Convert the other matching node(s), too;
// otherwise, the DIVREM may get target-legalized into something
// target-specific that we won't be able to recognize.
unsigned UserOpc = User->getOpcode();
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
User->getOperand(0) == Op0 &&
User->getOperand(1) == Op1) {
if (!combined) {
if (UserOpc == OtherOpcode) {
SDVTList VTs = DAG.getVTList(VT, VT);
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
} else if (UserOpc == DivRemOpc) {
combined = SDValue(User, 0);
} else {
assert(UserOpc == Opcode);
continue;
}
}
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
CombineTo(User, combined);
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
CombineTo(User, combined.getValue(1));
}
}
return combined;
}
static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
unsigned Opc = N->getOpcode();
bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// X / undef -> undef
// X % undef -> undef
// X / 0 -> undef
// X % 0 -> undef
// NOTE: This includes vectors where any divisor element is zero/undef.
if (DAG.isUndef(Opc, {N0, N1}))
return DAG.getUNDEF(VT);
// undef / X -> 0
// undef % X -> 0
if (N0.isUndef())
return DAG.getConstant(0, DL, VT);
// 0 / X -> 0
// 0 % X -> 0
ConstantSDNode *N0C = isConstOrConstSplat(N0);
if (N0C && N0C->isNullValue())
return N0;
// X / X -> 1
// X % X -> 0
if (N0 == N1)
return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
// X / 1 -> X
// X % 1 -> 0
// If this is a boolean op (single-bit element type), we can't have
// division-by-zero or remainder-by-zero, so assume the divisor is 1.
// TODO: Similarly, if we're zero-extending a boolean divisor, then assume
// it's a 1.
if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (sdiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
// fold (sdiv X, -1) -> 0-X
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
// fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
if (N1C && N1C->getAPIntValue().isMinSignedValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
if (SDValue V = visitSDIVLike(N0, N1, N)) {
// If the corresponding remainder node exists, update its users with
// (Dividend - (Quotient * Divisor).
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
{ N0, N1 })) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(Mul.getNode());
AddToWorklist(Sub.getNode());
CombineTo(RemNode, Sub);
}
return V;
}
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
return SDValue();
}
SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
unsigned BitWidth = VT.getScalarSizeInBits();
// Helper for determining whether a value is a power-2 constant scalar or a
// vector of such elements.
auto IsPowerOfTwo = [](ConstantSDNode *C) {
if (C->isNullValue() || C->isOpaque())
return false;
if (C->getAPIntValue().isPowerOf2())
return true;
if ((-C->getAPIntValue()).isPowerOf2())
return true;
return false;
};
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
// better results in that case. The target-specific lowering should learn how
// to handle exact sdivs efficiently.
if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
// Target-specific implementation of sdiv x, pow2.
if (SDValue Res = BuildSDIVPow2(N))
return Res;
// Create constants that are functions of the shift amount value.
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
if (!isConstantOrConstantVector(Inexact))
return SDValue();
// Splat the sign bit into the register
SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
AddToWorklist(Sign.getNode());
// Add (N0 < 0) ? abs2 - 1 : 0;
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
AddToWorklist(Srl.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
AddToWorklist(Add.getNode());
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
AddToWorklist(Sra.getNode());
// Special case: (sdiv X, 1) -> X
// Special Case: (sdiv X, -1) -> 0-X
SDValue One = DAG.getConstant(1, DL, VT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
// If dividing by a positive value, we're done. Otherwise, the result must
// be negated.
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
// FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
return Res;
}
// If integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence. Targets may check function attributes for size/speed
// trade-offs.
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildSDIV(N))
return Op;
return SDValue();
}
SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (udiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
N0C, N1C))
return Folded;
// fold (udiv X, -1) -> select(X == -1, 1, 0)
if (N1C && N1C->getAPIntValue().isAllOnesValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (SDValue V = visitUDIVLike(N0, N1, N)) {
// If the corresponding remainder node exists, update its users with
// (Dividend - (Quotient * Divisor).
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
{ N0, N1 })) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(Mul.getNode());
AddToWorklist(Sub.getNode());
CombineTo(RemNode, Sub);
}
return V;
}
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
return SDValue();
}
SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
// fold (udiv x, (1 << c)) -> x >>u c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1)) {
SDValue LogBase2 = BuildLogBase2(N1, DL);
AddToWorklist(LogBase2.getNode());
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
AddToWorklist(Trunc.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
SDValue N10 = N1.getOperand(0);
if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N10)) {
SDValue LogBase2 = BuildLogBase2(N10, DL);
AddToWorklist(LogBase2.getNode());
EVT ADDVT = N1.getOperand(1).getValueType();
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
AddToWorklist(Trunc.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
}
}
// fold (udiv x, c) -> alternate
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildUDIV(N))
return Op;
return SDValue();
}
// handles ISD::SREM and ISD::UREM
SDValue DAGCombiner::visitREM(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
bool isSigned = (Opcode == ISD::SREM);
SDLoc DL(N);
// fold (rem c1, c2) -> c1%c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
return Folded;
// fold (urem X, -1) -> select(X == -1, 0, x)
if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(0, DL, VT), N0);
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (isSigned) {
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
} else {
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
if (DAG.isKnownToBeAPowerOfTwo(N1)) {
// fold (urem x, pow2) -> (and x, pow2-1)
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
if (N1.getOpcode() == ISD::SHL &&
DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
}
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
// Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
// speculative DIV must not cause a DIVREM conversion. We guard against this
// by skipping the simplification if isIntDivCheap(). When div is not cheap,
// combine will not return a DIVREM. Regardless, checking cheapness here
// makes sense since the simplification results in fatter code.
if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
SDValue OptimizedDiv =
isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
if (OptimizedDiv.getNode()) {
// If the equivalent Div node also exists, update its users.
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
{ N0, N1 }))
CombineTo(DivNode, OptimizedDiv);
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(OptimizedDiv.getNode());
AddToWorklist(Mul.getNode());
return Sub;
}
}
// sdiv, srem -> sdivrem
if (SDValue DivRem = useDivRem(N))
return DivRem.getValue(1);
return SDValue();
}
SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (VT.isVector()) {
// fold (mulhs x, 0) -> 0
// do not return N0/N1, because undef node may exist.
if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
ISD::isBuildVectorAllZeros(N1.getNode()))
return DAG.getConstant(0, DL, VT);
}
// fold (mulhs x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (isOneConstant(N1))
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
// fold (mulhs x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// If the type twice as wide is legal, transform the mulhs to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (VT.isVector()) {
// fold (mulhu x, 0) -> 0
// do not return N0/N1, because undef node may exist.
if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
ISD::isBuildVectorAllZeros(N1.getNode()))
return DAG.getConstant(0, DL, VT);
}
// fold (mulhu x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhu x, 1) -> 0
if (isOneConstant(N1))
return DAG.getConstant(0, DL, N0.getValueType());
// fold (mulhu x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
unsigned NumEltBits = VT.getScalarSizeInBits();
SDValue LogBase2 = BuildLogBase2(N1, DL);
SDValue SRLAmt = DAG.getNode(
ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
// If the type twice as wide is legal, transform the mulhu to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
/// give the opcodes for the two computations that are being performed. Return
/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
bool HiExists = N->hasAnyUseOfValue(1);
if (!HiExists && (!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
return CombineTo(N, Res, Res);
}
// If the low half is not needed, just compute the high half.
bool LoExists = N->hasAnyUseOfValue(0);
if (!LoExists && (!LegalOperations ||
TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
return CombineTo(N, Res, Res);
}
// If both halves are used, return as it is.
if (LoExists && HiExists)
return SDValue();
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
AddToWorklist(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
if (HiExists) {
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
AddToWorklist(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDValue();
}
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// (umul_lohi N0, 0) -> (0, 0)
if (isNullConstant(N->getOperand(1))) {
SDValue Zero = DAG.getConstant(0, DL, VT);
return CombineTo(N, Zero, Zero);
}
// (umul_lohi N0, 1) -> (N0, 0)
if (isOneConstant(N->getOperand(1))) {
SDValue Zero = DAG.getConstant(0, DL, VT);
return CombineTo(N, N->getOperand(0), Zero);
}
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SMULO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
// fold (mulo x, 0) -> 0 + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
// (mulo x, 2) -> (addo x, x)
if (ConstantSDNode *C2 = isConstOrConstSplat(N1))
if (C2->getAPIntValue() == 2)
return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
N->getVTList(), N0, N0);
return SDValue();
}
SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold operation with constant operands.
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
// Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
// Only do this if the current op isn't legal and the flipped is.
unsigned Opcode = N->getOpcode();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegal(Opcode, VT) &&
(N0.isUndef() || DAG.SignBitIsZero(N0)) &&
(N1.isUndef() || DAG.SignBitIsZero(N1))) {
unsigned AltOpcode;
switch (Opcode) {
case ISD::SMIN: AltOpcode = ISD::UMIN; break;
case ISD::SMAX: AltOpcode = ISD::UMAX; break;
case ISD::UMIN: AltOpcode = ISD::SMIN; break;
case ISD::UMAX: AltOpcode = ISD::SMAX; break;
default: llvm_unreachable("Unknown MINMAX opcode");
}
if (TLI.isOperationLegal(AltOpcode, VT))
return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
}
return SDValue();
}
/// If this is a bitwise logic instruction and both operands have the same
/// opcode, try to sink the other opcode after the logic instruction.
SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned LogicOpcode = N->getOpcode();
unsigned HandOpcode = N0.getOpcode();
assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
LogicOpcode == ISD::XOR) && "Expected logic opcode");
assert(HandOpcode == N1.getOpcode() && "Bad input!");
// Bail early if none of these transforms apply.
if (N0.getNumOperands() == 0)
return SDValue();
// FIXME: We should check number of uses of the operands to not increase
// the instruction count for all transforms.
// Handle size-changing casts.
SDValue X = N0.getOperand(0);
SDValue Y = N1.getOperand(0);
EVT XVT = X.getValueType();
SDLoc DL(N);
if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
HandOpcode == ISD::SIGN_EXTEND) {
// If both operands have other uses, this transform would create extra
// instructions without eliminating anything.
if (!N0.hasOneUse() && !N1.hasOneUse())
return SDValue();
// We need matching integer source types.
if (XVT != Y.getValueType())
return SDValue();
// Don't create an illegal op during or after legalization. Don't ever
// create an unsupported vector op.
if ((VT.isVector() || LegalOperations) &&
!TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
return SDValue();
// Avoid infinite looping with PromoteIntBinOp.
// TODO: Should we apply desirable/legal constraints to all opcodes?
if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
!TLI.isTypeDesirableForOp(LogicOpcode, XVT))
return SDValue();
// logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
if (HandOpcode == ISD::TRUNCATE) {
// If both operands have other uses, this transform would create extra
// instructions without eliminating anything.
if (!N0.hasOneUse() && !N1.hasOneUse())
return SDValue();
// We need matching source types.
if (XVT != Y.getValueType())
return SDValue();
// Don't create an illegal op during or after legalization.
if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
return SDValue();
// Be extra careful sinking truncate. If it's free, there's no benefit in
// widening a binop. Also, don't create a logic op on an illegal type.
if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
return SDValue();
if (!TLI.isTypeLegal(XVT))
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// For binops SHL/SRL/SRA/AND:
// logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
N0.getOperand(1) == N1.getOperand(1)) {
// If either operand has other uses, this transform is not an improvement.
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
}
// Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
if (HandOpcode == ISD::BSWAP) {
// If either operand has other uses, this transform is not an improvement.
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
// Only perform this optimization up until type legalization, before
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
// we don't want to undo this promotion.
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
// on scalars.
if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
Level <= AfterLegalizeTypes) {
// Input types must be integer and the same.
if (XVT.isInteger() && XVT == Y.getValueType() &&
!(VT.isVector() && TLI.isTypeLegal(VT) &&
!XVT.isVector() && !TLI.isTypeLegal(XVT))) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
}
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
// If both shuffles use the same mask, and both shuffle within a single
// vector, then it is worthwhile to move the swizzle after the operation.
// The type-legalizer generates this pattern when loading illegal
// vector types from memory. In many cases this allows additional shuffle
// optimizations.
// There are other cases where moving the shuffle after the xor/and/or
// is profitable even if shuffles don't perform a swizzle.
// If both shuffles use the same mask, and both shuffles have the same first
// or second operand, then it might still be profitable to move the shuffle
// after the xor/and/or operation.
if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
assert(X.getValueType() == Y.getValueType() &&
"Inputs to shuffles are not the same type");
// Check that both shuffles use the same mask. The masks are known to be of
// the same length because the result vector type is the same.
// Check also that shuffles have only one use to avoid introducing extra
// instructions.
if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
!SVN0->getMask().equals(SVN1->getMask()))
return SDValue();
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
SDValue ShOp = N0.getOperand(1);
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
}
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
ShOp = N0.getOperand(0);
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
N1.getOperand(1));
return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
}
}
return SDValue();
}
/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL) {
SDValue LL, LR, RL, RR, N0CC, N1CC;
if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
!isSetCCEquivalent(N1, RL, RR, N1CC))
return SDValue();
assert(N0.getValueType() == N1.getValueType() &&
"Unexpected operand types for bitwise logic op");
assert(LL.getValueType() == LR.getValueType() &&
RL.getValueType() == RR.getValueType() &&
"Unexpected operand types for setcc");
// If we're here post-legalization or the logic op type is not i1, the logic
// op type must match a setcc result type. Also, all folds require new
// operations on the left and right operands, so those types must match.
EVT VT = N0.getValueType();
EVT OpVT = LL.getValueType();
if (LegalOperations || VT.getScalarType() != MVT::i1)
if (VT != getSetCCResultType(OpVT))
return SDValue();
if (OpVT != RL.getValueType())
return SDValue();
ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
bool IsInteger = OpVT.isInteger();
if (LR == RR && CC0 == CC1 && IsInteger) {
bool IsZero = isNullOrNullSplat(LR);
bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
// All bits clear?
bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
// All sign bits clear?
bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
// Any bits set?
bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
// Any sign bits set?
bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
// (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
// (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
// (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
// (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(Or.getNode());
return DAG.getSetCC(DL, VT, Or, LR, CC1);
}
// All bits set?
bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
// All sign bits set?
bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
// Any bits clear?
bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
// Any sign bits clear?
bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
// (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
// (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
// (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
// (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(And.getNode());
return DAG.getSetCC(DL, VT, And, LR, CC1);
}
}
// TODO: What is the 'or' equivalent of this fold?
// (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
IsInteger && CC0 == ISD::SETNE &&
((isNullConstant(LR) && isAllOnesConstant(RR)) ||
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
SDValue One = DAG.getConstant(1, DL, OpVT);
SDValue Two = DAG.getConstant(2, DL, OpVT);
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
AddToWorklist(Add.getNode());
return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
}
// Try more general transforms if the predicates match and the only user of
// the compares is the 'and' or 'or'.
if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
N0.hasOneUse() && N1.hasOneUse()) {
// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
// or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
SDValue Zero = DAG.getConstant(0, DL, OpVT);
return DAG.getSetCC(DL, VT, Or, Zero, CC1);
}
// Turn compare of constants whose difference is 1 bit into add+and+setcc.
// TODO - support non-uniform vector amounts.
if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
// Match a shared variable operand and 2 non-opaque constant operands.
ConstantSDNode *C0 = isConstOrConstSplat(LR);
ConstantSDNode *C1 = isConstOrConstSplat(RR);
if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
// Canonicalize larger constant as C0.
if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
std::swap(C0, C1);
// The difference of the constants must be a single bit.
const APInt &C0Val = C0->getAPIntValue();
const APInt &C1Val = C1->getAPIntValue();
if ((C0Val - C1Val).isPowerOf2()) {
// and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
// setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
SDValue Zero = DAG.getConstant(0, DL, OpVT);
return DAG.getSetCC(DL, VT, And, Zero, CC0);
}
}
}
}
// Canonicalize equivalent operands to LL == RL.
if (LL == RR && LR == RL) {
CC1 = ISD::getSetCCSwappedOperands(CC1);
std::swap(RL, RR);
}
// (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
// (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
if (LL == RL && LR == RR) {
ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
: ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
if (NewCC != ISD::SETCC_INVALID &&
(!LegalOperations ||
(TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
TLI.isOperationLegal(ISD::SETCC, OpVT))))
return DAG.getSetCC(DL, VT, LL, LR, NewCC);
}
return SDValue();
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an And operation to a single value. This makes them reusable in the context
/// of visitSELECT(). Rules involving constants are not included as
/// visitSELECT() already handles those cases.
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N1.getValueType();
SDLoc DL(N);
// fold (and x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
return V;
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
VT.getSizeInBits() <= 64) {
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
// immediate for an add, but it is legal if its top c2 bits are set,
// transform the ADD so the immediate doesn't need to be materialized
// in a register.
APInt ADDC = ADDI->getAPIntValue();
APInt SRLC = SRLI->getAPIntValue();
if (ADDC.getMinSignedBits() <= 64 &&
SRLC.ult(VT.getSizeInBits()) &&
!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
SRLC.getZExtValue());
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
ADDC |= Mask;
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
SDLoc DL0(N0);
SDValue NewAdd =
DAG.getNode(ISD::ADD, DL0, VT,
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
CombineTo(N0.getNode(), NewAdd);
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
}
}
}
}
}
// Reduce bit extract of low half of an integer to the narrower type.
// (and (srl i64:x, K), KMask) ->
// (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
unsigned Size = VT.getSizeInBits();
const APInt &AndMask = CAnd->getAPIntValue();
unsigned ShiftBits = CShift->getZExtValue();
// Bail out, this node will probably disappear anyway.
if (ShiftBits == 0)
return SDValue();
unsigned MaskBits = AndMask.countTrailingOnes();
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
if (AndMask.isMask() &&
// Required bits must not span the two halves of the integer and
// must fit in the half size type.
(ShiftBits + MaskBits <= Size / 2) &&
TLI.isNarrowingProfitable(VT, HalfVT) &&
TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
TLI.isTruncateFree(VT, HalfVT) &&
TLI.isZExtFree(HalfVT, VT)) {
// The isNarrowingProfitable is to avoid regressions on PPC and
// AArch64 which match a few 64-bit bit insert / bit extract patterns
// on downstream users of this. Those patterns could probably be
// extended to handle extensions mixed in.
SDValue SL(N0);
assert(MaskBits <= Size);
// Extracting the highest bit of the low half.
EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
N0.getOperand(0));
SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
}
}
}
}
return SDValue();
}
bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT) {
if (!AndC->getAPIntValue().isMask())
return false;
unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT LoadedVT = LoadN->getMemoryVT();
if (ExtVT == LoadedVT &&
(!LegalOperations ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
// ZEXTLOAD will match without needing to change the size of the value being
// loaded.
return true;
}
// Do not change the width of a volatile or atomic loads.
if (!LoadN->isSimple())
return false;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
return false;
if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
return false;
return true;
}
bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
ISD::LoadExtType ExtType, EVT &MemVT,
unsigned ShAmt) {
if (!LDST)
return false;
// Only allow byte offsets.
if (ShAmt % 8)
return false;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!MemVT.isRound())
return false;
// Don't change the width of a volatile or atomic loads.
if (!LDST->isSimple())
return false;
// Verify that we are actually reducing a load width here.
if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
return false;
// Ensure that this isn't going to produce an unsupported memory access.
if (ShAmt &&
!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
LDST->getAddressSpace(), ShAmt / 8,
LDST->getMemOperand()->getFlags()))
return false;
// It's not possible to generate a constant of extended or untyped type.
EVT PtrType = LDST->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
if (isa<LoadSDNode>(LDST)) {
LoadSDNode *Load = cast<LoadSDNode>(LDST);
// Don't transform one with multiple uses, this would require adding a new
// load.
if (!SDValue(Load, 0).hasOneUse())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
return false;
// For the transform to be legal, the load must produce only two values
// (the value loaded and the chain). Don't transform a pre-increment
// load, for example, which produces an extra value. Otherwise the
// transformation is not equivalent, and the downstream logic to replace
// uses gets things wrong.
if (Load->getNumValues() > 2)
return false;
// If the load that we're shrinking is an extload and we're not just
// discarding the extension we can't simply shrink the load. Bail.
// TODO: It would be possible to merge the extensions in some cases.
if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
return false;
} else {
assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
StoreSDNode *Store = cast<StoreSDNode>(LDST);
// Can't write outside the original store
if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (LegalOperations &&
!TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
return false;
}
return true;
}
bool DAGCombiner::SearchForAndLoads(SDNode *N,
SmallVectorImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask,
SDNode *&NodeToMask) {
// Recursively search for the operands, looking for loads which can be
// narrowed.
for (SDValue Op : N->op_values()) {
if (Op.getValueType().isVector())
return false;
// Some constants may need fixing up later if they are too large.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
(Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
NodesWithConsts.insert(N);
continue;
}
if (!Op.hasOneUse())
return false;
switch(Op.getOpcode()) {
case ISD::LOAD: {
auto *Load = cast<LoadSDNode>(Op);
EVT ExtVT;
if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
// ZEXTLOAD is already small enough.
if (Load->getExtensionType() == ISD::ZEXTLOAD &&
ExtVT.bitsGE(Load->getMemoryVT()))
continue;
// Use LE to convert equal sized loads to zext.
if (ExtVT.bitsLE(Load->getMemoryVT()))
Loads.push_back(Load);
continue;
}
return false;
}
case ISD::ZERO_EXTEND:
case ISD::AssertZext: {
unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT VT = Op.getOpcode() == ISD::AssertZext ?
cast<VTSDNode>(Op.getOperand(1))->getVT() :
Op.getOperand(0).getValueType();
// We can accept extending nodes if the mask is wider or an equal
// width to the original type.
if (ExtVT.bitsGE(VT))
continue;
break;
}
case ISD::OR:
case ISD::XOR:
case ISD::AND:
if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
NodeToMask))
return false;
continue;
}
// Allow one node which will masked along with any loads found.
if (NodeToMask)
return false;
// Also ensure that the node to be masked only produces one data result.
NodeToMask = Op.getNode();
if (NodeToMask->getNumValues() > 1) {
bool HasValue = false;
for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
if (VT != MVT::Glue && VT != MVT::Other) {
if (HasValue) {
NodeToMask = nullptr;
return false;
}
HasValue = true;
}
}
assert(HasValue && "Node to be masked has no data result?");
}
}
return true;
}
bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Mask)
return false;
if (!Mask->getAPIntValue().isMask())
return false;
// No need to do anything if the and directly uses a load.
if (isa<LoadSDNode>(N->getOperand(0)))
return false;
SmallVector<LoadSDNode*, 8> Loads;
SmallPtrSet<SDNode*, 2> NodesWithConsts;
SDNode *FixupNode = nullptr;
if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
if (Loads.size() == 0)
return false;
LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
SDValue MaskOp = N->getOperand(1);
// If it exists, fixup the single node we allow in the tree that needs
// masking.
if (FixupNode) {
LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
FixupNode->getValueType(0),
SDValue(FixupNode, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
if (And.getOpcode() == ISD ::AND)
DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
}
// Narrow any constants that need it.
for (auto *LogicN : NodesWithConsts) {
SDValue Op0 = LogicN->getOperand(0);
SDValue Op1 = LogicN->getOperand(1);
if (isa<ConstantSDNode>(Op0))
std::swap(Op0, Op1);
SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
Op1, MaskOp);
DAG.UpdateNodeOperands(LogicN, Op0, And);
}
// Create narrow loads.
for (auto *Load : Loads) {
LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
SDValue(Load, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
if (And.getOpcode() == ISD ::AND)
And = SDValue(
DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
SDValue NewLoad = ReduceLoadWidth(And.getNode());
assert(NewLoad &&
"Shouldn't be masking the load if it can't be narrowed");
CombineTo(Load, NewLoad, NewLoad.getValue(1));
}
DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
return true;
}
return false;
}
// Unfold
// x & (-1 'logical shift' y)
// To
// (x 'opposite logical shift' y) 'logical shift' y
// if it is better for performance.
SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
assert(N->getOpcode() == ISD::AND);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Do we actually prefer shifts over mask?
if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
return SDValue();
// Try to match (-1 '[outer] logical shift' y)
unsigned OuterShift;
unsigned InnerShift; // The opposite direction to the OuterShift.
SDValue Y; // Shift amount.
auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
if (!M.hasOneUse())
return false;
OuterShift = M->getOpcode();
if (OuterShift == ISD::SHL)
InnerShift = ISD::SRL;
else if (OuterShift == ISD::SRL)
InnerShift = ISD::SHL;
else
return false;
if (!isAllOnesConstant(M->getOperand(0)))
return false;
Y = M->getOperand(1);
return true;
};
SDValue X;
if (matchMask(N1))
X = N0;
else if (matchMask(N0))
X = N1;
else
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// tmp = x 'opposite logical shift' y
SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
// ret = tmp 'logical shift' y
SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
return T1;
}
/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
/// For a target with a bit test, this is expected to become test + set and save
/// at least 1 instruction.
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
// This is probably not worthwhile without a supported type.
EVT VT = And->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(VT))
return SDValue();
// Look through an optional extension and find a 'not'.
// TODO: Should we favor test+set even without the 'not' op?
SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
if (Not.getOpcode() == ISD::ANY_EXTEND)
Not = Not.getOperand(0);
if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
return SDValue();
// Look though an optional truncation. The source operand may not be the same
// type as the original 'and', but that is ok because we are masking off
// everything but the low bit.
SDValue Srl = Not.getOperand(0);
if (Srl.getOpcode() == ISD::TRUNCATE)
Srl = Srl.getOperand(0);
// Match a shift-right by constant.
if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
!isa<ConstantSDNode>(Srl.getOperand(1)))
return SDValue();
// We might have looked through casts that make this transform invalid.
// TODO: If the source type is wider than the result type, do the mask and
// compare in the source type.
const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
unsigned VTBitWidth = VT.getSizeInBits();
if (ShiftAmt.uge(VTBitWidth))
return SDValue();
// Turn this into a bit-test pattern using mask op + setcc:
// and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
SDLoc DL(And);
SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue Mask = DAG.getConstant(
APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
return DAG.getZExtOrTrunc(Setcc, DL, VT);
}
SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// x & x --> x
if (N0 == N1)
return N0;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (and x, 0) -> 0, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllZeros(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
SDLoc(N), N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllOnes(N1.getNode()))
return N0;
}
// fold (and c1, c2) -> c1&c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
// fold (and x, -1) -> x
if (isAllOnesConstant(N1))
return N0;
// if (and x, c) is known to be zero, return 0
unsigned BitWidth = VT.getScalarSizeInBits();
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(BitWidth)))
return DAG.getConstant(0, SDLoc(N), VT);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate and
if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
return RAND;
// Try to convert a constant mask AND into a shuffle clear mask.
if (VT.isVector())
if (SDValue Shuffle = XformToShuffleWithZero(N))
return Shuffle;
// fold (and (or x, C), D) -> D if (C & D) == D
auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
};
if (N0.getOpcode() == ISD::OR &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
return N1;
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
APInt Mask = ~N1C->getAPIntValue();
Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
N0.getValueType(), N0Op0);
// Replace uses of the AND with uses of the Zero extend node.
CombineTo(N, Zext);
// We actually want to replace all uses of the any_extend with the
// zero_extend, to avoid duplicating things. This will later cause this
// AND to be folded.
CombineTo(N0.getNode(), Zext);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
// already be zero by virtue of the width of the base type of the load.
//
// the 'X' node here can either be nothing or an extract_vector_elt to catch
// more cases.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
N0.getOperand(0).getOpcode() == ISD::LOAD &&
N0.getOperand(0).getResNo() == 0) ||
(N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
N0 : N0.getOperand(0) );
// Get the constant (if applicable) the zero'th operand is being ANDed with.
// This can be a pure constant or a vector splat, in which case we treat the
// vector as a scalar and use the splat value.
APInt Constant = APInt::getNullValue(1);
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
Constant = C->getAPIntValue();
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
SplatBitSize, HasAnyUndefs);
if (IsSplat) {
// Undef bits can contribute to a possible optimisation if set, so
// set them.
SplatValue |= SplatUndef;
// The splat value may be something like "0x00FFFFFF", which means 0 for
// the first vector value and FF for the rest, repeating. We need a mask
// that will apply equally to all members of the vector, so AND all the
// lanes of the constant together.
unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
// If the splat value has been compressed to a bitlength lower
// than the size of the vector lane, we need to re-expand it to
// the lane size.
if (EltBitWidth > SplatBitSize)
for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
SplatValue |= SplatValue.shl(SplatBitSize);
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
if ((SplatBitSize % EltBitWidth) == 0) {
Constant = APInt::getAllOnesValue(EltBitWidth);
for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
}
}
}
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
// actually legal and isn't going to get expanded, else this is a false
// optimisation.
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
Load->getValueType(0),
Load->getMemoryVT());
// Resize the constant to the same size as the original memory access before
// extension. If it is still the AllOnesValue then this AND is completely
// unneeded.
Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
bool B;
switch (Load->getExtensionType()) {
default: B = false; break;
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
case ISD::ZEXTLOAD:
case ISD::NON_EXTLOAD: B = true; break;
}
if (B && Constant.isAllOnesValue()) {
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
// preserve semantics once we get rid of the AND.
SDValue NewLoad(Load, 0);
// Fold the AND away. NewLoad may get replaced immediately.
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
if (Load->getExtensionType() == ISD::EXTLOAD) {
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
Load->getValueType(0), SDLoc(Load),
Load->getChain(), Load->getBasePtr(),
Load->getOffset(), Load->getMemoryVT(),
Load->getMemOperand());
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
if (Load->getNumValues() == 3) {
// PRE/POST_INC loads have 3 values.
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
NewLoad.getValue(2) };
CombineTo(Load, To, 3, true);
} else {
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
}
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
(N0.getOpcode() == ISD::ANY_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::LOAD))) {
if (SDValue Res = ReduceLoadWidth(N)) {
LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
AddToWorklist(N);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
return SDValue(N, 0);
}
}
if (Level >= AfterLegalizeTypes) {
// Attempt to propagate the AND back up to the leaves which, if they're
// loads, can be combined to narrow loads and the AND node can be removed.
// Perform after legalization so that extend nodes will already be
// combined into the loads.
if (BackwardsPropagateMask(N, DAG)) {
return SDValue(N, 0);
}
}
if (SDValue Combined = visitANDLike(N0, N1, N))
return Combined;
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
// Masking the negated extension of a boolean is just the zero-extended
// boolean:
// and (sub 0, zext(bool X)), 1 --> zext(bool X)
// and (sub 0, sext(bool X)), 1 --> zext(bool X)
//
// Note: the SimplifyDemandedBits fold below can make an information-losing
// transform, and then we have no way to find this better fold.
if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
if (isNullOrNullSplat(N0.getOperand(0))) {
SDValue SubRHS = N0.getOperand(1);
if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
return SubRHS;
if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
}
}
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
(ISD::isEXTLoad(N0.getNode()) ||
(ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned ExtBitSize = N1.getScalarValueSizeInBits();
unsigned MemBitSize = MemVT.getScalarSizeInBits();
APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
if (DAG.MaskedValueIsZero(N1, ExtBits) &&
((!LegalOperations && LN0->isSimple()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false))
return BSwap;
}
if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
return Shifts;
if (TLI.hasBitTest(N0, N1))
if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
return V;
return SDValue();
}
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
// Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
bool LookPassAnd0 = false;
bool LookPassAnd1 = false;
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
std::swap(N0, N1);
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() == ISD::AND) {
if (!N0.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
// Also handle 0xffff since the LHS is guaranteed to have zeros there.
// This is needed for X86.
if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
N01C->getZExtValue() != 0xFFFF))
return SDValue();
N0 = N0.getOperand(0);
LookPassAnd0 = true;
}
if (N1.getOpcode() == ISD::AND) {
if (!N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C || N11C->getZExtValue() != 0xFF)
return SDValue();
N1 = N1.getOperand(0);
LookPassAnd1 = true;
}
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N01C || !N11C)
return SDValue();
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
return SDValue();
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
SDValue N00 = N0->getOperand(0);
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
if (!N00.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
if (!N001C || N001C->getZExtValue() != 0xFF)
return SDValue();
N00 = N00.getOperand(0);
LookPassAnd0 = true;
}
SDValue N10 = N1->getOperand(0);
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
if (!N10.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
// Also allow 0xFFFF since the bits will be shifted out. This is needed
// for X86.
if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
N101C->getZExtValue() != 0xFFFF))
return SDValue();
N10 = N10.getOperand(0);
LookPassAnd1 = true;
}
if (N00 != N10)
return SDValue();
// Make sure everything beyond the low halfword gets set to zero since the SRL
// 16 will clear the top bits.
unsigned OpSizeInBits = VT.getSizeInBits();
if (DemandHighBits && OpSizeInBits > 16) {
// If the left-shift isn't masked out then the only way this is a bswap is
// if all bits beyond the low 8 are 0. In that case the entire pattern
// reduces to a left shift anyway: leave it for other parts of the combiner.
if (!LookPassAnd0)
return SDValue();
// However, if the right shift isn't masked out then it might be because
// it's not needed. See if we can spot that too.
if (!LookPassAnd1 &&
!DAG.MaskedValueIsZero(
N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
return SDValue();
}
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
if (OpSizeInBits > 16) {
SDLoc DL(N);
Res = DAG.getNode(ISD::SRL, DL, VT, Res,
DAG.getConstant(OpSizeInBits - 16, DL,
getShiftAmountTy(VT)));
}
return Res;
}
/// Return true if the specified node is an element that makes up a 32-bit
/// packed halfword byteswap.
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (!N.getNode()->hasOneUse())
return false;
unsigned Opc = N.getOpcode();
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
return false;
SDValue N0 = N.getOperand(0);
unsigned Opc0 = N0.getOpcode();
if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
return false;
ConstantSDNode *N1C = nullptr;
// SHL or SRL: look upstream for AND mask operand
if (Opc == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
else if (Opc0 == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N1C)
return false;
unsigned MaskByteOffset;
switch (N1C->getZExtValue()) {
default:
return false;
case 0xFF: MaskByteOffset = 0; break;
case 0xFF00: MaskByteOffset = 1; break;
case 0xFFFF:
// In case demanded bits didn't clear the bits that will be shifted out.
// This is needed for X86.
if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
MaskByteOffset = 1;
break;
}
return false;
case 0xFF0000: MaskByteOffset = 2; break;
case 0xFF000000: MaskByteOffset = 3; break;
}
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
if (Opc == ISD::AND) {
if (MaskByteOffset == 0 || MaskByteOffset == 2) {
// (x >> 8) & 0xff
// (x >> 8) & 0xff0000
if (Opc0 != ISD::SRL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else {
// (x << 8) & 0xff00
// (x << 8) & 0xff000000
if (Opc0 != ISD::SHL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
} else if (Opc == ISD::SHL) {
// (x & 0xff) << 8
// (x & 0xff0000) << 8
if (MaskByteOffset != 0 && MaskByteOffset != 2)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else { // Opc == ISD::SRL
// (x & 0xff00) >> 8
// (x & 0xff000000) >> 8
if (MaskByteOffset != 1 && MaskByteOffset != 3)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
if (Parts[MaskByteOffset])
return false;
Parts[MaskByteOffset] = N0.getOperand(0).getNode();
return true;
}
// Match 2 elements of a packed halfword bswap.
static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (N.getOpcode() == ISD::OR)
return isBSwapHWordElement(N.getOperand(0), Parts) &&
isBSwapHWordElement(N.getOperand(1), Parts);
if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
if (!C || C->getAPIntValue() != 16)
return false;
Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
return true;
}
return false;
}
/// Match a 32-bit packed halfword bswap. That is
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
// Look for either
// (or (bswaphpair), (bswaphpair))
// (or (or (bswaphpair), (and)), (and))
// (or (or (and), (bswaphpair)), (and))
SDNode *Parts[4] = {};
if (isBSwapHWordPair(N0, Parts)) {
// (or (or (and), (and)), (or (and), (and)))
if (!isBSwapHWordPair(N1, Parts))
return SDValue();
} else if (N0.getOpcode() == ISD::OR) {
// (or (or (or (and), (and)), (and)), (and))
if (!isBSwapHWordElement(N1, Parts))
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
!(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
return SDValue();
} else
return SDValue();
// Make sure the parts are all coming from the same node.
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
return SDValue();
SDLoc DL(N);
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
SDValue(Parts[0], 0));
// Result of the bswap should be rotated by 16. If it's not legal, then
// do (x << 16) | (x >> 16).
SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an Or operation to a single value \see visitANDLike().
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N1.getValueType();
SDLoc DL(N);
// fold (or x, undef) -> -1
if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
return DAG.getAllOnesConstant(DL, VT);
if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
return V;
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
// We can only do this xform if we know that bits from X that are set in C2
// but not in C1 are already zero. Likewise for Y.
if (const ConstantSDNode *N0O1C =
getAsNonOpaqueConstant(N0.getOperand(1))) {
if (const ConstantSDNode *N1O1C =
getAsNonOpaqueConstant(N1.getOperand(1))) {
// We can only do this xform if we know that bits from X that are set in
// C2 but not in C1 are already zero. Likewise for Y.
const APInt &LHSMask = N0O1C->getAPIntValue();
const APInt &RHSMask = N1O1C->getAPIntValue();
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getConstant(LHSMask | RHSMask, DL, VT));
}
}
}
}
// (or (and X, M), (and X, N)) -> (and X, (or M, N))
if (N0.getOpcode() == ISD::AND &&
N1.getOpcode() == ISD::AND &&
N0.getOperand(0) == N1.getOperand(0) &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(1), N1.getOperand(1));
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
}
return SDValue();
}
/// OR combines for which the commuted variant will be tried as well.
static SDValue visitORCommutative(
SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N0.getValueType();
if (N0.getOpcode() == ISD::AND) {
// fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
// fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
}
return SDValue();
}
SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// x | x --> x
if (N0 == N1)
return N0;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (or x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
// fold (or x, -1) -> -1, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllOnes(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
// Do this only if the resulting shuffle is legal.
if (isa<ShuffleVectorSDNode>(N0) &&
isa<ShuffleVectorSDNode>(N1) &&
// Avoid folding a node with illegal type.
TLI.isTypeLegal(VT)) {
bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
// Ensure both shuffles have a zero input.
if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
bool CanFold = true;
int NumElts = VT.getVectorNumElements();
SmallVector<int, 4> Mask(NumElts);
for (int i = 0; i != NumElts; ++i) {
int M0 = SV0->getMaskElt(i);
int M1 = SV1->getMaskElt(i);
// Determine if either index is pointing to a zero vector.
bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
// If one element is zero and the otherside is undef, keep undef.
// This also handles the case that both are undef.
if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
Mask[i] = -1;
continue;
}
// Make sure only one of the elements is zero.
if (M0Zero == M1Zero) {
CanFold = false;
break;
}
assert((M0 >= 0 || M1 >= 0) && "Undef index!");
// We have a zero and non-zero element. If the non-zero came from
// SV0 make the index a LHS index. If it came from SV1, make it
// a RHS index. We need to mod by NumElts because we don't care
// which operand it came from in the original shuffles.
Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
}
if (CanFold) {
SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
SDValue LegalShuffle =
TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
Mask, DAG);
if (LegalShuffle)
return LegalShuffle;
}
}
}
}
// fold (or c1, c2) -> c1|c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
// fold (or x, 0) -> x
if (isNullConstant(N1))
return N0;
// fold (or x, -1) -> -1
if (isAllOnesConstant(N1))
return N1;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (or x, c) -> c iff (x & ~c) == 0
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
return N1;
if (SDValue Combined = visitORLike(N0, N1, N))
return Combined;
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
return BSwap;
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
return BSwap;
// reassociate or
if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
return ROR;
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
// iff (c1 & c2) != 0 or c1/c2 are undef.
auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
};
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
if (SDValue COR = DAG.FoldConstantArithmetic(
ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
AddToWorklist(IOR.getNode());
return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
}
}
if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
return Combined;
if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
return Combined;
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
// See if this is some rotate idiom.
if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
return Rot;
if (SDValue Load = MatchLoadCombine(N))
return Load;
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If OR can be rewritten into ADD, try combines based on ADD.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
DAG.haveNoCommonBitsSet(N0, N1))
if (SDValue Combined = visitADDLike(N))
return Combined;
return SDValue();
}
static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
if (Op.getOpcode() == ISD::AND &&
DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
Mask = Op.getOperand(1);
return Op.getOperand(0);
}
return Op;
}
/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
SDValue &Mask) {
Op = stripConstantMask(DAG, Op, Mask);
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
Shift = Op;
return true;
}
return false;
}
/// Helper function for visitOR to extract the needed side of a rotate idiom
/// from a shl/srl/mul/udiv. This is meant to handle cases where
/// InstCombine merged some outside op with one of the shifts from
/// the rotate pattern.
/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
/// Otherwise, returns an expansion of \p ExtractFrom based on the following
/// patterns:
///
/// (or (add v v) (shrl v bitwidth-1)):
/// expands (add v v) -> (shl v 1)
///
/// (or (mul v c0) (shrl (mul v c1) c2)):
/// expands (mul v c0) -> (shl (mul v c1) c3)
///
/// (or (udiv v c0) (shl (udiv v c1) c2)):
/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
///
/// (or (shl v c0) (shrl (shl v c1) c2)):
/// expands (shl v c0) -> (shl (shl v c1) c3)
///
/// (or (shrl v c0) (shl (shrl v c1) c2)):
/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
///
/// Such that in all cases, c3+c2==bitwidth(op v c1).
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
SDValue ExtractFrom, SDValue &Mask,
const SDLoc &DL) {
assert(OppShift && ExtractFrom && "Empty SDValue");
assert(
(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
"Existing shift must be valid as a rotate half");
ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
// Value and Type of the shift.
SDValue OppShiftLHS = OppShift.getOperand(0);
EVT ShiftedVT = OppShiftLHS.getValueType();
// Amount of the existing shift.
ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
// (add v v) -> (shl v 1)
if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
ExtractFrom.getOpcode() == ISD::ADD &&
ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
ExtractFrom.getOperand(0) == OppShiftLHS &&
OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
DAG.getShiftAmountConstant(1, ShiftedVT, DL));
// Preconditions:
// (or (op0 v c0) (shiftl/r (op0 v c1) c2))
//
// Find opcode of the needed shift to be extracted from (op0 v c0).
unsigned Opcode = ISD::DELETED_NODE;
bool IsMulOrDiv = false;
// Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
// opcode or its arithmetic (mul or udiv) variant.
auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
return false;
Opcode = NeededShift;
return true;
};
// op0 must be either the needed shift opcode or the mul/udiv equivalent
// that the needed shift can be extracted from.
if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
(OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
return SDValue();
// op0 must be the same opcode on both sides, have the same LHS argument,
// and produce the same value type.
if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
ShiftedVT != ExtractFrom.getValueType())
return SDValue();
// Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
// Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
ConstantSDNode *ExtractFromCst =
isConstOrConstSplat(ExtractFrom.getOperand(1));
// TODO: We should be able to handle non-uniform constant vectors for these values
// Check that we have constant values.
if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
!OppLHSCst || !OppLHSCst->getAPIntValue() ||
!ExtractFromCst || !ExtractFromCst->getAPIntValue())
return SDValue();
// Compute the shift amount we need to extract to complete the rotate.
const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
if (OppShiftCst->getAPIntValue().ugt(VTWidth))
return SDValue();
APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
// Normalize the bitwidth of the two mul/udiv/shift constant operands.
APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
APInt OppLHSAmt = OppLHSCst->getAPIntValue();
zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
// Now try extract the needed shift from the ExtractFrom op and see if the
// result matches up with the existing shift's LHS op.
if (IsMulOrDiv) {
// Op to extract from is a mul or udiv by a constant.
// Check:
// c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
// c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
NeededShiftAmt.getZExtValue());
APInt ResultAmt;
APInt Rem;
APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
if (Rem != 0 || ResultAmt != OppLHSAmt)
return SDValue();
} else {
// Op to extract from is a shift by a constant.
// Check:
// c2 - (bitwidth(op0 v c0) - c1) == c0
if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
ExtractFromAmt.getBitWidth()))
return SDValue();
}
// Return the expanded shift op that should allow a rotate to be formed.
EVT ShiftVT = OppShift.getOperand(1).getValueType();
EVT ResVT = ExtractFrom.getValueType();
SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
}
// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
// (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
// in direction shift1 by Neg. The range [0, EltSize) means that we only need
// to consider shift amounts with defined behavior.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
SelectionDAG &DAG) {
// If EltSize is a power of 2 then:
//
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
//
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
// for the stronger condition:
//
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
//
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
// we can just replace Neg with Neg' for the rest of the function.
//
// In other cases we check for the even stronger condition:
//
// Neg == EltSize - Pos [B]
//
// for all Neg and Pos. Note that the (or ...) then invokes undefined
// behavior if Pos == 0 (and consequently Neg == EltSize).
//
// We could actually use [A] whenever EltSize is a power of 2, but the
// only extra cases that it would match are those uninteresting ones
// where Neg and Pos are never in range at the same time. E.g. for
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
// as well as (sub 32, Pos), but:
//
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
//
// always invokes undefined behavior for 32-bit X.
//
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
unsigned MaskLoBits = 0;
if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
unsigned Bits = Log2_64(EltSize);
if (NegC->getAPIntValue().getActiveBits() <= Bits &&
((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
Neg = Neg.getOperand(0);
MaskLoBits = Bits;
}
}
}
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
if (Neg.getOpcode() != ISD::SUB)
return false;
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
if (!NegC)
return false;
SDValue NegOp1 = Neg.getOperand(1);
// On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
// Pos'. The truncation is redundant for the purpose of the equality.
if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
MaskLoBits))
Pos = Pos.getOperand(0);
}
}
// The condition we need is now:
//
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
//
// If NegOp1 == Pos then we need:
//
// EltSize & Mask == NegC & Mask
//
// (because "x & Mask" is a truncation and distributes through subtraction).
APInt Width;
if (Pos == NegOp1)
Width = NegC->getAPIntValue();
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
// Then the condition we want to prove becomes:
//
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
//
// which, again because "x & Mask" is a truncation, becomes:
//
// NegC & Mask == (EltSize - PosC) & Mask
// EltSize & Mask == (NegC + PosC) & Mask
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
Width = PosC->getAPIntValue() + NegC->getAPIntValue();
else
return false;
} else
return false;
// Now we just need to check that EltSize & Mask == Width & Mask.
if (MaskLoBits)
// EltSize & Mask is 0 since Mask is EltSize - 1.
return Width.getLoBits(MaskLoBits) == 0;
return Width == EltSize;
}
// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
// former being preferred if supported. InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
SDValue Neg, SDValue InnerPos,
SDValue InnerNeg, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL) {
// fold (or (shl x, (*ext y)),
// (srl x, (*ext (sub 32, y)))) ->
// (rotl x, y) or (rotr x, (sub 32, y))
//
// fold (or (shl x, (*ext (sub 32, y))),
// (srl x, (*ext y))) ->
// (rotr x, y) or (rotl x, (sub 32, y))
EVT VT = Shifted.getValueType();
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
HasPos ? Pos : Neg);
}
return SDValue();
}
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr].
SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
EVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT))
return SDValue();
// The target must have at least one rotate flavor.
bool HasROTL = hasOperation(ISD::ROTL, VT);
bool HasROTR = hasOperation(ISD::ROTR, VT);
if (!HasROTL && !HasROTR)
return SDValue();
// Check for truncated rotate.
if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
assert(LHS.getValueType() == RHS.getValueType());
if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
}
}
// Match "(X shl/srl V1) & V2" where V2 may not be present.
SDValue LHSShift; // The shift.
SDValue LHSMask; // AND value if any.
matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
SDValue RHSShift; // The shift.
SDValue RHSMask; // AND value if any.
matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
// If neither side matched a rotate half, bail
if (!LHSShift && !RHSShift)
return SDValue();
// InstCombine may have combined a constant shl, srl, mul, or udiv with one
// side of the rotate, so try to handle that here. In all cases we need to
// pass the matched shift from the opposite side to compute the opcode and
// needed shift amount to extract. We still want to do this if both sides
// matched a rotate half because one half may be a potential overshift that
// can be broken down (ie if InstCombine merged two shl or srl ops into a
// single one).
// Have LHS side of the rotate, try to extract the needed shift from the RHS.
if (LHSShift)
if (SDValue NewRHSShift =
extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
RHSShift = NewRHSShift;
// Have RHS side of the rotate, try to extract the needed shift from the LHS.
if (RHSShift)
if (SDValue NewLHSShift =
extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
LHSShift = NewLHSShift;
// If a side is still missing, nothing else we can do.
if (!RHSShift || !LHSShift)
return SDValue();
// At this point we've matched or extracted a shift op on each side.
if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
return SDValue(); // Not shifting the same value.
if (LHSShift.getOpcode() == RHSShift.getOpcode())
return SDValue(); // Shifts must disagree.
// Canonicalize shl to left side in a shl/srl pair.
if (RHSShift.getOpcode() == ISD::SHL) {
std::swap(LHS, RHS);
std::swap(LHSShift, RHSShift);
std::swap(LHSMask, RHSMask);
}
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue LHSShiftArg = LHSShift.getOperand(0);
SDValue LHSShiftAmt = LHSShift.getOperand(1);
SDValue RHSShiftArg = RHSShift.getOperand(0);
SDValue RHSShiftAmt = RHSShift.getOperand(1);
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
};
if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
// If there is an AND of either shifted operand, apply it to the result.
if (LHSMask.getNode() || RHSMask.getNode()) {
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue Mask = AllOnes;
if (LHSMask.getNode()) {
SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
}
if (RHSMask.getNode()) {
SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
}
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
}
return Rot;
}
// If there is a mask here, and we have a variable shift, we can't be sure
// that we're masking out the right stuff.
if (LHSMask.getNode() || RHSMask.getNode())
return SDValue();
// If the shift amount is sign/zext/any-extended just peel it off.
SDValue LExtOp0 = LHSShiftAmt;
SDValue RExtOp0 = RHSShiftAmt;
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
LExtOp0 = LHSShiftAmt.getOperand(0);
RExtOp0 = RHSShiftAmt.getOperand(0);
}
SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
if (TryL)
return TryL;
SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
if (TryR)
return TryR;
return SDValue();
}
namespace {
/// Represents known origin of an individual byte in load combine pattern. The
/// value of the byte is either constant zero or comes from memory.
struct ByteProvider {
// For constant zero providers Load is set to nullptr. For memory providers
// Load represents the node which loads the byte from memory.
// ByteOffset is the offset of the byte in the value produced by the load.
LoadSDNode *Load = nullptr;
unsigned ByteOffset = 0;
ByteProvider() = default;
static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
return ByteProvider(Load, ByteOffset);
}
static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
bool isConstantZero() const { return !Load; }
bool isMemory() const { return Load; }
bool operator==(const ByteProvider &Other) const {
return Other.Load == Load && Other.ByteOffset == ByteOffset;
}
private:
ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
: Load(Load), ByteOffset(ByteOffset) {}
};
} // end anonymous namespace
/// Recursively traverses the expression calculating the origin of the requested
/// byte of the given value. Returns None if the provider can't be calculated.
///
/// For all the values except the root of the expression verifies that the value
/// has exactly one use and if it's not true return None. This way if the origin
/// of the byte is returned it's guaranteed that the values which contribute to
/// the byte are not used outside of this expression.
///
/// Because the parts of the expression are not allowed to have more than one
/// use this function iterates over trees, not DAGs. So it never visits the same
/// node more than once.
static const Optional<ByteProvider>
calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
bool Root = false) {
// Typical i64 by i8 pattern requires recursion up to 8 calls depth
if (Depth == 10)
return None;
if (!Root && !Op.hasOneUse())
return None;
assert(Op.getValueType().isScalarInteger() && "can't handle other types");
unsigned BitWidth = Op.getValueSizeInBits();
if (BitWidth % 8 != 0)
return None;
unsigned ByteWidth = BitWidth / 8;
assert(Index < ByteWidth && "invalid index requested");
(void) ByteWidth;
switch (Op.getOpcode()) {
case ISD::OR: {
auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
if (!LHS)
return None;
auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
if (!RHS)
return None;
if (LHS->isConstantZero())
return RHS;
if (RHS->isConstantZero())
return LHS;
return None;
}
case ISD::SHL: {
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return None;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8 != 0)
return None;
uint64_t ByteShift = BitShift / 8;
return Index < ByteShift
? ByteProvider::getConstantZero()
: calculateByteProvider(Op->getOperand(0), Index - ByteShift,
Depth + 1);
}
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
SDValue NarrowOp = Op->getOperand(0);
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
if (NarrowBitWidth % 8 != 0)
return None;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return Op.getOpcode() == ISD::ZERO_EXTEND
? Optional<ByteProvider>(ByteProvider::getConstantZero())
: None;
return calculateByteProvider(NarrowOp, Index, Depth + 1);
}
case ISD::BSWAP:
return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
Depth + 1);
case ISD::LOAD: {
auto L = cast<LoadSDNode>(Op.getNode());
if (!L->isSimple() || L->isIndexed())
return None;
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
if (NarrowBitWidth % 8 != 0)
return None;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return L->getExtensionType() == ISD::ZEXTLOAD
? Optional<ByteProvider>(ByteProvider::getConstantZero())
: None;
return ByteProvider::getMemory(L, Index);
}
}
return None;
}
static unsigned LittleEndianByteAt(unsigned BW, unsigned i) {
return i;
}
static unsigned BigEndianByteAt(unsigned BW, unsigned i) {
return BW - i - 1;
}
// Check if the bytes offsets we are looking at match with either big or
// little endian value loaded. Return true for big endian, false for little
// endian, and None if match failed.
static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets,
int64_t FirstOffset) {
// The endian can be decided only when it is 2 bytes at least.
unsigned Width = ByteOffsets.size();
if (Width < 2)
return None;
bool BigEndian = true, LittleEndian = true;
for (unsigned i = 0; i < Width; i++) {
int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i);
BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i);
if (!BigEndian && !LittleEndian)
return None;
}
assert((BigEndian != LittleEndian) && "It should be either big endian or"
"little endian");
return BigEndian;
}
static SDValue stripTruncAndExt(SDValue Value) {
switch (Value.getOpcode()) {
case ISD::TRUNCATE:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND:
return stripTruncAndExt(Value.getOperand(0));
}
return Value;
}
/// Match a pattern where a wide type scalar value is stored by several narrow
/// stores. Fold it into a single store or a BSWAP and a store if the targets
/// supports it.
///
/// Assuming little endian target:
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 0) & 0xFF;
/// p[1] = (val >> 8) & 0xFF;
/// p[2] = (val >> 16) & 0xFF;
/// p[3] = (val >> 24) & 0xFF;
/// =>
/// *((i32)p) = val;
///
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 24) & 0xFF;
/// p[1] = (val >> 16) & 0xFF;
/// p[2] = (val >> 8) & 0xFF;
/// p[3] = (val >> 0) & 0xFF;
/// =>
/// *((i32)p) = BSWAP(val);
SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) {
// Collect all the stores in the chain.
SDValue Chain;
SmallVector<StoreSDNode *, 8> Stores;
for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
// TODO: Allow unordered atomics when wider type is legal (see D66309)
if (Store->getMemoryVT() != MVT::i8 ||
!Store->isSimple() || Store->isIndexed())
return SDValue();
Stores.push_back(Store);
Chain = Store->getChain();
}
// Handle the simple type only.
unsigned Width = Stores.size();
EVT VT = EVT::getIntegerVT(
*DAG.getContext(), Width * N->getMemoryVT().getSizeInBits());
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT))
return SDValue();
// Check if all the bytes of the combined value we are looking at are stored
// to the same base address. Collect bytes offsets from Base address into
// ByteOffsets.
SDValue CombinedValue;
SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX);
int64_t FirstOffset = INT64_MAX;
StoreSDNode *FirstStore = nullptr;
Optional<BaseIndexOffset> Base;
for (auto Store : Stores) {
// All the stores store different byte of the CombinedValue. A truncate is
// required to get that byte value.
SDValue Trunc = Store->getValue();
if (Trunc.getOpcode() != ISD::TRUNCATE)
return SDValue();
// A shift operation is required to get the right byte offset, except the
// first byte.
int64_t Offset = 0;
SDValue Value = Trunc.getOperand(0);
if (Value.getOpcode() == ISD::SRL ||
Value.getOpcode() == ISD::SRA) {
ConstantSDNode *ShiftOffset =
dyn_cast<ConstantSDNode>(Value.getOperand(1));
// Trying to match the following pattern. The shift offset must be
// a constant and a multiple of 8. It is the byte offset in "y".
//
// x = srl y, offset
// i8 z = trunc x
// store z, ...
if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8))
return SDValue();
Offset = ShiftOffset->getSExtValue()/8;
Value = Value.getOperand(0);
}
// Stores must share the same combined value with different offsets.
if (!CombinedValue)
CombinedValue = Value;
else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value))
return SDValue();
// The trunc and all the extend operation should be stripped to get the
// real value we are stored.
else if (CombinedValue.getValueType() != VT) {
if (Value.getValueType() == VT ||
Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits())
CombinedValue = Value;
// Give up if the combined value type is smaller than the store size.
if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits())
return SDValue();
}
// Stores must share the same base address
BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
int64_t ByteOffsetFromBase = 0;
if (!Base)
Base = Ptr;
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
return SDValue();
// Remember the first byte store
if (ByteOffsetFromBase < FirstOffset) {
FirstStore = Store;
FirstOffset = ByteOffsetFromBase;
}
// Map the offset in the store and the offset in the combined value, and
// early return if it has been set before.
if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX)
return SDValue();
ByteOffsets[Offset] = ByteOffsetFromBase;
}
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
assert(FirstStore && "First store must be set");
// Check if the bytes of the combined value we are looking at match with
// either big or little endian value store.
Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
if (!IsBigEndian.hasValue())
return SDValue();
// The node we are looking at matches with the pattern, check if we can
// replace it with a single bswap if needed and store.
// If the store needs byte swap check if the target supports it
bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian;
// Before legalize we can introduce illegal bswaps which will be later
// converted to an explicit bswap sequence. This way we end up with a single
// store and byte shuffling instead of several stores and byte shuffling.
if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// Check that a store of the wide type is both allowed and fast on the target
bool Fast = false;
bool Allowed =
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
*FirstStore->getMemOperand(), &Fast);
if (!Allowed || !Fast)
return SDValue();
if (VT != CombinedValue.getValueType()) {
assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() &&
"Get unexpected store value to combine");
CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
CombinedValue);
}
if (NeedsBswap)
CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue);
SDValue NewStore =
DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(),
FirstStore->getPointerInfo(), FirstStore->getAlignment());
// Rely on other DAG combine rules to remove the other individual stores.
DAG.ReplaceAllUsesWith(N, NewStore.getNode());
return NewStore;
}
/// Match a pattern where a wide type scalar value is loaded by several narrow
/// loads and combined by shifts and ors. Fold it into a single load or a load
/// and a BSWAP if the targets supports it.
///
/// Assuming little endian target:
/// i8 *a = ...
/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
/// =>
/// i32 val = *((i32)a)
///
/// i8 *a = ...
/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
/// =>
/// i32 val = BSWAP(*((i32)a))
///
/// TODO: This rule matches complex patterns with OR node roots and doesn't
/// interact well with the worklist mechanism. When a part of the pattern is
/// updated (e.g. one of the loads) its direct users are put into the worklist,
/// but the root node of the pattern which triggers the load combine is not
/// necessarily a direct user of the changed node. For example, once the address
/// of t28 load is reassociated load combine won't be triggered:
/// t25: i32 = add t4, Constant:i32<2>
/// t26: i64 = sign_extend t25
/// t27: i64 = add t2, t26
/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
/// t29: i32 = zero_extend t28
/// t32: i32 = shl t29, Constant:i8<8>
/// t33: i32 = or t23, t32
/// As a possible fix visitLoad can check if the load can be a part of a load
/// combine pattern and add corresponding OR roots to the worklist.
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
assert(N->getOpcode() == ISD::OR &&
"Can only match load combining against OR nodes");
// Handles simple types only
EVT VT = N->getValueType(0);
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
unsigned ByteWidth = VT.getSizeInBits() / 8;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Before legalize we can introduce too wide illegal loads which will be later
// split into legal sized loads. This enables us to combine i64 load by i8
// patterns to a couple of i32 loads on 32 bit targets.
if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
return SDValue();
bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
auto MemoryByteOffset = [&] (ByteProvider P) {
assert(P.isMemory() && "Must be a memory byte provider");
unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
assert(LoadBitWidth % 8 == 0 &&
"can only analyze providers for individual bytes not bit");
unsigned LoadByteWidth = LoadBitWidth / 8;
return IsBigEndianTarget
? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
: LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
};
Optional<BaseIndexOffset> Base;
SDValue Chain;
SmallPtrSet<LoadSDNode *, 8> Loads;
Optional<ByteProvider> FirstByteProvider;
int64_t FirstOffset = INT64_MAX;
// Check if all the bytes of the OR we are looking at are loaded from the same
// base address. Collect bytes offsets from Base address in ByteOffsets.
SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
for (unsigned i = 0; i < ByteWidth; i++) {
auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
if (!P || !P->isMemory()) // All the bytes must be loaded from memory
return SDValue();
LoadSDNode *L = P->Load;
assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
!L->isIndexed() &&
"Must be enforced by calculateByteProvider");
assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
// All loads must share the same chain
SDValue LChain = L->getChain();
if (!Chain)
Chain = LChain;
else if (Chain != LChain)
return SDValue();
// Loads must share the same base address
BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
int64_t ByteOffsetFromBase = 0;
if (!Base)
Base = Ptr;
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
return SDValue();
// Calculate the offset of the current byte from the base address
ByteOffsetFromBase += MemoryByteOffset(*P);
ByteOffsets[i] = ByteOffsetFromBase;
// Remember the first byte load
if (ByteOffsetFromBase < FirstOffset) {
FirstByteProvider = P;
FirstOffset = ByteOffsetFromBase;
}
Loads.insert(L);
}
assert(!Loads.empty() && "All the bytes of the value must be loaded from "
"memory, so there must be at least one load which produces the value");
assert(Base && "Base address of the accessed memory location must be set");
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
// Check if the bytes of the OR we are looking at match with either big or
// little endian value load
Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
if (!IsBigEndian.hasValue())
return SDValue();
assert(FirstByteProvider && "must be set");
// Ensure that the first byte is loaded from zero offset of the first load.
// So the combined value can be loaded from the first load address.
if (MemoryByteOffset(*FirstByteProvider) != 0)
return SDValue();
LoadSDNode *FirstLoad = FirstByteProvider->Load;
// The node we are looking at matches with the pattern, check if we can
// replace it with a single load and bswap if needed.
// If the load needs byte swap check if the target supports it
bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
// Before legalize we can introduce illegal bswaps which will be later
// converted to an explicit bswap sequence. This way we end up with a single
// load and byte shuffling instead of several loads and byte shuffling.
if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// Check that a load of the wide type is both allowed and fast on the target
bool Fast = false;
bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
VT, *FirstLoad->getMemOperand(), &Fast);
if (!Allowed || !Fast)
return SDValue();
SDValue NewLoad =
DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
// Transfer chain users from old loads to the new load.
for (LoadSDNode *L : Loads)
DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
}
// If the target has andn, bsl, or a similar bit-select instruction,
// we want to unfold masked merge, with canonical pattern of:
// | A | |B|
// ((x ^ y) & m) ^ y
// | D |
// Into:
// (x & m) | (y & ~m)
// If y is a constant, and the 'andn' does not work with immediates,
// we unfold into a different pattern:
// ~(~x & m) & (m | y)
// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
// the very least that breaks andnpd / andnps patterns, and because those
// patterns are simplified in IR and shouldn't be created in the DAG
SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
assert(N->getOpcode() == ISD::XOR);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
return SDValue();
EVT VT = N->getValueType(0);
// There are 3 commutable operators in the pattern,
// so we have to deal with 8 possible variants of the basic pattern.
SDValue X, Y, M;
auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
if (And.getOpcode() != ISD::AND || !And.hasOneUse())
return false;
SDValue Xor = And.getOperand(XorIdx);
if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
return false;
SDValue Xor0 = Xor.getOperand(0);
SDValue Xor1 = Xor.getOperand(1);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesOrAllOnesSplat(Xor1))
return false;
if (Other == Xor0)
std::swap(Xor0, Xor1);
if (Other != Xor1)
return false;
X = Xor0;
Y = Xor1;
M = And.getOperand(XorIdx ? 0 : 1);
return true;
};
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
!matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
return SDValue();
// Don't do anything if the mask is constant. This should not be reachable.
// InstCombine should have already unfolded this pattern, and DAGCombiner
// probably shouldn't produce it, too.
if (isa<ConstantSDNode>(M.getNode()))
return SDValue();
// We can transform if the target has AndNot
if (!TLI.hasAndNot(M))
return SDValue();
SDLoc DL(N);
// If Y is a constant, check that 'andn' works with immediates.
if (!TLI.hasAndNot(Y)) {
assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
// If not, we need to do a bit more work to make sure andn is still used.
SDValue NotX = DAG.getNOT(DL, X, VT);
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
}
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
SDValue NotM = DAG.getNOT(DL, M, VT);
SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
}
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (xor x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
SDLoc DL(N);
if (N0.isUndef() && N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (xor x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
// fold (xor c1, c2) -> c1^c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
// fold (xor x, 0) -> x
if (isNullConstant(N1))
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate xor
if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
return RXOR;
// fold !(x cc y) -> (x !cc y)
unsigned N0Opcode = N0.getOpcode();
SDValue LHS, RHS, CC;
if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
LHS.getValueType().isInteger());
if (!LegalOperations ||
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
switch (N0Opcode) {
default:
llvm_unreachable("Unhandled SetCC Equivalent!");
case ISD::SETCC:
return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
N0.getOperand(3), NotCC);
}
}
}
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
SDValue V = N0.getOperand(0);
SDLoc DL0(N0);
V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
DAG.getConstant(1, DL0, V.getValueType()));
AddToWorklist(V.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
}
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
if (isAllOnesConstant(N1) && N0.hasOneUse() &&
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
}
}
// fold (not (neg x)) -> (add X, -1)
// FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
// Y is a constant or the subtract has a single use.
if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
isNullConstant(N0.getOperand(0))) {
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
DAG.getAllOnesConstant(DL, VT));
}
// fold (xor (and x, y), y) -> (and (not x), y)
if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
SDValue X = N0.getOperand(0);
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
AddToWorklist(NotX.getNode());
return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
}
if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
ConstantSDNode *XorC = isConstOrConstSplat(N1);
ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
unsigned BitWidth = VT.getScalarSizeInBits();
if (XorC && ShiftC) {
// Don't crash on an oversized shift. We can not guarantee that a bogus
// shift has been simplified to undef.
uint64_t ShiftAmt = ShiftC->getLimitedValue();
if (ShiftAmt < BitWidth) {
APInt Ones = APInt::getAllOnesValue(BitWidth);
Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
if (XorC->getAPIntValue() == Ones) {
// If the xor constant is a shifted -1, do a 'not' before the shift:
// xor (X << ShiftC), XorC --> (not X) << ShiftC
// xor (X >> ShiftC), XorC --> (not X) >> ShiftC
SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
}
}
}
}
// fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
SDValue S0 = S.getOperand(0);
if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
unsigned OpSizeInBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
if (C->getAPIntValue() == (OpSizeInBits - 1))
return DAG.getNode(ISD::ABS, DL, VT, S0);
}
}
}
// fold (xor x, x) -> 0
if (N0 == N1)
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// fold (xor (shl 1, x), -1) -> (rotl ~1, x)
// Here is a concrete example of this equivalence:
// i16 x == 14
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
//
// =>
//
// i16 ~1 == 0b1111111111111110
// i16 rol(~1, 14) == 0b1011111111111111
//
// Some additional tips to help conceptualize this transform:
// - Try to see the operation as placing a single zero in a value of all ones.
// - There exists no value for x which would allow the result to contain zero.
// - Values of x larger than the bitwidth are undefined and do not require a
// consistent result.
// - Pushing the zero left requires shifting one bits in from the right.
// A rotate left of ~1 is a nice way of achieving the desired result.
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
N0.getOperand(1));
}
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
if (N0Opcode == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
// Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
if (SDValue MM = unfoldMaskedMerge(N))
return MM;
// Simplify the expression using non-local knowledge.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// If we have a shift-by-constant of a bitwise logic op that itself has a
/// shift-by-constant operand with identical opcode, we may be able to convert
/// that into 2 independent shifts followed by the logic op. This is a
/// throughput improvement.
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
// Match a one-use bitwise logic op.
SDValue LogicOp = Shift->getOperand(0);
if (!LogicOp.hasOneUse())
return SDValue();
unsigned LogicOpcode = LogicOp.getOpcode();
if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
LogicOpcode != ISD::XOR)
return SDValue();
// Find a matching one-use shift by constant.
unsigned ShiftOpcode = Shift->getOpcode();
SDValue C1 = Shift->getOperand(1);
ConstantSDNode *C1Node = isConstOrConstSplat(C1);
assert(C1Node && "Expected a shift with constant operand");
const APInt &C1Val = C1Node->getAPIntValue();
auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
const APInt *&ShiftAmtVal) {
if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
return false;
ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
if (!ShiftCNode)
return false;
// Capture the shifted operand and shift amount value.
ShiftOp = V.getOperand(0);
ShiftAmtVal = &ShiftCNode->getAPIntValue();
// Shift amount types do not have to match their operand type, so check that
// the constants are the same width.
if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
return false;
// The fold is not valid if the sum of the shift values exceeds bitwidth.
if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
return false;
return true;
};
// Logic ops are commutative, so check each operand for a match.
SDValue X, Y;
const APInt *C0Val;
if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
Y = LogicOp.getOperand(1);
else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
Y = LogicOp.getOperand(0);
else
return SDValue();
// shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
SDLoc DL(Shift);
EVT VT = Shift->getValueType(0);
EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
}
/// Handle transforms common to the three shifts, when the shift amount is a
/// constant.
/// We are looking for: (shift being one of shl/sra/srl)
/// shift (binop X, C0), C1
/// And want to transform into:
/// binop (shift X, C1), (shift C0, C1)
SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
// Do not turn a 'not' into a regular xor.
if (isBitwiseNot(N->getOperand(0)))
return SDValue();
// The inner binop must be one-use, since we want to replace it.
SDValue LHS = N->getOperand(0);
if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
return SDValue();
// TODO: This is limited to early combining because it may reveal regressions
// otherwise. But since we just checked a target hook to see if this is
// desirable, that should have filtered out cases where this interferes
// with some other pattern matching.
if (!LegalTypes)
if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
return R;
// We want to pull some binops through shifts, so that we have (and (shift))
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
// thing happens with address calculations, so it's important to canonicalize
// it.
switch (LHS.getOpcode()) {
default:
return SDValue();
case ISD::OR:
case ISD::XOR:
case ISD::AND:
break;
case ISD::ADD:
if (N->getOpcode() != ISD::SHL)
return SDValue(); // only shl(add) not sr[al](add).
break;
}
// We require the RHS of the binop to be a constant and not opaque as well.
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
if (!BinOpCst)
return SDValue();
// FIXME: disable this unless the input to the binop is a shift by a constant
// or is copy/select. Enable this in other cases when figure out it's exactly
// profitable.
SDValue BinOpLHSVal = LHS.getOperand(0);
bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
BinOpLHSVal.getOpcode() == ISD::SRA ||
BinOpLHSVal.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
BinOpLHSVal.getOpcode() == ISD::SELECT;
if (!IsShiftByConstant && !IsCopyOrSelect)
return SDValue();
if (IsCopyOrSelect && N->hasOneUse())
return SDValue();
// Fold the constants, shifting the binop RHS by the shift amount.
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
N->getOperand(1));
assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
N->getOperand(1));
return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
}
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
assert(N->getOpcode() == ISD::TRUNCATE);
assert(N->getOperand(0).getOpcode() == ISD::AND);
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
EVT TruncVT = N->getValueType(0);
if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
SDValue N01 = N->getOperand(0).getOperand(1);
if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
SDLoc DL(N);
SDValue N00 = N->getOperand(0).getOperand(0);
SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
AddToWorklist(Trunc00.getNode());
AddToWorklist(Trunc01.getNode());
return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
}
}
return SDValue();
}
SDValue DAGCombiner::visitRotate(SDNode *N) {
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
unsigned Bitsize = VT.getScalarSizeInBits();
// fold (rot x, 0) -> x
if (isNullOrNullSplat(N1))
return N0;
// fold (rot x, c) -> x iff (c % BitSize) == 0
if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
if (DAG.MaskedValueIsZero(N1, ModuloMask))
return N0;
}
// fold (rot x, c) -> (rot x, c % BitSize)
// TODO - support non-uniform vector amounts.
if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
if (Cst->getAPIntValue().uge(Bitsize)) {
uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
return DAG.getNode(N->getOpcode(), dl, VT, N0,
DAG.getConstant(RotAmt, dl, N1.getValueType()));
}
}
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
}
unsigned NextOp = N0.getOpcode();
// fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
EVT ShiftVT = C1->getValueType(0);
bool SameSide = (N->getOpcode() == NextOp);
unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
if (SDValue CombinedShift =
DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
BitsizeC.getNode());
return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
CombinedShiftNorm);
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
EVT VT = N0.getValueType();
EVT ShiftVT = N1.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
// If setcc produces all-one true value then:
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
if (N1CV && N1CV->isConstant()) {
if (N0.getOpcode() == ISD::AND) {
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
N01CV, N1CV))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
}
}
}
}
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (shl c1, c2) -> c1<<c2
// TODO - support non-uniform vector shift amounts.
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (shl x, c) is known to be zero, return 0
if (DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
}
// TODO - support non-uniform vector shift amounts.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N0.getOpcode() == ISD::SHL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, SDLoc(N), VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDLoc DL(N);
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
}
}
// fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
// For this to be valid, the second form must not preserve any of the bits
// that are shifted out by the inner shift in the first form. This means
// the outer shift size must be >= the number of bits added by the ext.
// As a corollary, we don't care what kind of ext it is.
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND) &&
N0.getOperand(0).getOpcode() == ISD::SHL) {
SDValue N0Op0 = N0.getOperand(0);
SDValue InnerShiftAmt = N0Op0.getOperand(1);
EVT InnerVT = N0Op0.getValueType();
uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return c2.uge(OpSizeInBits - InnerBitwidth) &&
(c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true))
return DAG.getConstant(0, SDLoc(N), VT);
auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return c2.uge(OpSizeInBits - InnerBitwidth) &&
(c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDLoc DL(N);
SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
}
}
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
// Only fold this if the inner zext has no other uses to avoid increasing
// the total number of instructions.
if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue N0Op0 = N0.getOperand(0);
SDValue InnerShiftAmt = N0Op0.getOperand(1);
auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2);
return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDLoc DL(N);
EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
AddToWorklist(NewSHL.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
}
}
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
// TODO - support non-uniform vector shift amounts.
if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
N0->getFlags().hasExact()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t C1 = N0C1->getZExtValue();
uint64_t C2 = N1C->getZExtValue();
SDLoc DL(N);
if (C1 <= C2)
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(C2 - C1, DL, ShiftVT));
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
DAG.getConstant(C1 - C2, DL, ShiftVT));
}
}
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
// (and (srl x, (sub c1, c2), MASK)
// Only fold this if the inner shift has no other uses -- if it does, folding
// this will increase the total number of instructions.
// TODO - drop hasOneUse requirement if c1 == c2?
// TODO - support non-uniform vector shift amounts.
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
uint64_t c1 = N0C1->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
SDValue Shift;
if (c2 > c1) {
Mask <<= c2 - c1;
SDLoc DL(N);
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(c2 - c1, DL, ShiftVT));
} else {
Mask.lshrInPlace(c1 - c2);
SDLoc DL(N);
Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
DAG.getConstant(c1 - c2, DL, ShiftVT));
}
SDLoc DL(N0);
return DAG.getNode(ISD::AND, DL, VT, Shift,
DAG.getConstant(Mask, DL, VT));
}
}
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
isConstantOrConstantVector(N1, /* No Opaques */ true)) {
SDLoc DL(N);
SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
}
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
// Variant of version done on multiply, except mul by a power of 2 is turned
// into a shift.
if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
N0.getNode()->hasOneUse() &&
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
TLI.isDesirableToCommuteWithShift(N, Level)) {
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
AddToWorklist(Shl0.getNode());
AddToWorklist(Shl1.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
}
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
if (isConstantOrConstantVector(Shl))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
}
if (N1C && !N1C->isOpaque())
if (SDValue NewSHL = visitShiftByConstant(N))
return NewSHL;
return SDValue();
}
SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// Arithmetic shifting an all-sign-bit value is a no-op.
// fold (sra 0, x) -> 0
// fold (sra -1, x) -> -1
if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
return N0;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (sra c1, c2) -> (sra c1, c2)
// TODO - support non-uniform vector shift amounts.
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
if (VT.isVector())
ExtVT = EVT::getVectorVT(*DAG.getContext(),
ExtVT, VT.getVectorNumElements());
if ((!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), DAG.getValueType(ExtVT));
}
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
// clamp (add c1, c2) to max shift.
if (N0.getOpcode() == ISD::SRA) {
SDLoc DL(N);
EVT ShiftVT = N1.getValueType();
EVT ShiftSVT = ShiftVT.getScalarType();
SmallVector<SDValue, 16> ShiftValues;
auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
APInt Sum = c1 + c2;
unsigned ShiftSum =
Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
return true;
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
SDValue ShiftValue;
if (VT.isVector())
ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
else
ShiftValue = ShiftValues[0];
return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
}
}
// fold (sra (shl X, m), (sub result_size, n))
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
// result_size - n != m.
// If truncate is free for the target sext(shl) is likely to result in better
// code.
if (N0.getOpcode() == ISD::SHL && N1C) {
// Get the two constanst of the shifts, CN0 = m, CN = n.
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
if (N01C) {
LLVMContext &Ctx = *DAG.getContext();
// Determine what the truncate's result bitsize and type would be.
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
// Determine the residual right-shift amount.
int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
// If the shift is not a no-op (in which case this should be just a sign
// extend already), the truncated to type is legal, sign_extend is legal
// on that type, and the truncate to that type is both legal and free,
// perform the transform.
if ((ShiftAmt > 0) &&
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDLoc DL(N);
SDValue Amt = DAG.getConstant(ShiftAmt, DL,
getShiftAmountTy(N0.getOperand(0).getValueType()));
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
N0.getOperand(0), Amt);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
Shift);
return DAG.getNode(ISD::SIGN_EXTEND, DL,
N->getValueType(0), Trunc);
}
}
}
// We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
// sra (add (shl X, N1C), AddC), N1C -->
// sext (add (trunc X to (width - N1C)), AddC')
if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
N0.getOperand(0).getOpcode() == ISD::SHL &&
N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
SDValue Shl = N0.getOperand(0);
// Determine what the truncate's type would be and ask the target if that
// is a free operation.
LLVMContext &Ctx = *DAG.getContext();
unsigned ShiftAmt = N1C->getZExtValue();
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
// TODO: The simple type check probably belongs in the default hook
// implementation and/or target-specific overrides (because
// non-simple types likely require masking when legalized), but that
// restriction may conflict with other transforms.
if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) {
SDLoc DL(N);
SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
return DAG.getSExtOrTrunc(Add, DL, VT);
}
}
}
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
}
// fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
// if c1 is equal to the number of bits the trunc removes
// TODO - support non-uniform vector shift amounts.
if (N0.getOpcode() == ISD::TRUNCATE &&
(N0.getOperand(0).getOpcode() == ISD::SRL ||
N0.getOperand(0).getOpcode() == ISD::SRA) &&
N0.getOperand(0).hasOneUse() &&
N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
EVT LargeVT = N0Op0.getValueType();
unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
if (LargeShift->getAPIntValue() == TruncBits) {
SDLoc DL(N);
SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
getShiftAmountTy(LargeVT));
SDValue SRA =
DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
}
}
}
// Simplify, based on bits shifted out of the LHS.
// TODO - support non-uniform vector shift amounts.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If the sign bit is known to be zero, switch this to a SRL.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRA = visitShiftByConstant(N))
return NewSRA;
return SDValue();
}
SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (srl c1, c2) -> c1 >>u c2
// TODO - support non-uniform vector shift amounts.
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (srl x, c) is known to be zero, return 0
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N0.getOpcode() == ISD::SRL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, SDLoc(N), VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDLoc DL(N);
EVT ShiftVT = N1.getValueType();
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
}
}
// fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
// TODO - support non-uniform vector shift amounts.
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
uint64_t c1 = N001C->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = N0.getOperand(0).getValueType();
EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
if (c1 + OpSizeInBits == InnerShiftSize) {
SDLoc DL(N0);
if (c1 + c2 >= InnerShiftSize)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(ISD::SRL, DL, InnerShiftVT,
N0.getOperand(0).getOperand(0),
DAG.getConstant(c1 + c2, DL,
ShiftCountVT)));
}
}
}
// fold (srl (shl x, c), c) -> (and x, cst2)
// TODO - (srl (shl x, c1), c2).
if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
SDLoc DL(N);
SDValue Mask =
DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
AddToWorklist(Mask.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
}
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
// TODO - support non-uniform vector shift amounts.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
EVT SmallVT = N0.getOperand(0).getValueType();
unsigned BitSize = SmallVT.getScalarSizeInBits();
if (N1C->getAPIntValue().uge(BitSize))
return DAG.getUNDEF(VT);
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
uint64_t ShiftAmt = N1C->getZExtValue();
SDLoc DL0(N0);
SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
N0.getOperand(0),
DAG.getConstant(ShiftAmt, DL0,
getShiftAmountTy(SmallVT)));
AddToWorklist(SmallShift.getNode());
APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
DAG.getConstant(Mask, DL, VT));
}
}
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
// bit, which is unmodified by sra.
if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
if (N0.getOpcode() == ISD::SRA)
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
}
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
if (N1C && N0.getOpcode() == ISD::CTLZ &&
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
// If any of the input bits are KnownOne, then the input couldn't be all
// zeros, thus the result of the srl will always be zero.
if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
// If all of the bits input the to ctlz node are known to be zero, then
// the result of the ctlz is "32" and the result of the shift is one.
APInt UnknownBits = ~Known.Zero;
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
// Otherwise, check to see if there is exactly one bit input to the ctlz.
if (UnknownBits.isPowerOf2()) {
// Okay, we know that only that the single bit specified by UnknownBits
// could be set on input to the CTLZ node. If this bit is set, the SRL
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
// to an SRL/XOR pair, which is likely to simplify more.
unsigned ShAmt = UnknownBits.countTrailingZeros();
SDValue Op = N0.getOperand(0);
if (ShAmt) {
SDLoc DL(N0);
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getConstant(ShAmt, DL,
getShiftAmountTy(Op.getValueType())));
AddToWorklist(Op.getNode());
}
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT,
Op, DAG.getConstant(1, DL, VT));
}
}
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
}
// fold operands of srl based on knowledge that the low bits are not
// demanded.
// TODO - support non-uniform vector shift amounts.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRL = visitShiftByConstant(N))
return NewSRL;
// Attempt to convert a srl of a load into a narrower zero-extending load.
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// Here is a common situation. We want to optimize:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// However when after the source operand of SRL is optimized into AND, the SRL
// itself may not be optimized further. Look for it and add the BRCOND into
// the worklist.
if (N->hasOneUse()) {
SDNode *Use = *N->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
// Also look pass the truncate.
Use = *Use->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
}
}
return SDValue();
}
SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
bool IsFSHL = N->getOpcode() == ISD::FSHL;
unsigned BitWidth = VT.getScalarSizeInBits();
// fold (fshl N0, N1, 0) -> N0
// fold (fshr N0, N1, 0) -> N1
if (isPowerOf2_32(BitWidth))
if (DAG.MaskedValueIsZero(
N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
return IsFSHL ? N0 : N1;
auto IsUndefOrZero = [](SDValue V) {
return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
};
// TODO - support non-uniform vector shift amounts.
if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
EVT ShAmtTy = N2.getValueType();
// fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
if (Cst->getAPIntValue().uge(BitWidth)) {
uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
}
unsigned ShAmt = Cst->getZExtValue();
if (ShAmt == 0)
return IsFSHL ? N0 : N1;
// fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
// fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
// fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
// fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
if (IsUndefOrZero(N0))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
SDLoc(N), ShAmtTy));
if (IsUndefOrZero(N1))
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
SDLoc(N), ShAmtTy));
}
// fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
// fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
// iff We know the shift amount is in range.
// TODO: when is it worth doing SUB(BW, N2) as well?
if (isPowerOf2_32(BitWidth)) {
APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
}
// fold (fshl N0, N0, N2) -> (rotl N0, N2)
// fold (fshr N0, N0, N2) -> (rotr N0, N2)
// TODO: Investigate flipping this rotate if only one is legal, if funnel shift
// is legal as well we might be better off avoiding non-constant (BW - N2).
unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
if (N0 == N1 && hasOperation(RotOpc, VT))
return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
// Simplify, based on bits shifted out of N0/N1.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (abs c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
// fold (abs (abs x)) -> (abs x)
if (N0.getOpcode() == ISD::ABS)
return N0;
// fold (abs x) -> x iff not-negative
if (DAG.SignBitIsZero(N0))
return N0;
return SDValue();
}
SDValue DAGCombiner::visitBSWAP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (bswap c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
// fold (bswap (bswap x)) -> x
if (N0.getOpcode() == ISD::BSWAP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (bitreverse c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
// fold (bitreverse (bitreverse x)) -> x
if (N0.getOpcode() == ISD::BITREVERSE)
return N0.getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz_zero_undef c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz_zero_undef c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
return SDValue();
}
// FIXME: This should be checking for no signed zeros on individual operands, as
// well as no nans.
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
SDValue RHS,
const TargetLowering &TLI) {
const TargetOptions &Options = DAG.getTarget().Options;
EVT VT = LHS.getValueType();
return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
TLI.isProfitableToCombineMinNumMaxNum(VT) &&
DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
}
/// Generate Min/Max node
static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True, SDValue False,
ISD::CondCode CC, const TargetLowering &TLI,
SelectionDAG &DAG) {
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
switch (CC) {
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE: {
// Since it's known never nan to get here already, either fminnum or
// fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
// expanded in terms of it.
unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE: {
unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
default:
return SDValue();
}
}
/// If a (v)select has a condition value that is a sign-bit test, try to smear
/// the condition operand sign-bit across the value width and use it as a mask.
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
SDValue Cond = N->getOperand(0);
SDValue C1 = N->getOperand(1);
SDValue C2 = N->getOperand(2);
assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) &&
"Expected select-of-constants");
EVT VT = N->getValueType(0);
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
VT != Cond.getOperand(0).getValueType())
return SDValue();
// The inverted-condition + commuted-select variants of these patterns are
// canonicalized to these forms in IR.
SDValue X = Cond.getOperand(0);
SDValue CondC = Cond.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
isAllOnesOrAllOnesSplat(C2)) {
// i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
SDLoc DL(N);
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
}
if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
// i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
SDLoc DL(N);
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
}
return SDValue();
}
SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
SDValue Cond = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT CondVT = Cond.getValueType();
SDLoc DL(N);
if (!VT.isInteger())
return SDValue();
auto *C1 = dyn_cast<ConstantSDNode>(N1);
auto *C2 = dyn_cast<ConstantSDNode>(N2);
if (!C1 || !C2)
return SDValue();
// Only do this before legalization to avoid conflicting with target-specific
// transforms in the other direction (create a select from a zext/sext). There
// is also a target-independent combine here in DAGCombiner in the other
// direction for (select Cond, -1, 0) when the condition is not i1.
if (CondVT == MVT::i1 && !LegalOperations) {
if (C1->isNullValue() && C2->isOne()) {
// select Cond, 0, 1 --> zext (!Cond)
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
if (VT != MVT::i1)
NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
return NotCond;
}
if (C1->isNullValue() && C2->isAllOnesValue()) {
// select Cond, 0, -1 --> sext (!Cond)
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
if (VT != MVT::i1)
NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
return NotCond;
}
if (C1->isOne() && C2->isNullValue()) {
// select Cond, 1, 0 --> zext (Cond)
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
return Cond;
}
if (C1->isAllOnesValue() && C2->isNullValue()) {
// select Cond, -1, 0 --> sext (Cond)
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return Cond;
}
// Use a target hook because some targets may prefer to transform in the
// other direction.
if (TLI.convertSelectOfConstantsToMath(VT)) {
// For any constants that differ by 1, we can transform the select into an
// extend and add.
const APInt &C1Val = C1->getAPIntValue();
const APInt &C2Val = C2->getAPIntValue();
if (C1Val - 1 == C2Val) {
// select Cond, C1, C1-1 --> add (zext Cond), C1-1
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
if (C1Val + 1 == C2Val) {
// select Cond, C1, C1+1 --> add (sext Cond), C1+1
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
// select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
}
if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
return V;
}
return SDValue();
}
// fold (select Cond, 0, 1) -> (xor Cond, 1)
// We can't do this reliably if integer based booleans have different contents
// to floating point based booleans. This is because we can't tell whether we
// have an integer-based boolean or a floating-point-based boolean unless we
// can find the SETCC that produced it and inspect its operands. This is
// fairly easy if C is the SETCC node, but it can potentially be
// undiscoverable (or not reasonably discoverable). For example, it could be
// in another basic block or it could require searching a complicated
// expression.
if (CondVT.isInteger() &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
TargetLowering::ZeroOrOneBooleanContent &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
TargetLowering::ZeroOrOneBooleanContent &&
C1->isNullValue() && C2->isOne()) {
SDValue NotCond =
DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
if (VT.bitsEq(CondVT))
return NotCond;
return DAG.getZExtOrTrunc(NotCond, DL, VT);
}
return SDValue();
}
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT VT0 = N0.getValueType();
SDLoc DL(N);
SDNodeFlags Flags = N->getFlags();
if (SDValue V = DAG.simplifySelect(N0, N1, N2))
return V;
// fold (select X, X, Y) -> (or X, Y)
// fold (select X, 1, Y) -> (or C, Y)
if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
return DAG.getNode(ISD::OR, DL, VT, N0, N2);
if (SDValue V = foldSelectOfConstants(N))
return V;
// fold (select C, 0, X) -> (and (not C), X)
if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
}
// fold (select C, X, 1) -> (or (not C), X)
if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
}
// fold (select X, Y, X) -> (and X, Y)
// fold (select X, Y, 0) -> (and X, Y)
if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
return DAG.getNode(ISD::AND, DL, VT, N0, N1);
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
if (VT0 == MVT::i1) {
// The code in this block deals with the following 2 equivalences:
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
// The target can specify its preferred form with the
// shouldNormalizeToSelectSequence() callback. However we always transform
// to the right anyway if we find the inner select exists in the DAG anyway
// and we always transform to the left side if we know that we can further
// optimize the combination of the conditions.
bool normalizeToSequence =
TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
// select (and Cond0, Cond1), X, Y
// -> select Cond0, (select Cond1, X, Y), Y
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect =
DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
InnerSelect, N2, Flags);
// Cleanup on failure.
if (InnerSelect.use_empty())
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
}
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
Cond1, N1, N2, Flags);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
InnerSelect, Flags);
// Cleanup on failure.
if (InnerSelect.use_empty())
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
}
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
SDValue N1_0 = N1->getOperand(0);
SDValue N1_1 = N1->getOperand(1);
SDValue N1_2 = N1->getOperand(2);
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
// Create the actual and node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
N2, Flags);
}
// Otherwise see if we can optimize the "and" to a better pattern.
if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
N2, Flags);
}
}
}
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
SDValue N2_0 = N2->getOperand(0);
SDValue N2_1 = N2->getOperand(1);
SDValue N2_2 = N2->getOperand(2);
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
// Create the actual or node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
N2_2, Flags);
}
// Otherwise see if we can optimize to a better pattern.
if (SDValue Combined = visitORLike(N0, N2_0, N))
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
N2_2, Flags);
}
}
}
// select (not Cond), N1, N2 -> select Cond, N2, N1
if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
SelectOp->setFlags(Flags);
return SelectOp;
}
// Fold selects based on a setcc into other things, such as min/max/abs.
if (N0.getOpcode() == ISD::SETCC) {
SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
// select (fcmp lt x, y), x, y -> fminnum x, y
// select (fcmp gt x, y), x, y -> fmaxnum x, y
//
// This is OK if we don't care what happens if either operand is a NaN.
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
CC, TLI, DAG))
return FMinMax;
// Use 'unsigned add with overflow' to optimize an unsigned saturating add.
// This is conservatively limited to pre-legal-operations to give targets
// a chance to reverse the transform if they want to do that. Also, it is
// unlikely that the pattern would be formed late, so it's probably not
// worth going through the other checks.
if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
// select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
// uaddo Cond0, C; select uaddo.1, -1, uaddo.0
//
// The IR equivalent of this transform would have this form:
// %a = add %x, C
// %c = icmp ugt %x, ~C
// %r = select %c, -1, %a
// =>
// %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
// %u0 = extractvalue %u, 0
// %u1 = extractvalue %u, 1
// %r = select %u1, -1, %u0
SDVTList VTs = DAG.getVTList(VT, VT0);
SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
}
}
if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
(!LegalOperations &&
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
// Any flags available in a select/setcc fold will be on the setcc as they
// migrated from fcmp
Flags = N0.getNode()->getFlags();
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
N2, N0.getOperand(2));
SelectNode->setFlags(Flags);
return SelectNode;
}
return SimplifySelect(DL, N0, N1, N2);
}
return SDValue();
}
// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = N->getValueType(0);
int NumElems = VT.getVectorNumElements();
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
Cond.getOpcode() == ISD::BUILD_VECTOR);
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
// binary ones here.
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
return SDValue();
// We're sure we have an even number of elements due to the
// concat_vectors we have as arguments to vselect.
// Skip BV elements until we find one that's not an UNDEF
// After we find an UNDEF element, keep looping until we get to half the
// length of the BV and see if all the non-undef nodes are the same.
ConstantSDNode *BottomHalf = nullptr;
for (int i = 0; i < NumElems / 2; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (BottomHalf == nullptr)
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != BottomHalf)
return SDValue();
}
// Do the same for the second half of the BuildVector
ConstantSDNode *TopHalf = nullptr;
for (int i = NumElems / 2; i < NumElems; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (TopHalf == nullptr)
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != TopHalf)
return SDValue();
}
assert(TopHalf && BottomHalf &&
"One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function.");
return DAG.getNode(
ISD::CONCAT_VECTORS, DL, VT,
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
SDValue Mask = MSC->getMask();
SDValue Chain = MSC->getChain();
SDLoc DL(N);
// Zap scatters with a zero mask.
if (ISD::isBuildVectorAllZeros(Mask.getNode()))
return Chain;
return SDValue();
}
SDValue DAGCombiner::visitMSTORE(SDNode *N) {
MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
SDValue Chain = MST->getChain();
SDLoc DL(N);
// Zap masked stores with a zero mask.
if (ISD::isBuildVectorAllZeros(Mask.getNode()))
return Chain;
return SDValue();
}
SDValue DAGCombiner::visitMGATHER(SDNode *N) {
MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
SDValue Mask = MGT->getMask();
SDLoc DL(N);
// Zap gathers with a zero mask.
if (ISD::isBuildVectorAllZeros(Mask.getNode()))
return CombineTo(N, MGT->getPassThru(), MGT->getChain());
return SDValue();
}
SDValue DAGCombiner::visitMLOAD(SDNode *N) {
MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
SDValue Mask = MLD->getMask();
SDLoc DL(N);
// Zap masked loads with a zero mask.
if (ISD::isBuildVectorAllZeros(Mask.getNode()))
return CombineTo(N, MLD->getPassThru(), MLD->getChain());
return SDValue();
}
/// A vector select of 2 constant vectors can be simplified to math/logic to
/// avoid a variable select instruction and possibly avoid constant loads.
SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
SDValue Cond = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
!TLI.convertSelectOfConstantsToMath(VT) ||
!ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
!ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
return SDValue();
// Check if we can use the condition value to increment/decrement a single
// constant value. This simplifies a select to an add and removes a constant
// load/materialization from the general case.
bool AllAddOne = true;
bool AllSubOne = true;
unsigned Elts = VT.getVectorNumElements();
for (unsigned i = 0; i != Elts; ++i) {
SDValue N1Elt = N1.getOperand(i);
SDValue N2Elt = N2.getOperand(i);
if (N1Elt.isUndef() || N2Elt.isUndef())
continue;
const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
if (C1 != C2 + 1)
AllAddOne = false;
if (C1 != C2 - 1)
AllSubOne = false;
}
// Further simplifications for the extra-special cases where the constants are
// all 0 or all -1 should be implemented as folds of these patterns.
SDLoc DL(N);
if (AllAddOne || AllSubOne) {
// vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
// vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
}
// select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
APInt Pow2C;
if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
isNullOrNullSplat(N2)) {
SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
}
if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
return V;
// The general case for select-of-constants:
// vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
// ...but that only makes sense if a vselect is slower than 2 logic ops, so
// leave that to a machine-specific pass.
return SDValue();
}
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (SDValue V = DAG.simplifySelect(N0, N1, N2))
return V;
// vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
return DAG.getSelect(DL, VT, F, N2, N1);
// Canonicalize integer abs.
// vselect (setg[te] X, 0), X, -X ->
// vselect (setgt X, -1), X, -X ->
// vselect (setl[te] X, 0), -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N0.getOpcode() == ISD::SETCC) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
bool isAbs = false;
bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
(ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
if (isAbs) {
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
return DAG.getNode(ISD::ABS, DL, VT, LHS);
SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
DAG.getConstant(VT.getScalarSizeInBits() - 1,
DL, getShiftAmountTy(VT)));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
}
// vselect x, y (fcmp lt x, y) -> fminnum x, y
// vselect x, y (fcmp gt x, y) -> fmaxnum x, y
//
// This is OK if we don't care about what happens if either operand is a
// NaN.
//
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
if (SDValue FMinMax =
combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
return FMinMax;
}
// If this select has a condition (setcc) with narrower operands than the
// select, try to widen the compare to match the select width.
// TODO: This should be extended to handle any constant.
// TODO: This could be extended to handle non-loading patterns, but that
// requires thorough testing to avoid regressions.
if (isNullOrNullSplat(RHS)) {
EVT NarrowVT = LHS.getValueType();
EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
EVT SetCCVT = getSetCCResultType(LHS.getValueType());
unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
unsigned WideWidth = WideVT.getScalarSizeInBits();
bool IsSigned = isSignedIntSetCC(CC);
auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
SetCCWidth != 1 && SetCCWidth < WideWidth &&
TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
// Both compare operands can be widened for free. The LHS can use an
// extended load, and the RHS is a constant:
// vselect (ext (setcc load(X), C)), N1, N2 -->
// vselect (setcc extload(X), C'), N1, N2
auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
EVT WideSetCCVT = getSetCCResultType(WideVT);
SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
}
}
}
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
// Fold (vselect (build_vector all_ones), N1, N2) -> N1
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
// Fold (vselect (build_vector all_zeros), N1, N2) -> N2
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N2;
// The ConvertSelectToConcatVector function is assuming both the above
// checks for (vselect (build_vector all{ones,zeros) ...) have been made
// and addressed.
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
N2.getOpcode() == ISD::CONCAT_VECTORS &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
return CV;
}
if (SDValue V = foldVSelectOfConstants(N))
return V;
return SDValue();
}
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
SDValue N4 = N->getOperand(4);
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
// fold select_cc lhs, rhs, x, x, cc -> x
if (N2 == N3)
return N2;
// Determine if the condition we're dealing with is constant
if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
CC, SDLoc(N), false)) {
AddToWorklist(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
if (!SCCC->isNullValue())
return N2; // cond always true -> true val
else
return N3; // cond always false -> false val
} else if (SCC->isUndef()) {
// When the condition is UNDEF, just return the first operand. This is
// coherent the DAG creation, no setcc node is created in this case
return N2;
} else if (SCC.getOpcode() == ISD::SETCC) {
// Fold to a simpler select_cc
SDValue SelectOp = DAG.getNode(
ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
SCC.getOperand(1), N2, N3, SCC.getOperand(2));
SelectOp->setFlags(SCC->getFlags());
return SelectOp;
}
}
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N2, N3))
return SDValue(N, 0); // Don't revisit N.
// fold select_cc into other things, such as min/max/abs
return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
}
SDValue DAGCombiner::visitSETCC(SDNode *N) {
// setcc is very commonly used as an argument to brcond. This pattern
// also lend itself to numerous combines and, as a result, it is desired
// we keep the argument to a brcond as a setcc as much as possible.
bool PreferSetCC =
N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
SDValue Combined = SimplifySetCC(
N->getValueType(0), N->getOperand(0), N->getOperand(1),
cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
if (!Combined)
return SDValue();
// If we prefer to have a setcc, and we don't, we'll try our best to
// recreate one using rebuildSetCC.
if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
SDValue NewSetCC = rebuildSetCC(Combined);
// We don't have anything interesting to combine to.
if (NewSetCC.getNode() == N)
return SDValue();
if (NewSetCC)
return NewSetCC;
}
return Combined;
}
SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = N->getOperand(2);
SDValue Cond = N->getOperand(3);
// If Carry is false, fold to a regular SETCC.
if (isNullConstant(Carry))
return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
return SDValue();
}
/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
/// a build_vector of constants.
/// This function is called by the DAGCombiner when visiting sext/zext/aext
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
/// Vector extends are not folded if operations are legal; this is to
/// avoid introducing illegal build_vector dag nodes.
static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
SelectionDAG &DAG, bool LegalTypes) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
&& "Expected EXTEND dag node in input!");
// fold (sext c1) -> c1
// fold (zext c1) -> c1
// fold (aext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(Opcode, DL, VT, N0);
// fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
// fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
// fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
if (N0->getOpcode() == ISD::SELECT) {
SDValue Op1 = N0->getOperand(1);
SDValue Op2 = N0->getOperand(2);
if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
(Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
// For any_extend, choose sign extension of the constants to allow a
// possible further transform to sign_extend_inreg.i.e.
//
// t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
// t2: i64 = any_extend t1
// -->
// t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
// -->
// t4: i64 = sign_extend_inreg t3
unsigned FoldOpc = Opcode;
if (FoldOpc == ISD::ANY_EXTEND)
FoldOpc = ISD::SIGN_EXTEND;
return DAG.getSelect(DL, VT, N0->getOperand(0),
DAG.getNode(FoldOpc, DL, VT, Op1),
DAG.getNode(FoldOpc, DL, VT, Op2));
}
}
// fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
EVT SVT = VT.getScalarType();
if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
return SDValue();
// We can fold this node into a build_vector.
unsigned VTBits = SVT.getSizeInBits();
unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
SmallVector<SDValue, 8> Elts;
unsigned NumElts = VT.getVectorNumElements();
// For zero-extensions, UNDEF elements still guarantee to have the upper
// bits set to zero.
bool IsZext =
Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
for (unsigned i = 0; i != NumElts; ++i) {
SDValue Op = N0.getOperand(i);
if (Op.isUndef()) {
Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
continue;
}
SDLoc DL(Op);
// Get the constant value and if needed trunc it to the size of the type.
// Nodes like build_vector might have constants wider than the scalar type.
APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
else
Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
}
return DAG.getBuildVector(VT, DL, Elts);
}
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
// transformation. Returns true if extension are possible and the above
// mentioned transformation is profitable.
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
unsigned ExtOpc,
SmallVectorImpl<SDNode *> &ExtendNodes,
const TargetLowering &TLI) {
bool HasCopyToRegUses = false;
bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
UE = N0.getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User == N)
continue;
if (UI.getUse().getResNo() != N0.getResNo())
continue;
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
// Sign bits will be lost after a zext.
return false;
bool Add = false;
for (unsigned i = 0; i != 2; ++i) {
SDValue UseOp = User->getOperand(i);
if (UseOp == N0)
continue;
if (!isa<ConstantSDNode>(UseOp))
return false;
Add = true;
}
if (Add)
ExtendNodes.push_back(User);
continue;
}
// If truncates aren't free and there are users we can't
// extend, it isn't worthwhile.
if (!isTruncFree)
return false;
// Remember if this value is live-out.
if (User->getOpcode() == ISD::CopyToReg)
HasCopyToRegUses = true;
}
if (HasCopyToRegUses) {
bool BothLiveOut = false;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
BothLiveOut = true;
break;
}
}
if (BothLiveOut)
// Both unextended and extended values are live out. There had better be
// a good reason for the transformation.
return ExtendNodes.size();
}
return true;
}
void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue OrigLoad, SDValue ExtLoad,
ISD::NodeType ExtType) {
// Extend SetCC uses if necessary.
SDLoc DL(ExtLoad);
for (SDNode *SetCC : SetCCs) {
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == OrigLoad)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
}
}
// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT DstVT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND) &&
"Unexpected node type (not an extend)!");
// fold (sext (load x)) to multiple smaller sextloads; same for zext.
// For example, on a target with legal v4i32, but illegal v8i32, turn:
// (v8i32 (sext (v8i16 (load x))))
// into:
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))
// Where uses of the original load, i.e.:
// (v8i16 (load x))
// are replaced with:
// (v8i16 (truncate
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))))
//
// This combine is only applicable to illegal, but splittable, vectors.
// All legal types, and illegal non-vector types, are handled elsewhere.
// This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
//
if (N0->getOpcode() != ISD::LOAD)
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
!N0.hasOneUse() || !LN0->isSimple() ||
!DstVT.isVector() || !DstVT.isPow2VectorType() ||
!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
return SDValue();
SmallVector<SDNode *, 4> SetCCs;
if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
return SDValue();
ISD::LoadExtType ExtType =
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
// Try to split the vector types to get down to legal types.
EVT SplitSrcVT = SrcVT;
EVT SplitDstVT = DstVT;
while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
SplitSrcVT.getVectorNumElements() > 1) {
SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
}
if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
return SDValue();
assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
SDLoc DL(N);
const unsigned NumSplits =
DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
const unsigned Stride = SplitSrcVT.getStoreSize();
SmallVector<SDValue, 4> Loads;
SmallVector<SDValue, 4> Chains;
SDValue BasePtr = LN0->getBasePtr();
for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
const unsigned Offset = Idx * Stride;
const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
SDValue SplitLoad = DAG.getExtLoad(
ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, DL, BasePtr.getValueType()));
Loads.push_back(SplitLoad.getValue(0));
Chains.push_back(SplitLoad.getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
// Simplify TF.
AddToWorklist(NewChain.getNode());
CombineTo(N, NewValue);
// Replace uses of the original load (before extension)
// with a truncate of the concatenated sextloaded vectors.
SDValue Trunc =
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
CombineTo(N0.getNode(), Trunc, NewChain);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
assert(N->getOpcode() == ISD::ZERO_EXTEND);
EVT VT = N->getValueType(0);
EVT OrigVT = N->getOperand(0).getValueType();
if (TLI.isZExtFree(OrigVT, VT))
return SDValue();
// and/or/xor
SDValue N0 = N->getOperand(0);
if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) ||
N0.getOperand(1).getOpcode() != ISD::Constant ||
(LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
return SDValue();
// shl/shr
SDValue N1 = N0->getOperand(0);
if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
N1.getOperand(1).getOpcode() != ISD::Constant ||
(LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
return SDValue();
// load
if (!isa<LoadSDNode>(N1.getOperand(0)))
return SDValue();
LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
EVT MemVT = Load->getMemoryVT();
if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
return SDValue();
// If the shift op is SHL, the logic op must be AND, otherwise the result
// will be wrong.
if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SmallVector<SDNode*, 4> SetCCs;
if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
ISD::ZERO_EXTEND, SetCCs, TLI))
return SDValue();
// Actually do the transformation.
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
Load->getChain(), Load->getBasePtr(),
Load->getMemoryVT(), Load->getMemOperand());
SDLoc DL1(N1);
SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
N1.getOperand(1));
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL0(N0);
SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
DAG.getConstant(Mask, DL0, VT));
ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
CombineTo(N, And);
if (SDValue(Load, 0).hasOneUse()) {
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
Load->getValueType(0), ExtLoad);
CombineTo(Load, Trunc, ExtLoad.getValue(1));
}
// N0 is dead at this point.
recursivelyDeleteUnusedNodes(N0.getNode());
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
/// If we're narrowing or widening the result of a vector select and the final
/// size is the same size as a setcc (compare) feeding the select, then try to
/// apply the cast operation to the select's operands because matching vector
/// sizes for a select condition and other operands should be more efficient.
SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
unsigned CastOpcode = Cast->getOpcode();
assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
CastOpcode == ISD::FP_ROUND) &&
"Unexpected opcode for vector select narrowing/widening");
// We only do this transform before legal ops because the pattern may be
// obfuscated by target-specific operations after legalization. Do not create
// an illegal select op, however, because that may be difficult to lower.
EVT VT = Cast->getValueType(0);
if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
return SDValue();
SDValue VSel = Cast->getOperand(0);
if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
VSel.getOperand(0).getOpcode() != ISD::SETCC)
return SDValue();
// Does the setcc have the same vector size as the casted select?
SDValue SetCC = VSel.getOperand(0);
EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
SDValue A = VSel.getOperand(1);
SDValue B = VSel.getOperand(2);
SDValue CastA, CastB;
SDLoc DL(Cast);
if (CastOpcode == ISD::FP_ROUND) {
// FP_ROUND (fptrunc) has an extra flag operand to pass along.
CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
} else {
CastA = DAG.getNode(CastOpcode, DL, VT, A);
CastB = DAG.getNode(CastOpcode, DL, VT, B);
}
return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
}
// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
const TargetLowering &TLI, EVT VT,
bool LegalOperations, SDNode *N,
SDValue N0, ISD::LoadExtType ExtLoadType) {
SDNode *N0Node = N0.getNode();
bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
: ISD::isZEXTLoad(N0Node);
if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
!ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((LegalOperations || !LN0->isSimple() ||
VT.isVector()) &&
!TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
return SDValue();
SDValue ExtLoad =
DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
Combiner.CombineTo(N, ExtLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
if (LN0->use_empty())
Combiner.recursivelyDeleteUnusedNodes(LN0);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// Only generate vector extloads when 1) they're legal, and 2) they are
// deemed desirable by the target.
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
const TargetLowering &TLI, EVT VT,
bool LegalOperations, SDNode *N, SDValue N0,
ISD::LoadExtType ExtLoadType,
ISD::NodeType ExtOpc) {
if (!ISD::isNON_EXTLoad(N0.getNode()) ||
!ISD::isUNINDEXEDLoad(N0.getNode()) ||
((LegalOperations || VT.isVector() ||
!cast<LoadSDNode>(N0)->isSimple()) &&
!TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
return {};
bool DoXform = true;
SmallVector<SDNode *, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
if (VT.isVector())
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
if (!DoXform)
return {};
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
// If the load value is used only by N, replace it via CombineTo N.
bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
Combiner.CombineTo(N, ExtLoad);
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
Combiner.recursivelyDeleteUnusedNodes(LN0);
} else {
SDValue Trunc =
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
const TargetLowering &TLI, EVT VT,
SDNode *N, SDValue N0,
ISD::LoadExtType ExtLoadType,
ISD::NodeType ExtOpc) {
if (!N0.hasOneUse())
return SDValue();
MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
return SDValue();
if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
return SDValue();
if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
return SDValue();
SDLoc dl(Ld);
SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
SDValue NewLoad = DAG.getMaskedLoad(VT, dl, Ld->getChain(),
Ld->getBasePtr(), Ld->getMask(),
PassThru, Ld->getMemoryVT(),
Ld->getMemOperand(), ExtLoadType,
Ld->isExpandingLoad());
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
return NewLoad;
}
static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
bool LegalOperations) {
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
SDValue SetCC = N->getOperand(0);
if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
!SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
return SDValue();
SDValue X = SetCC.getOperand(0);
SDValue Ones = SetCC.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
EVT VT = N->getValueType(0);
EVT XVT = X.getValueType();
// setge X, C is canonicalized to setgt, so we do not need to match that
// pattern. The setlt sibling is folded in SimplifySelectCC() because it does
// not require the 'not' op.
if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
// Invert and smear/shift the sign bit:
// sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
// zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
SDLoc DL(N);
SDValue NotX = DAG.getNOT(DL, X, VT);
SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
return Res;
// fold (sext (sext x)) -> (sext x)
// fold (sext (aext x)) -> (sext x)
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (sext (truncate (load x))) -> (sext (smaller load x))
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
unsigned OpBits = Op.getScalarValueSizeInBits();
unsigned MidBits = N0.getScalarValueSizeInBits();
unsigned DestBits = VT.getScalarSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return Op;
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
}
// fold (sext (truncate x)) -> (sextinreg x).
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
N0.getValueType())) {
if (OpBits < DestBits)
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
else if (OpBits > DestBits)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
DAG.getValueType(N0.getValueType()));
}
}
// Try to simplify (sext (load x)).
if (SDValue foldedExt =
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
ISD::SEXTLOAD, ISD::SIGN_EXTEND))
return foldedExt;
if (SDValue foldedExt =
tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
ISD::SIGN_EXTEND))
return foldedExt;
// fold (sext (load x)) to multiple smaller sextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// Try to simplify (sext (sextload x)).
if (SDValue foldedExt = tryToFoldExtOfExtload(
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
return foldedExt;
// fold (sext (and/or/xor (load x), cst)) ->
// (and/or/xor (sextload x), (sext cst))
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
EVT MemVT = LN00->getMemoryVT();
if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
SmallVector<SDNode*, 4> SetCCs;
bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
ISD::SIGN_EXTEND, SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
LN00->getChain(), LN00->getBasePtr(),
LN00->getMemoryVT(),
LN00->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.sext(VT.getSizeInBits());
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
bool NoReplaceTruncAnd = !N0.hasOneUse();
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
CombineTo(N, And);
// If N0 has multiple uses, change other uses as well.
if (NoReplaceTruncAnd) {
SDValue TruncAnd =
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
CombineTo(N0.getNode(), TruncAnd);
}
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
LN00->getValueType(0), ExtLoad);
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
}
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
}
}
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
return V;
if (N0.getOpcode() == ISD::SETCC) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
EVT N00VT = N0.getOperand(0).getValueType();
// sext(setcc) -> sext_in_reg(vsetcc) for vectors.
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations &&
TLI.getBooleanContents(N00VT) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
// On some architectures (such as SSE/NEON/etc) the SETCC result type is
// of the same size as the compared operands. Only optimize sext(setcc())
// if this is the case.
EVT SVT = getSetCCResultType(N00VT);
// If we already have the desired type, don't change it.
if (SVT != N0.getValueType()) {
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == SVT.getSizeInBits())
return DAG.getSetCC(DL, VT, N00, N01, CC);
// If the desired elements are smaller or larger than the source
// elements, we can use a matching integer vector type and then
// truncate/sign extend.
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
if (SVT == MatchingVecType) {
SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
return DAG.getSExtOrTrunc(VsetCC, DL, VT);
}
}
}
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
// Here, T can be 1 or -1, depending on the type of the setcc and
// getBooleanContents().
unsigned SetCCWidth = N0.getScalarValueSizeInBits();
// To determine the "true" side of the select, we need to know the high bit
// of the value returned by the setcc if it evaluates to true.
// If the type of the setcc is i1, then the true case of the select is just
// sext(i1 1), that is, -1.
// If the type of the setcc is larger (say, i8) then the value of the high
// bit depends on getBooleanContents(), so ask TLI for a real "true" value
// of the appropriate width.
SDValue ExtTrueVal = (SetCCWidth == 1)
? DAG.getAllOnesConstant(DL, VT)
: DAG.getBoolConstant(true, DL, VT, N00VT);
SDValue Zero = DAG.getConstant(0, DL, VT);
if (SDValue SCC =
SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
return SCC;
if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
EVT SetCCVT = getSetCCResultType(N00VT);
// Don't do this transform for i1 because there's a select transform
// that would reverse it.
// TODO: We should not do this transform at all without a target hook
// because a sext is likely cheaper than a select?
if (SetCCVT.getScalarSizeInBits() != 1 &&
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
}
}
}
// fold (sext x) -> (zext x) if the sign bit is known zero.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
// Eliminate this sign extend by doing a negation in the destination type:
// sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
isNullOrNullSplat(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
}
// Eliminate this sign extend by doing a decrement in the destination type:
// sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
}
return SDValue();
}
// isTruncateOf - If N is a truncate of some other value, return true, record
// the value being truncated in Op and which of Op's bits are zero/one in Known.
// This function computes KnownBits to avoid a duplicated call to
// computeKnownBits in the caller.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
KnownBits &Known) {
if (N->getOpcode() == ISD::TRUNCATE) {
Op = N->getOperand(0);
Known = DAG.computeKnownBits(Op);
return true;
}
if (N.getOpcode() != ISD::SETCC ||
N.getValueType().getScalarType() != MVT::i1 ||
cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
return false;
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
assert(Op0.getValueType() == Op1.getValueType());
if (isNullOrNullSplat(Op0))
Op = Op1;
else if (isNullOrNullSplat(Op1))
Op = Op0;
else
return false;
Known = DAG.computeKnownBits(Op);
return (Known.Zero | 1).isAllOnesValue();
}
/// Given an extending node with a pop-count operand, if the target does not
/// support a pop-count in the narrow source type but does support it in the
/// destination type, widen the pop-count to the destination type.
static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op");
SDValue CtPop = Extend->getOperand(0);
if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
return SDValue();
EVT VT = Extend->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
return SDValue();
// zext (ctpop X) --> ctpop (zext X)
SDLoc DL(Extend);
SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
}
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
return Res;
// fold (zext (zext x)) -> (zext x)
// fold (zext (aext x)) -> (zext x)
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
N0.getOperand(0));
// fold (zext (truncate x)) -> (zext x) or
// (zext (truncate x)) -> (truncate x)
// This is valid when the truncated bits of x are already zero.
SDValue Op;
KnownBits Known;
if (isTruncateOf(DAG, N0, Op, Known)) {
APInt TruncatedBits =
(Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
APInt(Op.getScalarValueSizeInBits(), 0) :
APInt::getBitsSet(Op.getScalarValueSizeInBits(),
N0.getScalarValueSizeInBits(),
std::min(Op.getScalarValueSizeInBits(),
VT.getScalarSizeInBits()));
if (TruncatedBits.isSubsetOf(Known.Zero))
return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
}
// fold (zext (truncate x)) -> (and x, mask)
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
EVT SrcVT = N0.getOperand(0).getValueType();
EVT MinVT = N0.getValueType();
// Try to mask before the extension to avoid having to generate a larger mask,
// possibly over several sub-vectors.
if (SrcVT.bitsLT(VT) && VT.isVector()) {
if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
SDValue Op = N0.getOperand(0);
Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
AddToWorklist(Op.getNode());
SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
// Transfer the debug info; the new node is equivalent to N0.
DAG.transferDbgValues(N0, ZExtOrTrunc);
return ZExtOrTrunc;
}
}
if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
AddToWorklist(Op.getNode());
SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
// We may safely transfer the debug info describing the truncate node over
// to the equivalent and operation.
DAG.transferDbgValues(N0, And);
return And;
}
}
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
// if either of the casts is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType()) ||
!TLI.isZExtFree(N0.getValueType(), VT))) {
SDValue X = N0.getOperand(0).getOperand(0);
X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// Try to simplify (zext (load x)).
if (SDValue foldedExt =
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
return foldedExt;
if (SDValue foldedExt =
tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
ISD::ZERO_EXTEND))
return foldedExt;
// fold (zext (load x)) to multiple smaller zextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// fold (zext (and/or/xor (load x), cst)) ->
// (and/or/xor (zextload x), (zext cst))
// Unless (and (load x) cst) will match as a zextload already and has
// additional users.
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
EVT MemVT = LN00->getMemoryVT();
if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse()) {
if (N0.getOpcode() == ISD::AND) {
auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
EVT LoadResultTy = AndC->getValueType(0);
EVT ExtVT;
if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
DoXform = false;
}
}
if (DoXform)
DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
ISD::ZERO_EXTEND, SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
LN00->getChain(), LN00->getBasePtr(),
LN00->getMemoryVT(),
LN00->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
bool NoReplaceTruncAnd = !N0.hasOneUse();
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
CombineTo(N, And);
// If N0 has multiple uses, change other uses as well.
if (NoReplaceTruncAnd) {
SDValue TruncAnd =
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
CombineTo(N0.getNode(), TruncAnd);
}
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
LN00->getValueType(0), ExtLoad);
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
}
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
}
}
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
return ZExtLoad;
// Try to simplify (zext (zextload x)).
if (SDValue foldedExt = tryToFoldExtOfExtload(
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
return foldedExt;
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
return V;
if (N0.getOpcode() == ISD::SETCC) {
// Only do this before legalize for now.
if (!LegalOperations && VT.isVector() &&
N0.getValueType().getVectorElementType() == MVT::i1) {
EVT N00VT = N0.getOperand(0).getValueType();
if (getSetCCResultType(N00VT) == N0.getValueType())
return SDValue();
// We know that the # elements of the results is the same as the #
// elements of the compare (and the # elements of the compare result for
// that matter). Check to see that they are the same size. If so, we know
// that the element size of the sext'd result matches the element size of
// the compare operands.
SDLoc DL(N);
SDValue VecOnes = DAG.getConstant(1, DL, VT);
if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
// zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2));
return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
}
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/sign extend.
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
SDValue VsetCC =
DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2));
return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
VecOnes);
}
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
if (SDValue SCC = SimplifySelectCC(
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
return SCC;
}
// (zext (shl (zext x), cst)) -> (shl (zext x), cst)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
N0.hasOneUse()) {
SDValue ShAmt = N0.getOperand(1);
if (N0.getOpcode() == ISD::SHL) {
SDValue InnerZExt = N0.getOperand(0);
// If the original shl may be shifting out bits, do not perform this
// transformation.
unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
InnerZExt.getOperand(0).getValueSizeInBits();
if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
return SDValue();
}
SDLoc DL(N);
// Ensure that the shift amount is wide enough for the shifted value.
if (VT.getSizeInBits() >= 256)
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
return DAG.getNode(N0.getOpcode(), DL, VT,
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
ShAmt);
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
if (SDValue NewCtPop = widenCtPop(N, DAG))
return NewCtPop;
return SDValue();
}
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
return Res;
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
if (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
// fold (aext (truncate (load x))) -> (aext (smaller load x))
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (truncate x))
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
// if the trunc is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType())) {
SDLoc DL(N);
SDValue X = N0.getOperand(0).getOperand(0);
X = DAG.getAnyExtOrTrunc(X, DL, VT);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// fold (aext (load x)) -> (aext (truncate (extload x)))
// None of the supported targets knows how to perform load and any_ext
// on vectors in one instruction. We only perform this transformation on
// scalars.
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
// If the load value is used only by N, replace it via CombineTo N.
bool NoReplaceTrunc = N0.hasOneUse();
CombineTo(N, ExtLoad);
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
recursivelyDeleteUnusedNodes(LN0);
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
CombineTo(LN0, Trunc, ExtLoad.getValue(1));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
ISD::LoadExtType ExtType = LN0->getExtensionType();
EVT MemVT = LN0->getMemoryVT();
if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
VT, LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
CombineTo(N, ExtLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
recursivelyDeleteUnusedNodes(LN0);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
if (N0.getOpcode() == ISD::SETCC) {
// For vectors:
// aext(setcc) -> vsetcc
// aext(setcc) -> truncate(vsetcc)
// aext(setcc) -> aext(vsetcc)
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations) {
EVT N00VT = N0.getOperand(0).getValueType();
if (getSetCCResultType(N00VT) == N0.getValueType())
return SDValue();
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == N00VT.getSizeInBits())
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/any extend
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
SDValue VsetCC =
DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
}
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
if (SDValue SCC = SimplifySelectCC(
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
return SCC;
}
if (SDValue NewCtPop = widenCtPop(N, DAG))
return NewCtPop;
return SDValue();
}
SDValue DAGCombiner::visitAssertExt(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT AssertVT = cast<VTSDNode>(N1)->getVT();
// fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
if (N0.getOpcode() == Opcode &&
AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
return N0;
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == Opcode) {
// We have an assert, truncate, assert sandwich. Make one stronger assert
// by asserting on the smallest asserted type to the larger source type.
// This eliminates the later assert:
// assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
// assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
SDValue BigA = N0.getOperand(0);
EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
"Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information");
SDLoc DL(N);
EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
BigA.getOperand(0), MinAssertVTVal);
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
}
// If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
// than X. Just move the AssertZext in front of the truncate and drop the
// AssertSExt.
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::AssertSext &&
Opcode == ISD::AssertZext) {
SDValue BigA = N0.getOperand(0);
EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
"Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information");
if (AssertVT.bitsLT(BigA_AssertVT)) {
SDLoc DL(N);
SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
BigA.getOperand(0), N1);
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
}
}
return SDValue();
}
/// If the result of a wider load is shifted to right of N bits and then
/// truncated to a narrower type and where N is a multiple of number of bits of
/// the narrower type, transform it to a narrower load from address + N / num of
/// bits of new type. Also narrow the load if the result is masked with an AND
/// to effectively produce a smaller type. If the result is to be extended, also
/// fold the extension to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT ExtVT = VT;
// This transformation isn't valid for vector loads.
if (VT.isVector())
return SDValue();
unsigned ShAmt = 0;
bool HasShiftedOffset = false;
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
} else if (Opc == ISD::SRL) {
// Another special-case: SRL is basically zero-extending a narrower value,
// or it maybe shifting a higher subword, half or byte into the lowest
// bits.
ExtType = ISD::ZEXTLOAD;
N0 = SDValue(N, 0);
auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N01 || !LN0)
return SDValue();
uint64_t ShiftAmt = N01->getZExtValue();
uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
else
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getSizeInBits() - ShiftAmt);
} else if (Opc == ISD::AND) {
// An AND with a constant mask is the same as a truncate + zero-extend.
auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!AndC)
return SDValue();
const APInt &Mask = AndC->getAPIntValue();
unsigned ActiveBits = 0;
if (Mask.isMask()) {
ActiveBits = Mask.countTrailingOnes();
} else if (Mask.isShiftedMask()) {
ShAmt = Mask.countTrailingZeros();
APInt ShiftedMask = Mask.lshr(ShAmt);
ActiveBits = ShiftedMask.countTrailingOnes();
HasShiftedOffset = true;
} else
return SDValue();
ExtType = ISD::ZEXTLOAD;
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
}
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
SDValue SRL = N0;
if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
ShAmt = ConstShift->getZExtValue();
unsigned EVTBits = ExtVT.getSizeInBits();
// Is the shift amount a multiple of size of VT?
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
// Is the load width a multiple of size of VT?
if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
return SDValue();
}
// At this point, we must have a load or else we can't do the transform.
if (!isa<LoadSDNode>(N0)) return SDValue();
auto *LN0 = cast<LoadSDNode>(N0);
// Because a SRL must be assumed to *need* to zero-extend the high bits
// (as opposed to anyext the high bits), we can't combine the zextload
// lowering of SRL and an sextload.
if (LN0->getExtensionType() == ISD::SEXTLOAD)
return SDValue();
// If the shift amount is larger than the input type then we're not
// accessing any of the loaded bytes. If the load was a zextload/extload
// then the result of the shift+trunc is zero/undef (handled elsewhere).
if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
return SDValue();
// If the SRL is only used by a masking AND, we may be able to adjust
// the ExtVT to make the AND redundant.
SDNode *Mask = *(SRL->use_begin());
if (Mask->getOpcode() == ISD::AND &&
isa<ConstantSDNode>(Mask->getOperand(1))) {
const APInt &ShiftMask =
cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
if (ShiftMask.isMask()) {
EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
ShiftMask.countTrailingOnes());
// If the mask is smaller, recompute the type.
if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
ExtVT = MaskedVT;
}
}
}
}
// If the load is shifted left (and the result isn't shifted back right),
// we can fold the truncate through the shift.
unsigned ShLeftAmt = 0;
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShLeftAmt = N01->getZExtValue();
N0 = N0.getOperand(0);
}
}
// If we haven't found a load, we can't narrow it.
if (!isa<LoadSDNode>(N0))
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
// Reducing the width of a volatile load is illegal. For atomics, we may be
// able to reduce the width provided we never widen again. (see D66309)
if (!LN0->isSimple() ||
!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
return SDValue();
auto AdjustBigEndianShift = [&](unsigned ShAmt) {
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
return LVTStoreBits - EVTStoreBits - ShAmt;
};
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian())
ShAmt = AdjustBigEndianShift(ShAmt);
EVT PtrType = N0.getOperand(1).getValueType();
uint64_t PtrOff = ShAmt / 8;
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
SDLoc DL(LN0);
// The original load itself didn't wrap, so an offset within it doesn't.
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(true);
SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
PtrType, LN0->getBasePtr(),
DAG.getConstant(PtrOff, DL, PtrType),
Flags);
AddToWorklist(NewPtr.getNode());
SDValue Load;
if (ExtType == ISD::NON_EXTLOAD)
Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
else
Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
NewAlign, LN0->getMemOperand()->getFlags(),
LN0->getAAInfo());
// Replace the old load's chain with the new load's chain.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
// Shift the result left, if we've swallowed a left shift.
SDValue Result = Load;
if (ShLeftAmt != 0) {
EVT ShImmTy = getShiftAmountTy(Result.getValueType());
if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
ShImmTy = VT;
// If the shift amount is as large as the result size (but, presumably,
// no larger than the source) then the useful bits of the result are
// zero; we can't simply return the shortened shift, because the result
// of that operation is undefined.
if (ShLeftAmt >= VT.getSizeInBits())
Result = DAG.getConstant(0, DL, VT);
else
Result = DAG.getNode(ISD::SHL, DL, VT,
Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
}
if (HasShiftedOffset) {
// Recalculate the shift amount after it has been altered to calculate
// the offset.
if (DAG.getDataLayout().isBigEndian())
ShAmt = AdjustBigEndianShift(ShAmt);
// We're using a shifted mask, so the load now has an offset. This means
// that data has been loaded into the lower bytes than it would have been
// before, so we need to shl the loaded data into the correct position in the
// register.
SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
}
// Return the new loaded value.
return Result;
}
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getScalarSizeInBits();
unsigned EVTBits = EVT.getScalarSizeInBits();
if (N0.isUndef())
return DAG.getUNDEF(VT);
// fold (sext_in_reg c1) -> c1
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
// If the input is already sign extended, just drop the extension.
if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
return N0;
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), N1);
// fold (sext_in_reg (sext x)) -> (sext x)
// fold (sext_in_reg (aext x)) -> (sext x)
// if x is small enough or if we know that x has more than 1 sign bit and the
// sign_extend_inreg is extending from one of them.
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0);
unsigned N00Bits = N00.getScalarValueSizeInBits();
if ((N00Bits <= EVTBits ||
(N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
}
// fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
N0.getOperand(0));
}
// fold (sext_in_reg (zext x)) -> (sext x)
// iff we are extending the source sign bit.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getScalarValueSizeInBits() == EVTBits &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
}
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
// fold operands of sext_in_reg based on knowledge that the top bits are not
// demanded.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (sext_in_reg (load x)) -> (smaller sextload x)
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
if (N0.getOpcode() == ISD::SRL) {
if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) {
// We can turn this into an SRA iff the input to the SRL is already sign
// extended enough.
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits)
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1));
}
}
// fold (sext_inreg (extload x)) -> (sextload x)
// If sextload is not supported by target, we can only do the combine when
// load has one use. Doing otherwise can block folding the extload with other
// extends that the target does support.
if (ISD::isEXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
N0.hasOneUse()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
AddToWorklist(ExtLoad.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
BSwap, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
return Res;
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
return Res;
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
bool isLE = DAG.getDataLayout().isLittleEndian();
// noop truncate
if (SrcVT == VT)
return N0;
// fold (truncate (truncate x)) -> (truncate x)
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// fold (truncate c1) -> c1
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
if (C.getNode() != N)
return C;
}
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
if (N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND) {
// if the source is smaller than the dest, we still need an extend.
if (N0.getOperand(0).getValueType().bitsLT(VT))
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
// if the source is larger than the dest, than we just need the truncate.
if (N0.getOperand(0).getValueType().bitsGT(VT))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// if the source and dest are the same type, we can drop both the extend
// and the truncate.
return N0.getOperand(0);
}
// If this is anyext(trunc), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
return SDValue();
// Fold extract-and-trunc into a narrow extract. For example:
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
// i32 y = TRUNCATE(i64 x)
// -- becomes --
// v16i8 b = BITCAST (v2i64 val)
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
//
// Note: We only run this optimization after type legalization (which often
// creates this pattern) and before operation legalization after which
// we need to be more careful about the vector instructions that we generate.
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
EVT VecTy = N0.getOperand(0).getValueType();
EVT ExTy = N0.getValueType();
EVT TrTy = N->getValueType(0);
unsigned NumElem = VecTy.getVectorNumElements();
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
SDValue EltNo = N0->getOperand(1);
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
SDLoc DL(N);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
DAG.getBitcast(NVT, N0.getOperand(0)),
DAG.getConstant(Index, DL, IndexTy));
}
}
// trunc (select c, a, b) -> select c, (trunc a), (trunc b)
if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
TLI.isTruncateFree(SrcVT, VT)) {
SDLoc SL(N0);
SDValue Cond = N0.getOperand(0);
SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
}
}
// trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
(!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
SDValue Amt = N0.getOperand(1);
KnownBits Known = DAG.computeKnownBits(Amt);
unsigned Size = VT.getScalarSizeInBits();
if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
SDLoc SL(N);
EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
if (AmtVT != Amt.getValueType()) {
Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
AddToWorklist(Amt.getNode());
}
return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
}
}
// Attempt to pre-truncate BUILD_VECTOR sources.
if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) {
SDLoc DL(N);
EVT SVT = VT.getScalarType();
SmallVector<SDValue, 8> TruncOps;
for (const SDValue &Op : N0->op_values()) {
SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
TruncOps.push_back(TruncOp);
}
return DAG.getBuildVector(VT, DL, TruncOps);
}
// Fold a series of buildvector, bitcast, and truncate if possible.
// For example fold
// (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
// (2xi32 (buildvector x, y)).
if (Level == AfterLegalizeVectorOps && VT.isVector() &&
N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
N0.getOperand(0).hasOneUse()) {
SDValue BuildVect = N0.getOperand(0);
EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
EVT TruncVecEltTy = VT.getVectorElementType();
// Check that the element types match.
if (BuildVectEltTy == TruncVecEltTy) {
// Now we only need to compute the offset of the truncated elements.
unsigned BuildVecNumElts = BuildVect.getNumOperands();
unsigned TruncVecNumElts = VT.getVectorNumElements();
unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
"Invalid number of elements");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
Opnds.push_back(BuildVect.getOperand(i));
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
}
}
// See if we can simplify the input to this truncate through knowledge that
// only the low bits are being used.
// For example "trunc (or (shl x, 8), y)" // -> trunc y
// Currently we only perform this optimization on scalars because vectors
// may have different active low bits.
if (!VT.isVector()) {
APInt Mask =
APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
}
// fold (truncate (load x)) -> (smaller load x)
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
if (SDValue Reduced = ReduceLoadWidth(N))
return Reduced;
// Handle the case where the load remains an extending load even
// after truncation.
if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (LN0->isSimple() &&
LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
VT, LN0->getChain(), LN0->getBasePtr(),
LN0->getMemoryVT(),
LN0->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
return NewLoad;
}
}
}
// fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
// where ... are all 'undef'.
if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
SmallVector<EVT, 8> VTs;
SDValue V;
unsigned Idx = 0;
unsigned NumDefs = 0;
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
SDValue X = N0.getOperand(i);
if (!X.isUndef()) {
V = X;
Idx = i;
NumDefs++;
}
// Stop if more than one members are non-undef.
if (NumDefs > 1)
break;
VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
VT.getVectorElementType(),
X.getValueType().getVectorNumElements()));
}
if (NumDefs == 0)
return DAG.getUNDEF(VT);
if (NumDefs == 1) {
assert(V.getNode() && "The single defined operand is empty!");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
if (i != Idx) {
Opnds.push_back(DAG.getUNDEF(VTs[i]));
continue;
}
SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
AddToWorklist(NV.getNode());
Opnds.push_back(NV);
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
}
}
// Fold truncate of a bitcast of a vector to an extract of the low vector
// element.
//
// e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
SDValue VecSrc = N0.getOperand(0);
EVT VecSrcVT = VecSrc.getValueType();
if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
(!LegalOperations ||
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
SDLoc SL(N);
EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
DAG.getConstant(Idx, SL, IdxVT));
}
}
// Simplify the operands using demanded-bits information.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
// (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
// When the adde's carry is not used.
if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
// We only do for addcarry before legalize operation
((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
TLI.isOperationLegal(N0.getOpcode(), VT))) {
SDLoc SL(N);
auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
auto VTs = DAG.getVTList(VT, N0->getValueType(1));
return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
}
// fold (truncate (extract_subvector(ext x))) ->
// (extract_subvector x)
// TODO: This can be generalized to cover cases where the truncate and extract
// do not fully cancel each other out.
if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::SIGN_EXTEND ||
N00.getOpcode() == ISD::ZERO_EXTEND ||
N00.getOpcode() == ISD::ANY_EXTEND) {
if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
VT.getVectorElementType())
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
N00.getOperand(0), N0.getOperand(1));
}
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
// Narrow a suitable binary operation with a non-opaque constant operand by
// moving it ahead of the truncate. This is limited to pre-legalization
// because targets may prefer a wider type during later combines and invert
// this transform.
switch (N0.getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
if (!LegalOperations && N0.hasOneUse() &&
(isConstantOrConstantVector(N0.getOperand(0), true) ||
isConstantOrConstantVector(N0.getOperand(1), true))) {
// TODO: We already restricted this to pre-legalization, but for vectors
// we are extra cautious to not create an unsupported operation.
// Target-specific changes are likely needed to avoid regressions here.
if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
SDLoc DL(N);
SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
}
}
}
return SDValue();
}
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
SDValue Elt = N->getOperand(i);
if (Elt.getOpcode() != ISD::MERGE_VALUES)
return Elt.getNode();
return Elt.getOperand(Elt.getResNo()).getNode();
}
/// build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
// A BUILD_PAIR is always having the least significant part in elt 0 and the
// most significant part in elt 1. So when combining into one large load, we
// need to consider the endianness.
if (DAG.getDataLayout().isBigEndian())
std::swap(LD1, LD2);
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
LD1->getAddressSpace() != LD2->getAddressSpace())
return SDValue();
EVT LD1VT = LD1->getValueType(0);
unsigned LD1Bytes = LD1VT.getStoreSize();
if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
unsigned Align = LD1->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign <= Align &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
LD1->getPointerInfo(), Align);
}
return SDValue();
}
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
// On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
// and Lo parts; on big-endian machines it doesn't.
return DAG.getDataLayout().isBigEndian() ? 1 : 0;
}
static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
// If this is not a bitcast to an FP type or if the target doesn't have
// IEEE754-compliant FP logic, we're done.
EVT VT = N->getValueType(0);
if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
return SDValue();
// TODO: Handle cases where the integer constant is a different scalar
// bitwidth to the FP.
SDValue N0 = N->getOperand(0);
EVT SourceVT = N0.getValueType();
if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
return SDValue();
unsigned FPOpcode;
APInt SignMask;
switch (N0.getOpcode()) {
case ISD::AND:
FPOpcode = ISD::FABS;
SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
case ISD::XOR:
FPOpcode = ISD::FNEG;
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
case ISD::OR:
FPOpcode = ISD::FABS;
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
default:
return SDValue();
}
// Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
// Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
// Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
// fneg (fabs X)
SDValue LogicOp0 = N0.getOperand(0);
ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
LogicOp0.getOpcode() == ISD::BITCAST &&
LogicOp0.getOperand(0).getValueType() == VT) {
SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
NumFPLogicOpsConv++;
if (N0.getOpcode() == ISD::OR)
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
return FPOp;
}
return SDValue();
}
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
// Only do this before legalize types, unless both types are integer and the
// scalar type is legal. Only do this before legalize ops, since the target
// maybe depending on the bitcast.
// First check to see if this is all constant.
// TODO: Support FP bitcasts after legalize types.
if (VT.isVector() &&
(!LegalTypes ||
(!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
TLI.isTypeLegal(VT.getVectorElementType()))) &&
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
cast<BuildVectorSDNode>(N0)->isConstant())
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
VT.getVectorElementType());
// If the input is a constant, let getNode fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
// If we can't allow illegal operations, we need to check that this is just
// a fp -> int or int -> conversion and that the resulting operation will
// be legal.
if (!LegalOperations ||
(isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
(isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
TLI.isOperationLegal(ISD::Constant, VT))) {
SDValue C = DAG.getBitcast(VT, N0);
if (C.getNode() != N)
return C;
}
}
// (conv (conv x, t1), t2) -> (conv x, t2)
if (N0.getOpcode() == ISD::BITCAST)
return DAG.getBitcast(VT, N0.getOperand(0));
// fold (conv (load x)) -> (load (conv*)x)
// If the resultant load doesn't need a higher alignment than the original!
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not remove the cast if the types differ in endian layout.
TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
// If the load is volatile, we only want to change the load type if the
// resulting load is legal. Otherwise we might increase the number of
// memory accesses. We don't care if the original type was legal or not
// as we assume software couldn't rely on the number of accesses of an
// illegal type.
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
TLI.isOperationLegal(ISD::LOAD, VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
*LN0->getMemOperand())) {
SDValue Load =
DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
LN0->getPointerInfo(), LN0->getAlignment(),
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
return Load;
}
}
if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
return V;
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
//
// For ppc_fp128:
// fold (bitcast (fneg x)) ->
// flipbit = signbit
// (xor (bitcast x) (build_pair flipbit, flipbit))
//
// fold (bitcast (fabs x)) ->
// flipbit = (and (extract_element (bitcast x), 0), signbit)
// (xor (bitcast x) (build_pair flipbit, flipbit))
// This often reduces constant pool loads.
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
N0.getNode()->hasOneUse() && VT.isInteger() &&
!VT.isVector() && !N0.getValueType().isVector()) {
SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
AddToWorklist(NewConv.getNode());
SDLoc DL(N);
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
assert(VT.getSizeInBits() == 128);
SDValue SignBit = DAG.getConstant(
APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
SDValue FlipBit;
if (N0.getOpcode() == ISD::FNEG) {
FlipBit = SignBit;
AddToWorklist(FlipBit.getNode());
} else {
assert(N0.getOpcode() == ISD::FABS);
SDValue Hi =
DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
SDLoc(NewConv)));
AddToWorklist(Hi.getNode());
FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
AddToWorklist(FlipBit.getNode());
}
SDValue FlipBits =
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
AddToWorklist(FlipBits.getNode());
return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
}
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
if (N0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::XOR, DL, VT,
NewConv, DAG.getConstant(SignBit, DL, VT));
assert(N0.getOpcode() == ISD::FABS);
return DAG.getNode(ISD::AND, DL, VT,
NewConv, DAG.getConstant(~SignBit, DL, VT));
}
// fold (bitconvert (fcopysign cst, x)) ->
// (or (and (bitconvert x), sign), (and cst, (not sign)))
// Note that we don't handle (copysign x, cst) because this can always be
// folded to an fneg or fabs.
//
// For ppc_fp128:
// fold (bitcast (fcopysign cst, x)) ->
// flipbit = (and (extract_element
// (xor (bitcast cst), (bitcast x)), 0),
// signbit)
// (xor (bitcast cst) (build_pair flipbit, flipbit))
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
if (isTypeLegal(IntXVT)) {
SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
AddToWorklist(X.getNode());
// If X has a different width than the result/lhs, sext it or truncate it.
unsigned VTWidth = VT.getSizeInBits();
if (OrigXWidth < VTWidth) {
X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
AddToWorklist(X.getNode());
} else if (OrigXWidth > VTWidth) {
// To get the sign bit in the right place, we have to shift it right
// before truncating.
SDLoc DL(X);
X = DAG.getNode(ISD::SRL, DL,
X.getValueType(), X,
DAG.getConstant(OrigXWidth-VTWidth, DL,
X.getValueType()));
AddToWorklist(X.getNode());
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
AddToWorklist(X.getNode());
}
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
AddToWorklist(Cst.getNode());
SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
AddToWorklist(X.getNode());
SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
AddToWorklist(XorResult.getNode());
SDValue XorResult64 = DAG.getNode(
ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
SDLoc(XorResult)));
AddToWorklist(XorResult64.getNode());
SDValue FlipBit =
DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
AddToWorklist(FlipBit.getNode());
SDValue FlipBits =
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
AddToWorklist(FlipBits.getNode());
return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
}
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
X = DAG.getNode(ISD::AND, SDLoc(X), VT,
X, DAG.getConstant(SignBit, SDLoc(X), VT));
AddToWorklist(X.getNode());
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
AddToWorklist(Cst.getNode());
return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
}
}
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
if (N0.getOpcode() == ISD::BUILD_PAIR)
if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
return CombineLD;
// Remove double bitcasts from shuffles - this is often a legacy of
// XformToShuffleWithZero being used to combine bitmaskings (of
// float vectors bitcast to integer vectors) into shuffles.
// bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
!(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
// If operands are a bitcast, peek through if it casts the original VT.
// If operands are a constant, just bitcast back to original VT.
auto PeekThroughBitcast = [&](SDValue Op) {
if (Op.getOpcode() == ISD::BITCAST &&
Op.getOperand(0).getValueType() == VT)
return SDValue(Op.getOperand(0));
if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
return DAG.getBitcast(VT, Op);
return SDValue();
};
// FIXME: If either input vector is bitcast, try to convert the shuffle to
// the result type of this bitcast. This would eliminate at least one
// bitcast. See the transform in InstCombine.
SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
if (!(SV0 && SV1))
return SDValue();
int MaskScale =
VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
SmallVector<int, 8> NewMask;
for (int M : SVN->getMask())
for (int i = 0; i != MaskScale; ++i)
NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
SDValue LegalShuffle =
TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
if (LegalShuffle)
return LegalShuffle;
}
return SDValue();
}
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
EVT VT = N->getValueType(0);
return CombineConsecutiveLoads(N, VT);
}
/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
/// operands. DstEltVT indicates the destination element value type.
SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
unsigned DstBitSize = DstEltVT.getSizeInBits();
// If this is a conversion of N elements of one type to N elements of another
// type, convert each element. This handles FP<->INT cases.
if (SrcBitSize == DstBitSize) {
SmallVector<SDValue, 8> Ops;
for (SDValue Op : BV->op_values()) {
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
if (Op.getValueType() != SrcEltVT)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
Ops.push_back(DAG.getBitcast(DstEltVT, Op));
AddToWorklist(Ops.back().getNode());
}
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
BV->getValueType(0).getVectorNumElements());
return DAG.getBuildVector(VT, SDLoc(BV), Ops);
}
// Otherwise, we're growing or shrinking the elements. To avoid having to
// handle annoying details of growing/shrinking FP values, we convert them to
// int first.
if (SrcEltVT.isFloatingPoint()) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
}
// Now we know the input is an integer vector. If the output is a FP type,
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
// Next, convert to FP elements of the same size.
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
}
SDLoc DL(BV);
// Okay, we know the src/dst types are both integers of differing types.
// Handling growing first.
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
if (SrcBitSize < DstBitSize) {
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
i += NumInputsPerOutput) {
bool isLE = DAG.getDataLayout().isLittleEndian();
APInt NewBits = APInt(DstBitSize, 0);
bool EltIsUndef = true;
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
// Shift the previously computed bits over.
NewBits <<= SrcBitSize;
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
if (Op.isUndef()) continue;
EltIsUndef = false;
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
zextOrTrunc(SrcBitSize).zext(DstBitSize);
}
if (EltIsUndef)
Ops.push_back(DAG.getUNDEF(DstEltVT));
else
Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
}
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
return DAG.getBuildVector(VT, DL, Ops);
}
// Finally, this must be the case where we are shrinking elements: each input
// turns into multiple outputs.
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
NumOutputsPerInput*BV->getNumOperands());
SmallVector<SDValue, 8> Ops;
for (const SDValue &Op : BV->op_values()) {
if (Op.isUndef()) {
Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
continue;
}
APInt OpVal = cast<ConstantSDNode>(Op)->
getAPIntValue().zextOrTrunc(SrcBitSize);
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
APInt ThisVal = OpVal.trunc(DstBitSize);
Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
OpVal.lshrInPlace(DstBitSize);
}
// For big endian targets, swap the order of the pieces of each element.
if (DAG.getDataLayout().isBigEndian())
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
}
return DAG.getBuildVector(VT, DL, Ops);
}
static bool isContractable(SDNode *N) {
SDNodeFlags F = N->getFlags();
return F.hasAllowContract() || F.hasAllowReassociation();
}
/// Try to perform FMA combining on a given FADD node.
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
SDNodeFlags Flags = N->getFlags();
bool CanFuse = Options.UnsafeFPMath || isContractable(N);
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
CanFuse || HasFMAD);
// If the addition is not contractable, do not combine.
if (!AllowFusionGlobally && !isContractable(N))
return SDValue();
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// Is the node an FMUL and contractable either due to global flags or
// SDNodeFlags.
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
if (N.getOpcode() != ISD::FMUL)
return false;
return AllowFusionGlobally || isContractable(N.getNode());
};
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
if (N0.getNode()->use_size() > N1.getNode()->use_size())
std::swap(N0, N1);
}
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1), N1, Flags);
}
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
// Note: Commutes FADD operands.
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1), N0, Flags);
}
// Look through FP_EXTEND nodes to do more combining.
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (isContractableFMUL(N00) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)), N1, Flags);
}
}
// fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
// Note: Commutes FADD operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (isContractableFMUL(N10) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)), N0, Flags);
}
}
// More folding opportunities when target permits.
if (Aggressive) {
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
if (CanFuse &&
N0.getOpcode() == PreferredFusedOpcode &&
N0.getOperand(2).getOpcode() == ISD::FMUL &&
N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
N1, Flags), Flags);
}
// fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
if (CanFuse &&
N1->getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FMUL &&
N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(2).getOperand(0),
N1.getOperand(2).getOperand(1),
N0, Flags), Flags);
}
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y, (fma (fpext u), (fpext v), z))
auto FoldFAddFMAFPExtFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
SDNodeFlags Flags) {
return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z, Flags), Flags);
};
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (isContractableFMUL(N020) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
N020.getOperand(0), N020.getOperand(1),
N1, Flags);
}
}
}
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
auto FoldFAddFPExtFMAFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
SDNodeFlags Flags) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z, Flags), Flags);
};
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (isContractableFMUL(N002) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
N002.getOperand(0), N002.getOperand(1),
N1, Flags);
}
}
}
// fold (fadd x, (fma y, z, (fpext (fmul u, v)))
// -> (fma y, z, (fma (fpext u), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode) {
SDValue N12 = N1.getOperand(2);
if (N12.getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N12.getOperand(0);
if (isContractableFMUL(N120) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
N120.getOperand(0), N120.getOperand(1),
N0, Flags);
}
}
}
// fold (fadd x, (fpext (fma y, z, (fmul u, v)))
// -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (N10.getOpcode() == PreferredFusedOpcode) {
SDValue N102 = N10.getOperand(2);
if (isContractableFMUL(N102) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
N102.getOperand(0), N102.getOperand(1),
N0, Flags);
}
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FSUB node.
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
const SDNodeFlags Flags = N->getFlags();
bool CanFuse = Options.UnsafeFPMath || isContractable(N);
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
CanFuse || HasFMAD);
// If the subtraction is not contractable, do not combine.
if (!AllowFusionGlobally && !isContractable(N))
return SDValue();
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// Is the node an FMUL and contractable either due to global flags or
// SDNodeFlags.
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
if (N.getOpcode() != ISD::FMUL)
return false;
return AllowFusionGlobally || isContractable(N.getNode());
};
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
// Note: Commutes FSUB operands.
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1), N0, Flags);
}
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
(Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
SDValue N00 = N0.getOperand(0).getOperand(0);
SDValue N01 = N0.getOperand(0).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
// Look through FP_EXTEND nodes to do more combining.
// fold (fsub (fpext (fmul x, y)), z)
// -> (fma (fpext x), (fpext y), (fneg z))
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (isContractableFMUL(N00) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
}
// fold (fsub x, (fpext (fmul y, z)))
// -> (fma (fneg (fpext y)), (fpext z), x)
// Note: Commutes FSUB operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (isContractableFMUL(N10) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0))),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)),
N0, Flags);
}
}
// fold (fsub (fpext (fneg (fmul, x, y))), z)
// -> (fneg (fma (fpext x), (fpext y), z))
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FNEG) {
SDValue N000 = N00.getOperand(0);
if (isContractableFMUL(N000) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1, Flags));
}
}
}
// fold (fsub (fneg (fpext (fmul, x, y))), z)
// -> (fneg (fma (fpext x)), (fpext y), z)
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FNEG) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FP_EXTEND) {
SDValue N000 = N00.getOperand(0);
if (isContractableFMUL(N000) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1, Flags));
}
}
}
// More folding opportunities when target permits.
if (Aggressive) {
// fold (fsub (fma x, y, (fmul u, v)), z)
// -> (fma x, y (fma u, v, (fneg z)))
if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
// fold (fsub x, (fma y, z, (fmul u, v)))
// -> (fma (fneg y), z, (fma (fneg u), v, x))
if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
isContractableFMUL(N1.getOperand(2))) {
SDValue N20 = N1.getOperand(2).getOperand(0);
SDValue N21 = N1.getOperand(2).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N20),
N21, N0, Flags), Flags);
}
// fold (fsub (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (isContractableFMUL(N020) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
}
}
// fold (fsub (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y),
// (fma (fpext u), (fpext v), (fneg z)))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (isContractableFMUL(N002) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
}
}
// fold (fsub x, (fma y, z, (fpext (fmul u, v))))
// -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N1.getOperand(2).getOperand(0);
if (isContractableFMUL(N120) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
SDValue N1200 = N120.getOperand(0);
SDValue N1201 = N120.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1200)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1201),
N0, Flags), Flags);
}
}
// fold (fsub x, (fpext (fma y, z, (fmul u, v))))
// -> (fma (fneg (fpext y)), (fpext z),
// (fma (fneg (fpext u)), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
SDValue CvtSrc = N1.getOperand(0);
SDValue N100 = CvtSrc.getOperand(0);
SDValue N101 = CvtSrc.getOperand(1);
SDValue N102 = CvtSrc.getOperand(2);
if (isContractableFMUL(N102) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
SDValue N1020 = N102.getOperand(0);
SDValue N1021 = N102.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N100)),
DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1020)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1021),
N0, Flags), Flags);
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FMUL node based on the distributive
/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
/// subtraction instead of addition).
SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const SDNodeFlags Flags = N->getFlags();
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
const TargetOptions &Options = DAG.getTarget().Options;
// The transforms below are incorrect when x == 0 and y == inf, because the
// intermediate multiplication produces a nan.
if (!Options.NoInfsFPMath)
return SDValue();
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// Floating-point multiply-add with intermediate rounding. This can result
// in a less precise result due to the changed rounding order.
bool HasFMAD = Options.UnsafeFPMath &&
(LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
// fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
if (C->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
Y, Flags);
if (C->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
}
}
return SDValue();
};
if (SDValue FMA = FuseFADD(N0, N1, Flags))
return FMA;
if (SDValue FMA = FuseFADD(N1, N0, Flags))
return FMA;
// fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
// fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
// fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
// fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
if (C0->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
Y, Flags);
if (C0->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
}
if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
if (C1->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
if (C1->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
Y, Flags);
}
}
return SDValue();
};
if (SDValue FMA = FuseFSUB(N0, N1, Flags))
return FMA;
if (SDValue FMA = FuseFSUB(N1, N0, Flags))
return FMA;
return SDValue();
}
SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fadd c1, c2) -> c1 + c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
// N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
if (N1C && N1C->isZero())
if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (fadd A, (fneg B)) -> (fsub A, B)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize) == 2)
return DAG.getNode(
ISD::FSUB, DL, VT, N0,
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
// fold (fadd (fneg A), B) -> (fsub B, A)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize) == 2)
return DAG.getNode(
ISD::FSUB, DL, VT, N1,
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize), Flags);
auto isFMulNegTwo = [](SDValue FMul) {
if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
return false;
auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
return C && C->isExactlyValue(-2.0);
};
// fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
if (isFMulNegTwo(N0)) {
SDValue B = N0.getOperand(0);
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
}
// fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
if (isFMulNegTwo(N1)) {
SDValue B = N1.getOperand(0);
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
}
// No FP constant should be created after legalization as Instruction
// Selection pass has a hard time dealing with FP constants.
bool AllowNewConst = (Level < AfterLegalizeDAG);
// If nnan is enabled, fold lots of things.
if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
// If allowed, fold (fadd (fneg x), x) -> 0.0
if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
return DAG.getConstantFP(0.0, DL, VT);
// If allowed, fold (fadd x, (fneg x)) -> 0.0
if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
return DAG.getConstantFP(0.0, DL, VT);
}
// If 'unsafe math' or reassoc and nsz, fold lots of things.
// TODO: break out portions of the transformations below for which Unsafe is
// considered and which do not require both nsz and reassoc
if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
AllowNewConst) {
// fadd (fadd x, c1), c2 -> fadd x, c1 + c2
if (N1CFP && N0.getOpcode() == ISD::FADD &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
}
// We can fold chains of FADD's of the same value into multiplications.
// This transform is not safe in general because we are reducing the number
// of rounding steps.
if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
if (N0.getOpcode() == ISD::FMUL) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
// (fadd (fmul x, c), x) -> (fmul x, c+1)
if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
}
// (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
}
}
if (N1.getOpcode() == ISD::FMUL) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
// (fadd x, (fmul x, c)) -> (fmul x, c+1)
if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
}
// (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N0.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
}
}
if (N0.getOpcode() == ISD::FADD) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
// (fadd (fadd x, x), x) -> (fmul x, 3.0)
if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
(N0.getOperand(0) == N1)) {
return DAG.getNode(ISD::FMUL, DL, VT,
N1, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
if (N1.getOpcode() == ISD::FADD) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
// (fadd x, (fadd x, x)) -> (fmul x, 3.0)
if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
N1.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, DL, VT,
N0, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
// (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
DAG.getConstantFP(4.0, DL, VT), Flags);
}
}
} // enable-unsafe-fp-math
// FADD -> FMA combines:
if (SDValue Fused = visitFADDForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// (fsub A, 0) -> A
if (N1CFP && N1CFP->isZero()) {
if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
Flags.hasNoSignedZeros()) {
return N0;
}
}
if (N0 == N1) {
// (fsub x, x) -> 0.0
if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
return DAG.getConstantFP(0.0f, DL, VT);
}
// (fsub -0.0, N1) -> -N1
// NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
// FSUB does not specify the sign bit of a NaN. Also note that for
// the same reason, the inverse transform is not safe, unless fast math
// flags are in play.
if (N0CFP && N0CFP->isZero()) {
if (N0CFP->isNegative() ||
(Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize))
return TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
}
}
if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
N1.getOpcode() == ISD::FADD) {
// X - (X + Y) -> -Y
if (N0 == N1->getOperand(0))
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
// X - (Y + X) -> -Y
if (N0 == N1->getOperand(1))
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
}
// fold (fsub A, (fneg B)) -> (fadd A, B)
if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize))
return DAG.getNode(
ISD::FADD, DL, VT, N0,
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
// FSUB -> FMA combines:
if (SDValue Fused = visitFSUBForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
/// Return true if both inputs are at least as cheap in negated form and at
/// least one input is strictly cheaper in negated form.
bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X, SDValue Y) {
if (char LHSNeg =
TLI.isNegatibleForFree(X, DAG, LegalOperations, ForCodeSize))
if (char RHSNeg =
TLI.isNegatibleForFree(Y, DAG, LegalOperations, ForCodeSize))
// Both negated operands are at least as cheap as their counterparts.
// Check to see if at least one is cheaper negated.
if (LHSNeg == 2 || RHSNeg == 2)
return true;
return false;
}
SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector()) {
// This just handles C1 * C2 for vectors. Other vector folds are below.
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
}
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) ||
(Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
// fold (fmul A, 0) -> 0
if (N1CFP && N1CFP->isZero())
return N1;
}
if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
// fmul (fmul X, C1), C2 -> fmul X, C1 * C2
if (isConstantFPBuildVectorOrConstantFP(N1) &&
N0.getOpcode() == ISD::FMUL) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
// Avoid an infinite loop by making sure that N00 is not a constant
// (the inner multiply has not been constant folded yet).
if (isConstantFPBuildVectorOrConstantFP(N01) &&
!isConstantFPBuildVectorOrConstantFP(N00)) {
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
}
}
// Match a special-case: we convert X * 2.0 into fadd.
// fmul (fadd X, X), C -> fmul X, 2.0 * C
if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
N0.getOperand(0) == N0.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
}
}
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
// fold (fmul X, -1.0) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT, N0);
// -N0 * -N1 --> N0 * N1
if (isCheaperToUseNegatedFPOps(N0, N1)) {
SDValue NegN0 =
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
SDValue NegN1 =
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1, Flags);
}
// fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
// fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
(N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
TLI.isOperationLegal(ISD::FABS, VT)) {
SDValue Select = N0, X = N1;
if (Select.getOpcode() != ISD::SELECT)
std::swap(Select, X);
SDValue Cond = Select.getOperand(0);
auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
if (TrueOpnd && FalseOpnd &&
Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETOLT:
case ISD::SETULT:
case ISD::SETOLE:
case ISD::SETULE:
case ISD::SETLT:
case ISD::SETLE:
std::swap(TrueOpnd, FalseOpnd);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETUGT:
case ISD::SETOGE:
case ISD::SETUGE:
case ISD::SETGT:
case ISD::SETGE:
if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT,
DAG.getNode(ISD::FABS, DL, VT, X));
if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
return DAG.getNode(ISD::FABS, DL, VT, X);
break;
}
}
}
// FMUL -> FMA combines:
if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFMA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// FMA nodes have flags that propagate to the created nodes.
const SDNodeFlags Flags = N->getFlags();
bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
// Constant fold FMA.
if (isa<ConstantFPSDNode>(N0) &&
isa<ConstantFPSDNode>(N1) &&
isa<ConstantFPSDNode>(N2)) {
return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
}
// (-N0 * -N1) + N2 --> (N0 * N1) + N2
if (isCheaperToUseNegatedFPOps(N0, N1)) {
SDValue NegN0 =
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
SDValue NegN1 =
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2, Flags);
}
if (UnsafeFPMath) {
if (N0CFP && N0CFP->isZero())
return N2;
if (N1CFP && N1CFP->isZero())
return N2;
}
// TODO: The FMA node should have flags that propagate to these nodes.
if (N0CFP && N0CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
if (N1CFP && N1CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
// Canonicalize (fma c, x, y) -> (fma x, c, y)
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
if (UnsafeFPMath) {
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
Flags), Flags);
}
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
if (N0.getOpcode() == ISD::FMUL &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
return DAG.getNode(ISD::FMA, DL, VT,
N0.getOperand(0),
DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
Flags),
N2);
}
}
// (fma x, 1, y) -> (fadd x, y)
// (fma x, -1, y) -> (fadd (fneg x), y)
if (N1CFP) {
if (N1CFP->isExactlyValue(1.0))
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
if (N1CFP->isExactlyValue(-1.0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
AddToWorklist(RHSNeg.getNode());
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
}
// fma (fneg x), K, y -> fma x -K, y
if (N0.getOpcode() == ISD::FNEG &&
(TLI.isOperationLegal(ISD::ConstantFP, VT) ||
(N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
ForCodeSize)))) {
return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
}
}
if (UnsafeFPMath) {
// (fma x, c, x) -> (fmul x, (c+1))
if (N1CFP && N0 == N2) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1,
DAG.getConstantFP(1.0, DL, VT), Flags),
Flags);
}
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1,
DAG.getConstantFP(-1.0, DL, VT), Flags),
Flags);
}
}
return SDValue();
}
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal.
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
// Notice that this is not always beneficial. One reason is different targets
// may have different costs for FDIV and FMUL, so sometimes the cost of two
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
// TODO: Limit this transform based on optsize/minsize - it always creates at
// least 1 extra instruction. But the perf win may be substantial enough
// that only minsize should restrict this.
bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
const SDNodeFlags Flags = N->getFlags();
if (!UnsafeMath && !Flags.hasAllowReciprocal())
return SDValue();
// Skip if current node is a reciprocal/fneg-reciprocal.
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
return SDValue();
// Exit early if the target does not want this transform or if there can't
// possibly be enough uses of the divisor to make the transform worthwhile.
SDValue N1 = N->getOperand(1);
unsigned MinUses = TLI.combineRepeatedFPDivisors();
// For splat vectors, scale the number of uses by the splat factor. If we can
// convert the division into a scalar op, that will likely be much faster.
unsigned NumElts = 1;
EVT VT = N->getValueType(0);
if (VT.isVector() && DAG.isSplatValue(N1))
NumElts = VT.getVectorNumElements();
if (!MinUses || (N1->use_size() * NumElts) < MinUses)
return SDValue();
// Find all FDIV users of the same divisor.
// Use a set because duplicates may be present in the user list.
SetVector<SDNode *> Users;
for (auto *U : N1->uses()) {
if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
// This division is eligible for optimization only if global unsafe math
// is enabled or if this division allows reciprocal formation.
if (UnsafeMath || U->getFlags().hasAllowReciprocal())
Users.insert(U);
}
}
// Now that we have the actual number of divisor uses, make sure it meets
// the minimum threshold specified by the target.
if ((Users.size() * NumElts) < MinUses)
return SDValue();
SDLoc DL(N);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
// Dividend / Divisor -> Dividend * Reciprocal
for (auto *U : Users) {
SDValue Dividend = U->getOperand(0);
if (Dividend != FPOne) {
SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
Reciprocal, Flags);
CombineTo(U, NewNode);
} else if (U != Reciprocal.getNode()) {
// In the absence of fast-math-flags, this user node is always the
// same node as Reciprocal, but with FMF they may be different nodes.
CombineTo(U, Reciprocal);
}
}
return SDValue(N, 0); // N was replaced.
}
SDValue DAGCombiner::visitFDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fdiv c1, c2) -> c1/c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (SDValue V = combineRepeatedFPDivisors(N))
return V;
if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
if (N1CFP) {
// Compute the reciprocal 1.0 / c2.
const APFloat &N1APF = N1CFP->getValueAPF();
APFloat Recip(N1APF.getSemantics(), 1); // 1.0
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
// Only do the transform if the reciprocal is a legal fp immediate that
// isn't too nasty (eg NaN, denormal, ...).
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
(!LegalOperations ||
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
// backend)... we should handle this gracefully after Legalize.
// TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
TLI.isOperationLegal(ISD::ConstantFP, VT) ||
TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getConstantFP(Recip, DL, VT), Flags);
}
// If this FDIV is part of a reciprocal square root, it may be folded
// into a target-specific square root estimate instruction.
if (N1.getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
} else if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FP_ROUND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FMUL) {
// Look through an FMUL. Even though this won't remove the FDIV directly,
// it's still worthwhile to get rid of the FSQRT if possible.
SDValue SqrtOp;
SDValue OtherOp;
if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(0);
OtherOp = N1.getOperand(1);
} else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(1);
OtherOp = N1.getOperand(0);
}
if (SqrtOp.getNode()) {
// We found a FSQRT, so try to make this fold:
// x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
}
}
// Fold into a reciprocal estimate and multiply instead of a real divide.
if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
return RV;
}
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
if (isCheaperToUseNegatedFPOps(N0, N1))
return DAG.getNode(
ISD::FDIV, SDLoc(N), VT,
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize),
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
return SDValue();
}
SDValue DAGCombiner::visitFREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
return SDValue();
}
SDValue DAGCombiner::visitFSQRT(SDNode *N) {
SDNodeFlags Flags = N->getFlags();
if (!DAG.getTarget().Options.UnsafeFPMath &&
!Flags.hasApproximateFuncs())
return SDValue();
SDValue N0 = N->getOperand(0);
if (TLI.isFsqrtCheap(N0, DAG))
return SDValue();
// FSQRT nodes have flags that propagate to the created nodes.
return buildSqrtEstimate(N0, Flags);
}
/// copysign(x, fp_extend(y)) -> copysign(x, y)
/// copysign(x, fp_round(y)) -> copysign(x, y)
static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
SDValue N1 = N->getOperand(1);
if ((N1.getOpcode() == ISD::FP_EXTEND ||
N1.getOpcode() == ISD::FP_ROUND)) {
// Do not optimize out type conversion of f128 type yet.
// For some targets like x86_64, configuration is changed to keep one f128
// value in one SSE register, but instruction selection cannot handle
// FCOPYSIGN on SSE registers yet.
EVT N1VT = N1->getValueType(0);
EVT N1Op0VT = N1->getOperand(0).getValueType();
return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
}
return false;
}
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
EVT VT = N->getValueType(0);
if (N0CFP && N1CFP) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
const APFloat &V = N1C->getValueAPF();
// copysign(x, c1) -> fabs(x) iff ispos(c1)
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
if (!V.isNegative()) {
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
} else {
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
}
}
// copysign(fabs(x), y) -> copysign(x, y)
// copysign(fneg(x), y) -> copysign(x, y)
// copysign(copysign(x,z), y) -> copysign(x, y)
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
// copysign(x, abs(y)) -> abs(x)
if (N1.getOpcode() == ISD::FABS)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// copysign(x, copysign(y,z)) -> copysign(x, z)
if (N1.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
// copysign(x, fp_extend(y)) -> copysign(x, y)
// copysign(x, fp_round(y)) -> copysign(x, y)
if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitFPOW(SDNode *N) {
ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
if (!ExponentC)
return SDValue();
// Try to convert x ** (1/3) into cube root.
// TODO: Handle the various flavors of long double.
// TODO: Since we're approximating, we don't need an exact 1/3 exponent.
// Some range near 1/3 should be fine.
EVT VT = N->getValueType(0);
if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
(VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
// pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
// pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
// pow(-val, 1/3) = nan; cbrt(-val) = -num.
// For regular numbers, rounding may cause the results to differ.
// Therefore, we require { nsz ninf nnan afn } for this transform.
// TODO: We could select out the special cases if we don't have nsz/ninf.
SDNodeFlags Flags = N->getFlags();
if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
!Flags.hasApproximateFuncs())
return SDValue();
// Do not create a cbrt() libcall if the target does not have it, and do not
// turn a pow that has lowering support into a cbrt() libcall.
if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
(!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
return SDValue();
return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
}
// Try to convert x ** (1/4) and x ** (3/4) into square roots.
// x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
// TODO: This could be extended (using a target hook) to handle smaller
// power-of-2 fractional exponents.
bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
if (ExponentIs025 || ExponentIs075) {
// pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
// pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
// pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
// pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
// For regular numbers, rounding may cause the results to differ.
// Therefore, we require { nsz ninf afn } for this transform.
// TODO: We could select out the special cases if we don't have nsz/ninf.
SDNodeFlags Flags = N->getFlags();
// We only need no signed zeros for the 0.25 case.
if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
!Flags.hasApproximateFuncs())
return SDValue();
// Don't double the number of libcalls. We are trying to inline fast code.
if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
return SDValue();
// Assume that libcalls are the smallest code.
// TODO: This restriction should probably be lifted for vectors.
if (DAG.getMachineFunction().getFunction().hasOptSize())
return SDValue();
// pow(X, 0.25) --> sqrt(sqrt(X))
SDLoc DL(N);
SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
if (ExponentIs025)
return SqrtSqrt;
// pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags);
}
return SDValue();
}
static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
// This optimization is guarded by a function attribute because it may produce
// unexpected results. Ie, programs may be relying on the platform-specific
// undefined behavior when the float-to-int conversion overflows.
const Function &F = DAG.getMachineFunction().getFunction();
Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
if (StrictOverflow.getValueAsString().equals("false"))
return SDValue();
// We only do this if the target has legal ftrunc. Otherwise, we'd likely be
// replacing casts with a libcall. We also must be allowed to ignore -0.0
// because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
// conversions would return +0.0.
// FIXME: We should be able to use node-level FMF here.
// TODO: If strict math, should we use FABS (+ range check for signed cast)?
EVT VT = N->getValueType(0);
if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
!DAG.getTarget().Options.NoSignedZerosFPMath)
return SDValue();
// fptosi/fptoui round towards zero, so converting from FP to integer and
// back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
SDValue N0 = N->getOperand(0);
if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
N0.getOperand(0).getValueType() == VT)
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
N0.getOperand(0).getValueType() == VT)
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// [us]itofp(undef) = 0, because the result value is bounded.
if (N0.isUndef())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
// fold (sint_to_fp c1) -> c1fp
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
// but UINT_TO_FP is legal on this target, try to convert.
if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
hasOperation(ISD::UINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
// fold (sint_to_fp (zext (setcc x, y, cc))) ->
// (select_cc x, y, 1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(0).getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
return FTrunc;
return SDValue();
}
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// [us]itofp(undef) = 0, because the result value is bounded.
if (N0.isUndef())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
// fold (uint_to_fp c1) -> c1fp
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
// but SINT_TO_FP is legal on this target, try to convert.
if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
hasOperation(ISD::SINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
return FTrunc;
return SDValue();
}
// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
return SDValue();
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
// We can safely assume the conversion won't overflow the output range,
// because (for example) (uint8_t)18293.f is undefined behavior.
// Since we can assume the conversion won't overflow, our decision as to
// whether the input will fit in the float should depend on the minimum
// of the input range and output range.
// This means this is also safe for a signed input and unsigned output, since
// a negative input would lead to undefined behavior.
unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
unsigned ActualSize = std::min(InputSize, OutputSize);
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
// We can only fold away the float conversion if the input range can be
// represented exactly in the float range.
if (APFloat::semanticsPrecision(sem) >= ActualSize) {
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
}
if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
return DAG.getBitcast(VT, Src);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_sint undef) -> undef
if (N0.isUndef())
return DAG.getUNDEF(VT);
// fold (fp_to_sint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_uint undef) -> undef
if (N0.isUndef())
return DAG.getUNDEF(VT);
// fold (fp_to_uint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
EVT VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP)
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
// fold (fp_round (fp_extend x)) -> x
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
return N0.getOperand(0);
// fold (fp_round (fp_round x)) -> (fp_round x)
if (N0.getOpcode() == ISD::FP_ROUND) {
const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
// Skip this folding if it results in an fp_round from f80 to f16.
//
// f80 to f16 always generates an expensive (and as yet, unimplemented)
// libcall to __truncxfhf2 instead of selecting native f16 conversion
// instructions from f32 or f64. Moreover, the first (value-preserving)
// fp_round from f80 to either f32 or f64 may become a NOP in platforms like
// x86.
if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
return SDValue();
// If the first fp_round isn't a value preserving truncation, it might
// introduce a tie in the second fp_round, that wouldn't occur in the
// single-step fp_round we want to fold to.
// In other words, double rounding isn't the same as rounding.
// Also, this is a value preserving truncation iff both fp_round's are.
if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
SDLoc DL(N);
return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
}
}
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
N0.getOperand(0), N1);
AddToWorklist(Tmp.getNode());
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
Tmp, N0.getOperand(1));
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() &&
N->use_begin()->getOpcode() == ISD::FP_ROUND)
return SDValue();
// fold (fp_extend c1fp) -> c1fp
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
// fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
if (N0.getOpcode() == ISD::FP16_TO_FP &&
TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
// value of X.
if (N0.getOpcode() == ISD::FP_ROUND
&& N0.getConstantOperandVal(1) == 1) {
SDValue In = N0.getOperand(0);
if (In.getValueType() == VT) return In;
if (VT.bitsLT(In.getValueType()))
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
In, N0.getOperand(1));
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
}
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
N0.getValueType(), ExtLoad,
DAG.getIntPtrConstant(1, SDLoc(N0))),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
SDValue DAGCombiner::visitFCEIL(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fceil c1) -> fceil(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ftrunc c1) -> ftrunc(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
// fold ftrunc (known rounded int x) -> x
// ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
// likely to be generated to extract integer from a rounded floating value.
switch (N0.getOpcode()) {
default: break;
case ISD::FRINT:
case ISD::FTRUNC:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
case ISD::FCEIL:
return N0;
}
return SDValue();
}
SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ffloor c1) -> ffloor(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
return SDValue();
}
// FIXME: FNEG and FABS have a lot in common; refactor.
SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// Constant fold FNEG.
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
if (TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize))
return TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
// Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
// constant pool values.
if (!TLI.isFNegFree(VT) &&
N0.getOpcode() == ISD::BITCAST &&
N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x80... per scalar element
// and splat it.
SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x80...
SignMask = APInt::getSignMask(IntVT.getSizeInBits());
}
SDLoc DL0(N0);
Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
DAG.getConstant(SignMask, DL0, IntVT));
AddToWorklist(Int.getNode());
return DAG.getBitcast(VT, Int);
}
}
// (fneg (fmul c, x)) -> (fmul -c, x)
if (N0.getOpcode() == ISD::FMUL &&
(N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
if (CFP1) {
APFloat CVal = CFP1->getValueAPF();
CVal.changeSign();
if (Level >= AfterLegalizeDAG &&
(TLI.isFPImmLegal(CVal, VT, ForCodeSize) ||
TLI.isOperationLegal(ISD::ConstantFP, VT)))
return DAG.getNode(
ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
N0->getFlags());
}
}
return SDValue();
}
static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
APFloat (*Op)(const APFloat &, const APFloat &)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
if (N0CFP && N1CFP) {
const APFloat &C0 = N0CFP->getValueAPF();
const APFloat &C1 = N1CFP->getValueAPF();
return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
}
// Canonicalize to constant on RHS.
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
return visitFMinMax(DAG, N, minnum);
}
SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
return visitFMinMax(DAG, N, maxnum);
}
SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
return visitFMinMax(DAG, N, minimum);
}
SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
return visitFMinMax(DAG, N, maximum);
}
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// fold (fabs (fabs x)) -> (fabs x)
if (N0.getOpcode() == ISD::FABS)
return N->getOperand(0);
// fold (fabs (fneg x)) -> (fabs x)
// fold (fabs (fcopysign x, y)) -> (fabs x)
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
// fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x7f... per scalar element
// and splat it.
SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x7f...
SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
}
SDLoc DL(N0);
Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
DAG.getConstant(SignMask, DL, IntVT));
AddToWorklist(Int.getNode());
return DAG.getBitcast(N->getValueType(0), Int);
}
}
return SDValue();
}
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
// on the target.
if (N1.getOpcode() == ISD::SETCC &&
TLI.isOperationLegalOrCustom(ISD::BR_CC,
N1.getOperand(0).getValueType())) {
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
Chain, N1.getOperand(2),
N1.getOperand(0), N1.getOperand(1), N2);
}
if (N1.hasOneUse()) {
if (SDValue NewN1 = rebuildSetCC(N1))
return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
}
return SDValue();
}
SDValue DAGCombiner::rebuildSetCC(SDValue N) {
if (N.getOpcode() == ISD::SRL ||
(N.getOpcode() == ISD::TRUNCATE &&
(N.getOperand(0).hasOneUse() &&
N.getOperand(0).getOpcode() == ISD::SRL))) {
// Look pass the truncate.
if (N.getOpcode() == ISD::TRUNCATE)
N = N.getOperand(0);
// Match this pattern so that we can generate simpler code:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// This applies only when the AND constant value has one bit set and the
// SRL constant is equal to the log2 of the AND constant. The back-end is
// smart enough to convert the result into a TEST/JMP sequence.
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
SDValue AndOp1 = Op0.getOperand(1);
if (AndOp1.getOpcode() == ISD::Constant) {
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
if (AndConst.isPowerOf2() &&
cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
SDLoc DL(N);
return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
Op0, DAG.getConstant(0, DL, Op0.getValueType()),
ISD::SETNE);
}
}
}
}
// Transform br(xor(x, y)) -> br(x != y)
// Transform br(xor(xor(x,y), 1)) -> br (x == y)
if (N.getOpcode() == ISD::XOR) {
// Because we may call this on a speculatively constructed
// SimplifiedSetCC Node, we need to simplify this node first.
// Ideally this should be folded into SimplifySetCC and not
// here. For now, grab a handle to N so we don't lose it from
// replacements interal to the visit.
HandleSDNode XORHandle(N);
while (N.getOpcode() == ISD::XOR) {
SDValue Tmp = visitXOR(N.getNode());
// No simplification done.
if (!Tmp.getNode())
break;
// Returning N is form in-visit replacement that may invalidated
// N. Grab value from Handle.
if (Tmp.getNode() == N.getNode())
N = XORHandle.getValue();
else // Node simplified. Try simplifying again.
N = Tmp;
}
if (N.getOpcode() != ISD::XOR)
return N;
SDNode *TheXor = N.getNode();
SDValue Op0 = TheXor->getOperand(0);
SDValue Op1 = TheXor->getOperand(1);
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
bool Equal = false;
if (isOneConstant(Op0) && Op0.hasOneUse() &&
Op0.getOpcode() == ISD::XOR) {
TheXor = Op0.getNode();
Equal = true;
}
EVT SetCCVT = N.getValueType();
if (LegalTypes)
SetCCVT = getSetCCResultType(SetCCVT);
// Replace the uses of XOR with SETCC
return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
Equal ? ISD::SETEQ : ISD::SETNE);
}
}
return SDValue();
}
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// Use SimplifySetCC to simplify SETCC's.
SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
CondLHS, CondRHS, CC->get(), SDLoc(N),
false);
if (Simp.getNode()) AddToWorklist(Simp.getNode());
// fold to a simpler setcc
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
N->getOperand(0), Simp.getOperand(2),
Simp.getOperand(0), Simp.getOperand(1),
N->getOperand(4));
return SDValue();
}
/// Return true if 'Use' is a load or a store that uses N as its base pointer
/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT;
unsigned AS;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
return false;
VT = LD->getMemoryVT();
AS = LD->getAddressSpace();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
return false;
VT = ST->getMemoryVT();
AS = ST->getAddressSpace();
} else
return false;
TargetLowering::AddrMode AM;
if (N->getOpcode() == ISD::ADD) {
AM.HasBaseReg = true;
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else if (N->getOpcode() == ISD::SUB) {
AM.HasBaseReg = true;
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = -Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else
return false;
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
VT.getTypeForEVT(*DAG.getContext()), AS);
}
/// Try turning a load/store into a pre-indexed load/store when the base
/// pointer is an add or subtract and it has other uses besides the load/store.
/// After the transformation, the new indexed load/store has effectively folded
/// the add/subtract in and all of its other uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
// out. There is no reason to make this a preinc/predec.
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
Ptr.getNode()->hasOneUse())
return false;
// Ask the target to do addressing mode selection.
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
return false;
// Backends without true r+i pre-indexed forms may need to pass a
// constant base with a variable offset so that constant coercion
// will work with the patterns in canonical form.
bool Swapped = false;
if (isa<ConstantSDNode>(BasePtr)) {
std::swap(BasePtr, Offset);
Swapped = true;
}
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
return false;
// Try turning it into a pre-indexed load / store except when:
// 1) The new base ptr is a frame index.
// 2) If N is a store and the new base ptr is either the same as or is a
// predecessor of the value being stored.
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
// that would create a cycle.
// 4) All uses are load / store ops that use it as old base ptr.
// Check #1. Preinc'ing a frame index would require copying the stack pointer
// (plus the implicit offset) to a register to preinc anyway.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
return false;
// Check #2.
if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
// Would require a copy.
if (Val == BasePtr)
return false;
// Would create a cycle.
if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
return false;
}
// Caches for hasPredecessorHelper.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Worklist.push_back(N);
// If the offset is a constant, there may be other adds of constants that
// can be folded with this one. We should do this to avoid having to keep
// a copy of the original base pointer.
SmallVector<SDNode *, 16> OtherUses;
if (isa<ConstantSDNode>(Offset))
for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
UE = BasePtr.getNode()->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
// Skip the use that is Ptr and uses of other results from BasePtr's
// node (important for nodes that return multiple results).
if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
continue;
if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
continue;
if (Use.getUser()->getOpcode() != ISD::ADD &&
Use.getUser()->getOpcode() != ISD::SUB) {
OtherUses.clear();
break;
}
SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
if (!isa<ConstantSDNode>(Op1)) {
OtherUses.clear();
break;
}
// FIXME: In some cases, we can be smarter about this.
if (Op1.getValueType() != Offset.getValueType()) {
OtherUses.clear();
break;
}
OtherUses.push_back(Use.getUser());
}
if (Swapped)
std::swap(BasePtr, Offset);
// Now check for #3 and #4.
bool RealUse = false;
for (SDNode *Use : Ptr.getNode()->uses()) {
if (Use == N)
continue;
if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
return false;
// If Ptr may be folded in addressing mode of other use, then it's
// not profitable to do this transformation.
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
RealUse = true;
}
if (!RealUse)
return false;
SDValue Result;
if (isLoad)
Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
else
Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
if (Swapped)
std::swap(BasePtr, Offset);
// Replace other uses of BasePtr that can be updated to use Ptr
for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
unsigned OffsetIdx = 1;
if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
OffsetIdx = 0;
assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
BasePtr.getNode() && "Expected BasePtr operand");
// We need to replace ptr0 in the following expression:
// x0 * offset0 + y0 * ptr0 = t0
// knowing that
// x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
//
// where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
// indexed load/store and the expression that needs to be re-written.
//
// Therefore, we have:
// t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
ConstantSDNode *CN =
cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
int X0, X1, Y0, Y1;
const APInt &Offset0 = CN->getAPIntValue();
APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
APInt CNV = Offset0;
if (X0 < 0) CNV = -CNV;
if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
else CNV = CNV - Offset1;
SDLoc DL(OtherUses[i]);
// We can now generate the new expression.
SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
SDValue NewUse = DAG.getNode(Opcode,
DL,
OtherUses[i]->getValueType(0), NewOp1, NewOp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
deleteAndRecombine(OtherUses[i]);
}
// Replace the uses of Ptr with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Ptr.getNode());
AddToWorklist(Result.getNode());
return true;
}
/// Try to combine a load/store with a add/sub of the base pointer node into a
/// post-indexed load/store. The transformation folded the add/subtract into the
/// new indexed load/store effectively and all of its uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
if (Ptr.getNode()->hasOneUse())
return false;
for (SDNode *Op : Ptr.getNode()->uses()) {
if (Op == N ||
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
continue;
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
continue;
// Try turning it into a post-indexed load / store except when
// 1) All uses are load / store ops that use it as base ptr (and
// it may be folded as addressing mmode).
// 2) Op must be independent of N, i.e. Op is neither a predecessor
// nor a successor of N. Otherwise, if Op is folded that would
// create a cycle.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
continue;
// Check for #1.
bool TryNext = false;
for (SDNode *Use : BasePtr.getNode()->uses()) {
if (Use == Ptr.getNode())
continue;
// If all the uses are load / store addresses, then don't do the
// transformation.
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
bool RealUse = false;
for (SDNode *UseUse : Use->uses()) {
if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
RealUse = true;
}
if (!RealUse) {
TryNext = true;
break;
}
}
}
if (TryNext)
continue;
// Check for #2.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 8> Worklist;
// Ptr is predecessor to both N and Op.
Visited.insert(Ptr.getNode());
Worklist.push_back(N);
Worklist.push_back(Op);
if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
!SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
SDValue Result = isLoad
? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM)
: DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
// Replace the uses of Use with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Op);
return true;
}
}
}
return false;
}
/// Return the base-pointer arithmetic from an indexed \p LD.
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
ISD::MemIndexedMode AM = LD->getAddressingMode();
assert(AM != ISD::UNINDEXED);
SDValue BP = LD->getOperand(1);
SDValue Inc = LD->getOperand(2);
// Some backends use TargetConstants for load offsets, but don't expect
// TargetConstants in general ADD nodes. We can convert these constants into
// regular Constants (if the constant is not opaque).
assert((Inc.getOpcode() != ISD::TargetConstant ||
!cast<ConstantSDNode>(Inc)->isOpaque()) &&
"Cannot split out indexing using opaque target constants");
if (Inc.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
ConstInc->getValueType(0));
}
unsigned Opc =
(AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
}
static inline int numVectorEltsOrZero(EVT T) {
return T.isVector() ? T.getVectorNumElements() : 0;
}
bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
Val = ST->getValue();
EVT STType = Val.getValueType();
EVT STMemType = ST->getMemoryVT();
if (STType == STMemType)
return true;
if (isTypeLegal(STMemType))
return false; // fail.
if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
return true;
}
if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
STType.isInteger() && STMemType.isInteger()) {
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
return true;
}
if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
Val = DAG.getBitcast(STMemType, Val);
return true;
}
return false; // fail.
}
bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
EVT LDMemType = LD->getMemoryVT();
EVT LDType = LD->getValueType(0);
assert(Val.getValueType() == LDMemType &&
"Attempting to extend value of non-matching type");
if (LDType == LDMemType)
return true;
if (LDMemType.isInteger() && LDType.isInteger()) {
switch (LD->getExtensionType()) {
case ISD::NON_EXTLOAD:
Val = DAG.getBitcast(LDType, Val);
return true;
case ISD::EXTLOAD:
Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
return true;
case ISD::SEXTLOAD:
Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
return true;
case ISD::ZEXTLOAD:
Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
return true;
}
}
return false;
}
SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
if (OptLevel == CodeGenOpt::None || !LD->isSimple())
return SDValue();
SDValue Chain = LD->getOperand(0);
StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
// TODO: Relax this restriction for unordered atomics (see D66309)
if (!ST || !ST->isSimple())
return SDValue();
EVT LDType = LD->getValueType(0);
EVT LDMemType = LD->getMemoryVT();
EVT STMemType = ST->getMemoryVT();
EVT STType = ST->getValue().getValueType();
BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
int64_t Offset;
if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
return SDValue();
// Normalize for Endianness. After this Offset=0 will denote that the least
// significant bit in the loaded value maps to the least significant bit in
// the stored value). With Offset=n (for n > 0) the loaded value starts at the
// n:th least significant byte of the stored value.
if (DAG.getDataLayout().isBigEndian())
Offset = (STMemType.getStoreSizeInBits() -
LDMemType.getStoreSizeInBits()) / 8 - Offset;
// Check that the stored value cover all bits that are loaded.
bool STCoversLD =
(Offset >= 0) &&
(Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
if (LD->isIndexed()) {
bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
LD->getAddressingMode() == ISD::POST_DEC);
unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
LD->getOperand(1), LD->getOperand(2));
SDValue Ops[] = {Val, Idx, Chain};
return CombineTo(LD, Ops, 3);
}
return CombineTo(LD, Val, Chain);
};
if (!STCoversLD)
return SDValue();
// Memory as copy space (potentially masked).
if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
// Simple case: Direct non-truncating forwarding
if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
return ReplaceLd(LD, ST->getValue(), Chain);
// Can we model the truncate and extension with an and mask?
if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
!LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
// Mask to size of LDMemType
auto Mask =
DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
STMemType.getSizeInBits()),
SDLoc(ST), STType);
auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
return ReplaceLd(LD, Val, Chain);
}
}
// TODO: Deal with nonzero offset.
if (LD->getBasePtr().isUndef() || Offset != 0)
return SDValue();
// Model necessary truncations / extenstions.
SDValue Val;
// Truncate Value To Stored Memory Size.
do {
if (!getTruncatedStoreValue(ST, Val))
continue;
if (!isTypeLegal(LDMemType))
continue;
if (STMemType != LDMemType) {
// TODO: Support vectors? This requires extract_subvector/bitcast.
if (!STMemType.isVector() && !LDMemType.isVector() &&
STMemType.isInteger() && LDMemType.isInteger())
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
else
continue;
}
if (!extendLoadedValueToExtension(LD, Val))
continue;
return ReplaceLd(LD, Val, Chain);
} while (false);
// On failure, cleanup dead nodes we may have created.
if (Val->use_empty())
deleteAndRecombine(Val.getNode());
return SDValue();
}
SDValue DAGCombiner::visitLOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
// If load is not volatile and there are no uses of the loaded value (and
// the updated indexed value in case of indexed loads), change uses of the
// chain value into uses of the chain input (i.e. delete the dead load).
// TODO: Allow this for unordered atomics (see D66309)
if (LD->isSimple()) {
if (N->getValueType(1) == MVT::Other) {
// Unindexed loads.
if (!N->hasAnyUseOfValue(0)) {
// It's not safe to use the two value CombineTo variant here. e.g.
// v1, chain2 = load chain1, loc
// v2, chain3 = load chain2, loc
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
dbgs() << "\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
AddUsersToWorklist(Chain.getNode());
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
} else {
// Indexed loads.
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
// If this load has an opaque TargetConstant offset, then we cannot split
// the indexing into an add/sub directly (that TargetConstant may not be
// valid for a different type of node, and we cannot convert an opaque
// target constant into a regular constant).
bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
if (!N->hasAnyUseOfValue(0) &&
((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
SDValue Index;
if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
Index = SplitIndexingFromLoad(LD);
// Try to fold the base pointer arithmetic into subsequent loads and
// stores.
AddUsersToWorklist(N);
} else
Index = DAG.getUNDEF(N->getValueType(1));
LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
dbgs() << " and 2 other values\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
// If this load is directly stored, replace the load value with the stored
// value.
if (auto V = ForwardStoreValueToDirectLoad(LD))
return V;
// Try to infer better alignment information than the load already has.
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
SDValue NewLoad = DAG.getExtLoad(
LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), LD->getMemoryVT(), Align,
LD->getMemOperand()->getFlags(), LD->getAAInfo());
// NewLoad will always be N as we are only refining the alignment
assert(NewLoad.getNode() == N);
(void)NewLoad;
}
}
}
if (LD->isUnindexed()) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(LD, Chain);
// If there is a better chain.
if (Chain != BetterChain) {
SDValue ReplLoad;
// Replace the chain to void dependency.
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
BetterChain, Ptr, LD->getMemOperand());
} else {
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
LD->getValueType(0),
BetterChain, Ptr, LD->getMemoryVT(),
LD->getMemOperand());
}
// Create token factor to keep old chain connected.
SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
MVT::Other, Chain, ReplLoad.getValue(1));
// Replace uses with load result and token factor
return CombineTo(N, ReplLoad.getValue(0), Token);
}
}
// Try transforming N to an indexed load.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// Try to slice up N to more direct loads if the slices are mapped to
// different register banks or pairing can take place.
if (SliceUpLoad(N))
return SDValue(N, 0);
return SDValue();
}
namespace {
/// Helper structure used to slice a load in smaller loads.
/// Basically a slice is obtained from the following sequence:
/// Origin = load Ty1, Base
/// Shift = srl Ty1 Origin, CstTy Amount
/// Inst = trunc Shift to Ty2
///
/// Then, it will be rewritten into:
/// Slice = load SliceTy, Base + SliceOffset
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
///
/// SliceTy is deduced from the number of bits that are actually used to
/// build Inst.
struct LoadedSlice {
/// Helper structure used to compute the cost of a slice.
struct Cost {
/// Are we optimizing for code size.
bool ForCodeSize = false;
/// Various cost.
unsigned Loads = 0;
unsigned Truncates = 0;
unsigned CrossRegisterBanksCopies = 0;
unsigned ZExts = 0;
unsigned Shift = 0;
explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
/// Get the cost of one isolated slice.
Cost(const LoadedSlice &LS, bool ForCodeSize)
: ForCodeSize(ForCodeSize), Loads(1) {
EVT TruncType = LS.Inst->getValueType(0);
EVT LoadedType = LS.getLoadedType();
if (TruncType != LoadedType &&
!LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
ZExts = 1;
}
/// Account for slicing gain in the current cost.
/// Slicing provide a few gains like removing a shift or a
/// truncate. This method allows to grow the cost of the original
/// load with the gain from this slice.
void addSliceGain(const LoadedSlice &LS) {
// Each slice saves a truncate.
const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
LS.Inst->getValueType(0)))
++Truncates;
// If there is a shift amount, this slice gets rid of it.
if (LS.Shift)
++Shift;
// If this slice can merge a cross register bank copy, account for it.
if (LS.canMergeExpensiveCrossRegisterBankCopy())
++CrossRegisterBanksCopies;
}
Cost &operator+=(const Cost &RHS) {
Loads += RHS.Loads;
Truncates += RHS.Truncates;
CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
ZExts += RHS.ZExts;
Shift += RHS.Shift;
return *this;
}
bool operator==(const Cost &RHS) const {
return Loads == RHS.Loads && Truncates == RHS.Truncates &&
CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
ZExts == RHS.ZExts && Shift == RHS.Shift;
}
bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
bool operator<(const Cost &RHS) const {
// Assume cross register banks copies are as expensive as loads.
// FIXME: Do we want some more target hooks?
unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
// Unless we are optimizing for code size, consider the
// expensive operation first.
if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
return ExpensiveOpsLHS < ExpensiveOpsRHS;
return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
(RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
}
bool operator>(const Cost &RHS) const { return RHS < *this; }
bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
};
// The last instruction that represent the slice. This should be a
// truncate instruction.
SDNode *Inst;
// The original load instruction.
LoadSDNode *Origin;
// The right shift amount in bits from the original load.
unsigned Shift;
// The DAG from which Origin came from.
// This is used to get some contextual information about legal types, etc.
SelectionDAG *DAG;
LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
unsigned Shift = 0, SelectionDAG *DAG = nullptr)
: Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
/// Get the bits used in a chunk of bits \p BitWidth large.
/// \return Result is \p BitWidth and has used bits set to 1 and
/// not used bits set to 0.
APInt getUsedBits() const {
// Reproduce the trunc(lshr) sequence:
// - Start from the truncated value.
// - Zero extend to the desired bit width.
// - Shift left.
assert(Origin && "No original load to compare against.");
unsigned BitWidth = Origin->getValueSizeInBits(0);
assert(Inst && "This slice is not bound to an instruction");
assert(Inst->getValueSizeInBits(0) <= BitWidth &&
"Extracted slice is bigger than the whole type!");
APInt UsedBits(Inst->getValueSizeInBits(0), 0);
UsedBits.setAllBits();
UsedBits = UsedBits.zext(BitWidth);
UsedBits <<= Shift;
return UsedBits;
}
/// Get the size of the slice to be loaded in bytes.
unsigned getLoadedSize() const {
unsigned SliceSize = getUsedBits().countPopulation();
assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
return SliceSize / 8;
}
/// Get the type that will be loaded for this slice.
/// Note: This may not be the final type for the slice.
EVT getLoadedType() const {
assert(DAG && "Missing context");
LLVMContext &Ctxt = *DAG->getContext();
return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
}
/// Get the alignment of the load used for this slice.
unsigned getAlignment() const {
unsigned Alignment = Origin->getAlignment();
uint64_t Offset = getOffsetFromBase();
if (Offset != 0)
Alignment = MinAlign(Alignment, Alignment + Offset);
return Alignment;
}
/// Check if this slice can be rewritten with legal operations.
bool isLegal() const {
// An invalid slice is not legal.
if (!Origin || !Inst || !DAG)
return false;
// Offsets are for indexed load only, we do not handle that.
if (!Origin->getOffset().isUndef())
return false;
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
// Check that the type is legal.
EVT SliceType = getLoadedType();
if (!TLI.isTypeLegal(SliceType))
return false;
// Check that the load is legal for this type.
if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
return false;
// Check that the offset can be computed.
// 1. Check its type.
EVT PtrType = Origin->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
// 2. Check that it fits in the immediate.
if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
return false;
// 3. Check that the computation is legal.
if (!TLI.isOperationLegal(ISD::ADD, PtrType))
return false;
// Check that the zext is legal if it needs one.
EVT TruncateType = Inst->getValueType(0);
if (TruncateType != SliceType &&
!TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
return false;
return true;
}
/// Get the offset in bytes of this slice in the original chunk of
/// bits.
/// \pre DAG != nullptr.
uint64_t getOffsetFromBase() const {
assert(DAG && "Missing context.");
bool IsBigEndian = DAG->getDataLayout().isBigEndian();
assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
uint64_t Offset = Shift / 8;
unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
"The size of the original loaded type is not a multiple of a"
" byte.");
// If Offset is bigger than TySizeInBytes, it means we are loading all
// zeros. This should have been optimized before in the process.
assert(TySizeInBytes > Offset &&
"Invalid shift amount for given loaded size");
if (IsBigEndian)
Offset = TySizeInBytes - Offset - getLoadedSize();
return Offset;
}
/// Generate the sequence of instructions to load the slice
/// represented by this object and redirect the uses of this slice to
/// this new sequence of instructions.
/// \pre this->Inst && this->Origin are valid Instructions and this
/// object passed the legal check: LoadedSlice::isLegal returned true.
/// \return The last instruction of the sequence used to load the slice.
SDValue loadSlice() const {
assert(Inst && Origin && "Unable to replace a non-existing slice.");
const SDValue &OldBaseAddr = Origin->getBasePtr();
SDValue BaseAddr = OldBaseAddr;
// Get the offset in that chunk of bytes w.r.t. the endianness.
int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
assert(Offset >= 0 && "Offset too big to fit in int64_t!");
if (Offset) {
// BaseAddr = BaseAddr + Offset.
EVT ArithType = BaseAddr.getValueType();
SDLoc DL(Origin);
BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
DAG->getConstant(Offset, DL, ArithType));
}
// Create the type of the loaded slice according to its size.
EVT SliceType = getLoadedType();
// Create the load for the slice.
SDValue LastInst =
DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
Origin->getPointerInfo().getWithOffset(Offset),
getAlignment(), Origin->getMemOperand()->getFlags());
// If the final type is not the same as the loaded type, this means that
// we have to pad with zero. Create a zero extend for that.
EVT FinalType = Inst->getValueType(0);
if (SliceType != FinalType)
LastInst =
DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
return LastInst;
}
/// Check if this slice can be merged with an expensive cross register
/// bank copy. E.g.,
/// i = load i32
/// f = bitcast i32 i to float
bool canMergeExpensiveCrossRegisterBankCopy() const {
if (!Inst || !Inst->hasOneUse())
return false;
SDNode *Use = *Inst->use_begin();
if (Use->getOpcode() != ISD::BITCAST)
return false;
assert(DAG && "Missing context");
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
EVT ResVT = Use->getValueType(0);
const TargetRegisterClass *ResRC =
TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
const TargetRegisterClass *ArgRC =
TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
Use->getOperand(0)->isDivergent());
if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// At this point, we know that we perform a cross-register-bank copy.
// Check if it is expensive.
const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
// Assume bitcasts are cheap, unless both register classes do not
// explicitly share a common sub class.
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
return false;
// Check if it will be merged with the load.
// 1. Check the alignment constraint.
unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
ResVT.getTypeForEVT(*DAG->getContext()));
if (RequiredAlignment > getAlignment())
return false;
// 2. Check that the load is a legal operation for that type.
if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// 3. Check that we do not have a zext in the way.
if (Inst->getValueType(0) != getLoadedType())
return false;
return true;
}
};
} // end anonymous namespace
/// Check that all bits set in \p UsedBits form a dense region, i.e.,
/// \p UsedBits looks like 0..0 1..1 0..0.
static bool areUsedBitsDense(const APInt &UsedBits) {
// If all the bits are one, this is dense!
if (UsedBits.isAllOnesValue())
return true;
// Get rid of the unused bits on the right.
APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
// Get rid of the unused bits on the left.
if (NarrowedUsedBits.countLeadingZeros())
NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
// Check that the chunk of bits is completely used.
return NarrowedUsedBits.isAllOnesValue();
}
/// Check whether or not \p First and \p Second are next to each other
/// in memory. This means that there is no hole between the bits loaded
/// by \p First and the bits loaded by \p Second.
static bool areSlicesNextToEachOther(const LoadedSlice &First,
const LoadedSlice &Second) {
assert(First.Origin == Second.Origin && First.Origin &&
"Unable to match different memory origins.");
APInt UsedBits = First.getUsedBits();
assert((UsedBits & Second.getUsedBits()) == 0 &&
"Slices are not supposed to overlap.");
UsedBits |= Second.getUsedBits();
return areUsedBitsDense(UsedBits);
}
/// Adjust the \p GlobalLSCost according to the target
/// paring capabilities and the layout of the slices.
/// \pre \p GlobalLSCost should account for at least as many loads as
/// there is in the slices in \p LoadedSlices.
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
LoadedSlice::Cost &GlobalLSCost) {
unsigned NumberOfSlices = LoadedSlices.size();
// If there is less than 2 elements, no pairing is possible.
if (NumberOfSlices < 2)
return;
// Sort the slices so that elements that are likely to be next to each
// other in memory are next to each other in the list.
llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
});
const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
// First (resp. Second) is the first (resp. Second) potentially candidate
// to be placed in a paired load.
const LoadedSlice *First = nullptr;
const LoadedSlice *Second = nullptr;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
// Set the beginning of the pair.
First = Second) {
Second = &LoadedSlices[CurrSlice];
// If First is NULL, it means we start a new pair.
// Get to the next slice.
if (!First)
continue;
EVT LoadedType = First->getLoadedType();
// If the types of the slices are different, we cannot pair them.
if (LoadedType != Second->getLoadedType())
continue;
// Check if the target supplies paired loads for this type.
unsigned RequiredAlignment = 0;
if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
// move to the next pair, this type is hopeless.
Second = nullptr;
continue;
}
// Check if we meet the alignment requirement.
if (RequiredAlignment > First->getAlignment())
continue;
// Check that both loads are next to each other in memory.
if (!areSlicesNextToEachOther(*First, *Second))
continue;
assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
--GlobalLSCost.Loads;
// Move to the next pair.
Second = nullptr;
}
}
/// Check the profitability of all involved LoadedSlice.
/// Currently, it is considered profitable if there is exactly two
/// involved slices (1) which are (2) next to each other in memory, and
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
///
/// Note: The order of the elements in \p LoadedSlices may be modified, but not
/// the elements themselves.
///
/// FIXME: When the cost model will be mature enough, we can relax
/// constraints (1) and (2).
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
const APInt &UsedBits, bool ForCodeSize) {
unsigned NumberOfSlices = LoadedSlices.size();
if (StressLoadSlicing)
return NumberOfSlices > 1;
// Check (1).
if (NumberOfSlices != 2)
return false;
// Check (2).
if (!areUsedBitsDense(UsedBits))
return false;
// Check (3).
LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
// The original code has one big load.
OrigCost.Loads = 1;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
const LoadedSlice &LS = LoadedSlices[CurrSlice];
// Accumulate the cost of all the slices.
LoadedSlice::Cost SliceCost(LS, ForCodeSize);
GlobalSlicingCost += SliceCost;
// Account as cost in the original configuration the gain obtained
// with the current slices.
OrigCost.addSliceGain(LS);
}
// If the target supports paired load, adjust the cost accordingly.
adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
return OrigCost > GlobalSlicingCost;
}
/// If the given load, \p LI, is used only by trunc or trunc(lshr)
/// operations, split it in the various pieces being extracted.
///
/// This sort of thing is introduced by SROA.
/// This slicing takes care not to insert overlapping loads.
/// \pre LI is a simple load (i.e., not an atomic or volatile load).
bool DAGCombiner::SliceUpLoad(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
LoadSDNode *LD = cast<LoadSDNode>(N);
if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
!LD->getValueType(0).isInteger())
return false;
// Keep track of already used bits to detect overlapping values.
// In that case, we will just abort the transformation.
APInt UsedBits(LD->getValueSizeInBits(0), 0);
SmallVector<LoadedSlice, 4> LoadedSlices;
// Check if this load is used as several smaller chunks of bits.
// Basically, look for uses in trunc or trunc(lshr) and record a new chain
// of computation for each trunc.
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
UI != UIEnd; ++UI) {
// Skip the uses of the chain.
if (UI.getUse().getResNo() != 0)
continue;
SDNode *User = *UI;
unsigned Shift = 0;
// Check if this is a trunc(lshr).
if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
isa<ConstantSDNode>(User->getOperand(1))) {
Shift = User->getConstantOperandVal(1);
User = *User->use_begin();
}
// At this point, User is a Truncate, iff we encountered, trunc or
// trunc(lshr).
if (User->getOpcode() != ISD::TRUNCATE)
return false;
// The width of the type must be a power of 2 and greater than 8-bits.
// Otherwise the load cannot be represented in LLVM IR.
// Moreover, if we shifted with a non-8-bits multiple, the slice
// will be across several bytes. We do not support that.
unsigned Width = User->getValueSizeInBits(0);
if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
return false;
// Build the slice for this chain of computations.
LoadedSlice LS(User, LD, Shift, &DAG);
APInt CurrentUsedBits = LS.getUsedBits();
// Check if this slice overlaps with another.
if ((CurrentUsedBits & UsedBits) != 0)
return false;
// Update the bits used globally.
UsedBits |= CurrentUsedBits;
// Check if the new slice would be legal.
if (!LS.isLegal())
return false;
// Record the slice.
LoadedSlices.push_back(LS);
}
// Abort slicing if it does not seem to be profitable.
if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
return false;
++SlicedLoads;
// Rewrite each chain to use an independent load.
// By construction, each chain can be represented by a unique load.
// Prepare the argument for the new token factor for all the slices.
SmallVector<SDValue, 8> ArgChains;
for (SmallVectorImpl<LoadedSlice>::const_iterator
LSIt = LoadedSlices.begin(),
LSItEnd = LoadedSlices.end();
LSIt != LSItEnd; ++LSIt) {
SDValue SliceInst = LSIt->loadSlice();
CombineTo(LSIt->Inst, SliceInst, true);
if (SliceInst.getOpcode() != ISD::LOAD)
SliceInst = SliceInst.getOperand(0);
assert(SliceInst->getOpcode() == ISD::LOAD &&
"It takes more than a zext to get to the loaded slice!!");
ArgChains.push_back(SliceInst.getValue(1));
}
SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
ArgChains);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
AddToWorklist(Chain.getNode());
return true;
}
/// Check to see if V is (and load (ptr), imm), where the load is having
/// specific bytes cleared out. If so, return the byte size being masked out
/// and the shift amount.
static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
std::pair<unsigned, unsigned> Result(0, 0);
// Check for the structure we're looking for.
if (V->getOpcode() != ISD::AND ||
!isa<ConstantSDNode>(V->getOperand(1)) ||
!ISD::isNormalLoad(V->getOperand(0).getNode()))
return Result;
// Check the chain and pointer.
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
// This only handles simple types.
if (V.getValueType() != MVT::i16 &&
V.getValueType() != MVT::i32 &&
V.getValueType() != MVT::i64)
return Result;
// Check the constant mask. Invert it so that the bits being masked out are
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits
// follow the sign bit for uniformity.
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
unsigned NotMaskLZ = countLeadingZeros(NotMask);
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
unsigned NotMaskTZ = countTrailingZeros(NotMask);
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
if (NotMaskLZ == 64) return Result; // All zero mask.
// See if we have a continuous run of bits. If so, we have 0*1+0*
if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
return Result;
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
if (V.getValueType() != MVT::i64 && NotMaskLZ)
NotMaskLZ -= 64-V.getValueSizeInBits();
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
switch (MaskedBytes) {
case 1:
case 2:
case 4: break;
default: return Result; // All one mask, or 5-byte mask.
}
// Verify that the first bit starts at a multiple of mask so that the access
// is aligned the same as the access width.
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
// For narrowing to be valid, it must be the case that the load the
// immediately preceding memory operation before the store.
if (LD == Chain.getNode())
; // ok.
else if (Chain->getOpcode() == ISD::TokenFactor &&
SDValue(LD, 1).hasOneUse()) {
// LD has only 1 chain use so they are no indirect dependencies.
if (!LD->isOperandOf(Chain.getNode()))
return Result;
} else
return Result; // Fail.
Result.first = MaskedBytes;
Result.second = NotMaskTZ/8;
return Result;
}
/// Check to see if IVal is something that provides a value as specified by
/// MaskInfo. If so, replace the specified store with a narrower store of
/// truncated IVal.
static SDValue
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
SDValue IVal, StoreSDNode *St,
DAGCombiner *DC) {
unsigned NumBytes = MaskInfo.first;
unsigned ByteShift = MaskInfo.second;
SelectionDAG &DAG = DC->getDAG();
// Check to see if IVal is all zeros in the part being masked in by the 'or'
// that uses this. If not, this is not a replacement.
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
ByteShift*8, (ByteShift+NumBytes)*8);
if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
// Check that it is legal on the target to do this. It is legal if the new
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type
// legalization (and the target doesn't explicitly think this is a bad idea).
MVT VT = MVT::getIntegerVT(NumBytes * 8);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!DC->isTypeLegal(VT))
return SDValue();
if (St->getMemOperand() &&
!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
*St->getMemOperand()))
return SDValue();
// Okay, we can do this! Replace the 'St' store with a store of IVal that is
// shifted by ByteShift and truncated down to NumBytes.
if (ByteShift) {
SDLoc DL(IVal);
IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
DAG.getConstant(ByteShift*8, DL,
DC->getShiftAmountTy(IVal.getValueType())));
}
// Figure out the offset for the store and the alignment of the access.
unsigned StOffset;
unsigned NewAlign = St->getAlignment();
if (DAG.getDataLayout().isLittleEndian())
StOffset = ByteShift;
else
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
SDValue Ptr = St->getBasePtr();
if (StOffset) {
SDLoc DL(IVal);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
NewAlign = MinAlign(NewAlign, StOffset);
}
// Truncate down to the new size.
IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
++OpsNarrowed;
return DAG
.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
St->getPointerInfo().getWithOffset(StOffset), NewAlign);
}
/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
/// narrowing the load and store if it would end up being a win for performance
/// or code size.
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!ST->isSimple())
return SDValue();
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
EVT VT = Value.getValueType();
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
return SDValue();
unsigned Opc = Value.getOpcode();
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
// is a byte mask indicating a consecutive number of bytes, check to see if
// Y is known to provide just those bytes. If so, we try to replace the
// load + replace + store sequence with a single (narrower) store, which makes
// the load dead.
if (Opc == ISD::OR) {
std::pair<unsigned, unsigned> MaskedLoad;
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
if (MaskedLoad.first)
if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(1), ST,this))
return NewST;
// Or is commutative, so try swapping X and Y.
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
if (MaskedLoad.first)
if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(0), ST,this))
return NewST;
}
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
Value.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N0 = Value.getOperand(0);
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Chain == SDValue(N0.getNode(), 1)) {
LoadSDNode *LD = cast<LoadSDNode>(N0);
if (LD->getBasePtr() != Ptr ||
LD->getPointerInfo().getAddrSpace() !=
ST->getPointerInfo().getAddrSpace())
return SDValue();
// Find the type to narrow it the load / op / store to.
SDValue N1 = Value.getOperand(1);
unsigned BitWidth = N1.getValueSizeInBits();
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
if (Opc == ISD::AND)
Imm ^= APInt::getAllOnesValue(BitWidth);
if (Imm == 0 || Imm.isAllOnesValue())
return SDValue();
unsigned ShAmt = Imm.countTrailingZeros();
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
// The narrowing should be profitable, the load/store operation should be
// legal (or custom) and the store size should be equal to the NewVT width.
while (NewBW < BitWidth &&
(NewVT.getStoreSizeInBits() != NewBW ||
!TLI.isOperationLegalOrCustom(Opc, NewVT) ||
!TLI.isNarrowingProfitable(VT, NewVT))) {
NewBW = NextPowerOf2(NewBW);
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
}
if (NewBW >= BitWidth)
return SDValue();
// If the lsb changed does not start at the type bitwidth boundary,
// start at the previous one.
if (ShAmt % NewBW)
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
std::min(BitWidth, ShAmt + NewBW));
if ((Imm & Mask) == Imm) {
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
if (Opc == ISD::AND)
NewImm ^= APInt::getAllOnesValue(NewBW);
uint64_t PtrOff = ShAmt / 8;
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian())
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
return SDValue();
SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
Ptr.getValueType(), Ptr,
DAG.getConstant(PtrOff, SDLoc(LD),
Ptr.getValueType()));
SDValue NewLD =
DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
LD->getMemOperand()->getFlags(), LD->getAAInfo());
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
DAG.getConstant(NewImm, SDLoc(Value),
NewVT));
SDValue NewST =
DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
AddToWorklist(NewPtr.getNode());
AddToWorklist(NewLD.getNode());
AddToWorklist(NewVal.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
++OpsNarrowed;
return NewST;
}
}
return SDValue();
}
/// For a given floating point load / store pair, if the load value isn't used
/// by any other operations, then consider transforming the pair to integer
/// load / store operations if the target deems the transformation profitable.
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Value = ST->getValue();
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
Value.hasOneUse()) {
LoadSDNode *LD = cast<LoadSDNode>(Value);
EVT VT = LD->getMemoryVT();
if (!VT.isFloatingPoint() ||
VT != ST->getMemoryVT() ||
LD->isNonTemporal() ||
ST->isNonTemporal() ||
LD->getPointerInfo().getAddrSpace() != 0 ||
ST->getPointerInfo().getAddrSpace() != 0)
return SDValue();
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
!TLI.isOperationLegal(ISD::STORE, IntVT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
return SDValue();
unsigned LDAlign = LD->getAlignment();
unsigned STAlign = ST->getAlignment();
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
if (LDAlign < ABIAlign || STAlign < ABIAlign)
return SDValue();
SDValue NewLD =
DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(), LDAlign);
SDValue NewST =
DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
ST->getPointerInfo(), STAlign);
AddToWorklist(NewLD.getNode());
AddToWorklist(NewST.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
++LdStFP2Int;
return NewST;
}
return SDValue();
}
// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
// and ConstNode is c2.
//
// If the (add x, c1) has multiple uses, we could increase
// the number of adds if we make this transformation.
// It would only be worth doing this if we can remove a
// multiply in the process. Check for that here.
// To illustrate:
// (A + c1) * c3
// (A + c2) * c3
// We're checking for cases where we have common "c3 * A" expressions.
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode) {
APInt Val;
// If the add only has one use, this would be OK to do.
if (AddNode.getNode()->hasOneUse())
return true;
// Walk all the users of the constant with which we're multiplying.
for (SDNode *Use : ConstNode->uses()) {
if (Use == MulNode) // This use is the one we're on right now. Skip it.
continue;
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
SDNode *OtherOp;
SDNode *MulVar = AddNode.getOperand(0).getNode();
// OtherOp is what we're multiplying against the constant.
if (Use->getOperand(0) == ConstNode)
OtherOp = Use->getOperand(1).getNode();
else
OtherOp = Use->getOperand(0).getNode();
// Check to see if multiply is with the same operand of our "add".
//
// ConstNode = CONST
// Use = ConstNode * A <-- visiting Use. OtherOp is A.
// ...
// AddNode = (A + c1) <-- MulVar is A.
// = AddNode * ConstNode <-- current visiting instruction.
//
// If we make this transformation, we will have a common
// multiply (ConstNode * A) that we can save.
if (OtherOp == MulVar)
return true;
// Now check to see if a future expansion will give us a common
// multiply.
//
// ConstNode = CONST
// AddNode = (A + c1)
// ... = AddNode * ConstNode <-- current visiting instruction.
// ...
// OtherOp = (A + c2)
// Use = OtherOp * ConstNode <-- visiting Use.
//
// If we make this transformation, we will have a common
// multiply (CONST * A) after we also do the same transformation
// to the "t2" instruction.
if (OtherOp->getOpcode() == ISD::ADD &&
DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
OtherOp->getOperand(0).getNode() == MulVar)
return true;
}
}
// Didn't find a case where this would be profitable.
return false;
}
SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumStores) {
SmallVector<SDValue, 8> Chains;
SmallPtrSet<const SDNode *, 8> Visited;
SDLoc StoreDL(StoreNodes[0].MemNode);
for (unsigned i = 0; i < NumStores; ++i) {
Visited.insert(StoreNodes[i].MemNode);
}
// don't include nodes that are children or repeated nodes.
for (unsigned i = 0; i < NumStores; ++i) {
if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
Chains.push_back(StoreNodes[i].MemNode->getChain());
}
assert(Chains.size() > 0 && "Chain should have generated a chain");
return DAG.getTokenFactor(StoreDL, Chains);
}
bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector, bool UseTrunc) {
// Make sure we have something to merge.
if (NumStores < 2)
return false;
// The latest Node in the DAG.
SDLoc DL(StoreNodes[0].MemNode);
int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
unsigned SizeInBits = NumStores * ElementSizeBits;
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
EVT StoreTy;
if (UseVector) {
unsigned Elts = NumStores * NumMemElts;
// Get the type for the merged vector store.
StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
} else
StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
SDValue StoredVal;
if (UseVector) {
if (IsConstantSrc) {
SmallVector<SDValue, 8> BuildVector;
for (unsigned I = 0; I != NumStores; ++I) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
SDValue Val = St->getValue();
// If constant is of the wrong type, convert it now.
if (MemVT != Val.getValueType()) {
Val = peekThroughBitcasts(Val);
// Deal with constants of wrong size.
if (ElementSizeBits != Val.getValueSizeInBits()) {
EVT IntMemVT =
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
if (isa<ConstantFPSDNode>(Val)) {
// Not clear how to truncate FP values.
return false;
} else if (auto *C = dyn_cast<ConstantSDNode>(Val))
Val = DAG.getConstant(C->getAPIntValue()
.zextOrTrunc(Val.getValueSizeInBits())
.zextOrTrunc(ElementSizeBits),
SDLoc(C), IntMemVT);
}
// Make sure correctly size type is the correct type.
Val = DAG.getBitcast(MemVT, Val);
}
BuildVector.push_back(Val);
}
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR,
DL, StoreTy, BuildVector);
} else {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumStores; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue Val = peekThroughBitcasts(St->getValue());
// All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
// type MemVT. If the underlying value is not the correct
// type, but it is an extraction of an appropriate vector we
// can recast Val to be of the correct type. This may require
// converting between EXTRACT_VECTOR_ELT and
// EXTRACT_SUBVECTOR.
if ((MemVT != Val.getValueType()) &&
(Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
EVT MemVTScalarTy = MemVT.getScalarType();
// We may need to add a bitcast here to get types to line up.
if (MemVTScalarTy != Val.getValueType().getScalarType()) {
Val = DAG.getBitcast(MemVT, Val);
} else {
unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT;
SDValue Vec = Val.getOperand(0);
SDValue Idx = Val.getOperand(1);
Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
}
}
Ops.push_back(Val);
}
// Build the extracted vector elements back into a vector.
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR,
DL, StoreTy, Ops);
}
} else {
// We should always use a vector store when merging extracted vector
// elements, so this path implies a store of constants.
assert(IsConstantSrc && "Merged vector elements should use vector store");
APInt StoreInt(SizeInBits, 0);
// Construct a single integer constant which is made of the smaller
// constant inputs.
bool IsLE = DAG.getDataLayout().isLittleEndian();
for (unsigned i = 0; i < NumStores; ++i) {
unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
SDValue Val = St->getValue();
Val = peekThroughBitcasts(Val);
StoreInt <<= ElementSizeBits;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
StoreInt |= C->getAPIntValue()
.zextOrTrunc(ElementSizeBits)
.zextOrTrunc(SizeInBits);
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
StoreInt |= C->getValueAPF()
.bitcastToAPInt()
.zextOrTrunc(ElementSizeBits)
.zextOrTrunc(SizeInBits);
// If fp truncation is necessary give up for now.
if (MemVT.getSizeInBits() != ElementSizeBits)
return false;
} else {
llvm_unreachable("Invalid constant element type");
}
}
// Create the new Load and Store operations.
StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
}
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
// make sure we use trunc store if it's necessary to be legal.
SDValue NewStore;
if (!UseTrunc) {
NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(),
FirstInChain->getAlignment());
} else { // Must be realized as a trunc store
EVT LegalizedStoredValTy =
TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
SDValue ExtendedStoreVal =
DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
LegalizedStoredValTy);
NewStore = DAG.getTruncStore(
NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
FirstInChain->getAlignment(),
FirstInChain->getMemOperand()->getFlags());
}
// Replace all merged stores with the new store.
for (unsigned i = 0; i < NumStores; ++i)
CombineTo(StoreNodes[i].MemNode, NewStore);
AddToWorklist(NewChain.getNode());
return true;
}
void DAGCombiner::getStoreMergeCandidates(
StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
SDNode *&RootNode) {
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
EVT MemVT = St->getMemoryVT();
SDValue Val = peekThroughBitcasts(St->getValue());
// We must have a base and an offset.
if (!BasePtr.getBase().getNode())
return;
// Do not handle stores to undef base pointers.
if (BasePtr.getBase().isUndef())
return;
bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
bool IsLoadSrc = isa<LoadSDNode>(Val);
BaseIndexOffset LBasePtr;
// Match on loadbaseptr if relevant.
EVT LoadVT;
if (IsLoadSrc) {
auto *Ld = cast<LoadSDNode>(Val);
LBasePtr = BaseIndexOffset::match(Ld, DAG);
LoadVT = Ld->getMemoryVT();
// Load and store should be the same type.
if (MemVT != LoadVT)
return;
// Loads must only have one use.
if (!Ld->hasNUsesOfValue(1, 0))
return;
// The memory operands must not be volatile/indexed/atomic.
// TODO: May be able to relax for unordered atomics (see D66309)
if (!Ld->isSimple() || Ld->isIndexed())
return;
}
auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
int64_t &Offset) -> bool {
// The memory operands must not be volatile/indexed/atomic.
// TODO: May be able to relax for unordered atomics (see D66309)
if (!Other->isSimple() || Other->isIndexed())
return false;
// Don't mix temporal stores with non-temporal stores.
if (St->isNonTemporal() != Other->isNonTemporal())
return false;
SDValue OtherBC = peekThroughBitcasts(Other->getValue());
// Allow merging constants of different types as integers.
bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
: Other->getMemoryVT() != MemVT;
if (IsLoadSrc) {
if (NoTypeMatch)
return false;
// The Load's Base Ptr must also match
if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) {
BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
if (LoadVT != OtherLd->getMemoryVT())
return false;
// Loads must only have one use.
if (!OtherLd->hasNUsesOfValue(1, 0))
return false;
// The memory operands must not be volatile/indexed/atomic.
// TODO: May be able to relax for unordered atomics (see D66309)
if (!OtherLd->isSimple() ||
OtherLd->isIndexed())
return false;
// Don't mix temporal loads with non-temporal loads.
if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
return false;
if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
return false;
} else
return false;
}
if (IsConstantSrc) {
if (NoTypeMatch)
return false;
if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC)))
return false;
}
if (IsExtractVecSrc) {
// Do not merge truncated stores here.
if (Other->isTruncatingStore())
return false;
if (!MemVT.bitsEq(OtherBC.getValueType()))
return false;
if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
}
Ptr = BaseIndexOffset::match(Other, DAG);
return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
};
// Check if the pair of StoreNode and the RootNode already bail out many
// times which is over the limit in dependence check.
auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
SDNode *RootNode) -> bool {
auto RootCount = StoreRootCountMap.find(StoreNode);
if (RootCount != StoreRootCountMap.end() &&
RootCount->second.first == RootNode &&
RootCount->second.second > StoreMergeDependenceLimit)
return true;
return false;
};
// We looking for a root node which is an ancestor to all mergable
// stores. We search up through a load, to our root and then down
// through all children. For instance we will find Store{1,2,3} if
// St is Store1, Store2. or Store3 where the root is not a load
// which always true for nonvolatile ops. TODO: Expand
// the search to find all valid candidates through multiple layers of loads.
//
// Root
// |-------|-------|
// Load Load Store3
// | |
// Store1 Store2
//
// FIXME: We should be able to climb and
// descend TokenFactors to find candidates as well.
RootNode = St->getChain().getNode();
unsigned NumNodesExplored = 0;
if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
RootNode = Ldn->getChain().getNode();
for (auto I = RootNode->use_begin(), E = RootNode->use_end();
I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
if (I2.getOperandNo() == 0)
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
BaseIndexOffset Ptr;
int64_t PtrDiff;
if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
!OverLimitInDependenceCheck(OtherST, RootNode))
StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
}
} else
for (auto I = RootNode->use_begin(), E = RootNode->use_end();
I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
if (I.getOperandNo() == 0)
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
BaseIndexOffset Ptr;
int64_t PtrDiff;
if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
!OverLimitInDependenceCheck(OtherST, RootNode))
StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
}
}
// We need to check that merging these stores does not cause a loop in
// the DAG. Any store candidate may depend on another candidate
// indirectly through its operand (we already consider dependencies
// through the chain). Check in parallel by searching up from
// non-chain operands of candidates.
bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
SDNode *RootNode) {
// FIXME: We should be able to truncate a full search of
// predecessors by doing a BFS and keeping tabs the originating
// stores from which worklist nodes come from in a similar way to
// TokenFactor simplfication.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 8> Worklist;
// RootNode is a predecessor to all candidates so we need not search
// past it. Add RootNode (peeking through TokenFactors). Do not count
// these towards size check.
Worklist.push_back(RootNode);
while (!Worklist.empty()) {
auto N = Worklist.pop_back_val();
if (!Visited.insert(N).second)
continue; // Already present in Visited.
if (N->getOpcode() == ISD::TokenFactor) {
for (SDValue Op : N->ops())
Worklist.push_back(Op.getNode());
}
}
// Don't count pruning nodes towards max.
unsigned int Max = 1024 + Visited.size();
// Search Ops of store candidates.
for (unsigned i = 0; i < NumStores; ++i) {
SDNode *N = StoreNodes[i].MemNode;
// Of the 4 Store Operands:
// * Chain (Op 0) -> We have already considered these
// in candidate selection and can be
// safely ignored
// * Value (Op 1) -> Cycles may happen (e.g. through load chains)
// * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
// but aren't necessarily fromt the same base node, so
// cycles possible (e.g. via indexed store).
// * (Op 3) -> Represents the pre or post-indexing offset (or undef for
// non-indexed stores). Not constant on all targets (e.g. ARM)
// and so can participate in a cycle.
for (unsigned j = 1; j < N->getNumOperands(); ++j)
Worklist.push_back(N->getOperand(j).getNode());
}
// Search through DAG. We can stop early if we find a store node.
for (unsigned i = 0; i < NumStores; ++i)
if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
Max)) {
// If the searching bail out, record the StoreNode and RootNode in the
// StoreRootCountMap. If we have seen the pair many times over a limit,
// we won't add the StoreNode into StoreNodes set again.
if (Visited.size() >= Max) {
auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
if (RootCount.first == RootNode)
RootCount.second++;
else
RootCount = {RootNode, 1};
}
return false;
}
return true;
}
bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
return false;
EVT MemVT = St->getMemoryVT();
int64_t ElementSizeBytes = MemVT.getStoreSize();
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
return false;
bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
// This function cannot currently deal with non-byte-sized memory sizes.
if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
return false;
if (!MemVT.isSimple())
return false;
// Perform an early exit check. Do not bother looking at stored values that
// are not constants, loads, or extracted vector elements.
SDValue StoredVal = peekThroughBitcasts(St->getValue());
bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
isa<ConstantFPSDNode>(StoredVal);
bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
bool IsNonTemporalStore = St->isNonTemporal();
bool IsNonTemporalLoad =
IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal();
if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
return false;
SmallVector<MemOpLink, 8> StoreNodes;
SDNode *RootNode;
// Find potential store merge candidates by searching through chain sub-DAG
getStoreMergeCandidates(St, StoreNodes, RootNode);
// Check if there is anything to merge.
if (StoreNodes.size() < 2)
return false;
// Sort the memory operands according to their distance from the
// base pointer.
llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
return LHS.OffsetFromBase < RHS.OffsetFromBase;
});
// Store Merge attempts to merge the lowest stores. This generally
// works out as if successful, as the remaining stores are checked
// after the first collection of stores is merged. However, in the
// case that a non-mergeable store is found first, e.g., {p[-2],
// p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
// mergeable cases. To prevent this, we prune such stores from the
// front of StoreNodes here.
bool RV = false;
while (StoreNodes.size() > 1) {
size_t StartIdx = 0;
while ((StartIdx + 1 < StoreNodes.size()) &&
StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
StoreNodes[StartIdx + 1].OffsetFromBase)
++StartIdx;
// Bail if we don't have enough candidates to merge.
if (StartIdx + 1 >= StoreNodes.size())
return RV;
if (StartIdx)
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
// Scan the memory operations on the chain and find the first
// non-consecutive store memory address.
unsigned NumConsecutiveStores = 1;
int64_t StartAddress = StoreNodes[0].OffsetFromBase;
// Check that the addresses are consecutive starting from the second
// element in the list of stores.
for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
NumConsecutiveStores = i + 1;
}
if (NumConsecutiveStores < 2) {
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumConsecutiveStores);
continue;
}
// The node with the lowest store address.
LLVMContext &Context = *DAG.getContext();
const DataLayout &DL = DAG.getDataLayout();
// Store the constants into memory as one consecutive store.
if (IsConstantSrc) {
while (NumConsecutiveStores >= 2) {
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
unsigned LastLegalType = 1;
unsigned LastLegalVectorType = 1;
bool LastIntegerTrunc = false;
bool NonZero = false;
unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue StoredVal = ST->getValue();
bool IsElementZero = false;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
IsElementZero = C->isNullValue();
else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
IsElementZero = C->getConstantFPValue()->isNullValue();
if (IsElementZero) {
if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
FirstZeroAfterNonZero = i;
}
NonZero |= !IsElementZero;
// Find a legal type for the constant store.
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
bool IsFast = false;
// Break early when size is too large to be legal.
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
break;
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstInChain->getMemOperand(), &IsFast) &&
IsFast) {
LastIntegerTrunc = false;
LastLegalType = i + 1;
// Or check whether a truncstore is legal.
} else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValTy =
TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstInChain->getMemOperand(),
&IsFast) &&
IsFast) {
LastIntegerTrunc = true;
LastLegalType = i + 1;
}
}
// We only use vectors if the constant is known to be zero or the
// target allows it and the function is not marked with the
// noimplicitfloat attribute.
if ((!NonZero ||
TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
!NoVectors) {
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
TLI.allowsMemoryAccess(
Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) &&
IsFast)
LastLegalVectorType = i + 1;
}
}
bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
// Check if we found a legal integer type that creates a meaningful
// merge.
if (NumElem < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have, is if the alignment has
// improved or we've dropped a non-zero value. Drop as many
// candidates as we can here.
unsigned NumSkip = 1;
while (
(NumSkip < NumConsecutiveStores) &&
(NumSkip < FirstZeroAfterNonZero) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
RootNode)) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
continue;
}
RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
UseVector, LastIntegerTrunc);
// Remove merged stores for next iteration.
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
}
continue;
}
// When extracting multiple vector elements, try to store them
// in one vector store rather than a sequence of scalar stores.
if (IsExtractVecSrc) {
// Loop on Consecutive Stores on success.
while (NumConsecutiveStores >= 2) {
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
unsigned NumStoresToMerge = 1;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT Ty =
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
bool IsFast;
// Break early when size is too large to be legal.
if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
break;
if (TLI.isTypeLegal(Ty) &&
TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
TLI.allowsMemoryAccess(Context, DL, Ty,
*FirstInChain->getMemOperand(), &IsFast) &&
IsFast)
NumStoresToMerge = i + 1;
}
// Check if we found a legal integer type creating a meaningful
// merge.
if (NumStoresToMerge < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have, is if the alignment has
// improved. Drop as many candidates as we can here.
unsigned NumSkip = 1;
while (
(NumSkip < NumConsecutiveStores) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(
StoreNodes, NumStoresToMerge, RootNode)) {
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumStoresToMerge);
NumConsecutiveStores -= NumStoresToMerge;
continue;
}
RV |= MergeStoresOfConstantsOrVecElts(
StoreNodes, MemVT, NumStoresToMerge, false, true, false);
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumStoresToMerge);
NumConsecutiveStores -= NumStoresToMerge;
}
continue;
}
// Below we handle the case of multiple consecutive stores that
// come from multiple consecutive loads. We merge them into a single
// wide load and a single wide store.
// Look for load nodes which are used by the stored values.
SmallVector<MemOpLink, 8> LoadNodes;
// Find acceptable loads. Loads need to have the same chain (token factor),
// must not be zext, volatile, indexed, and they must be consecutive.
BaseIndexOffset LdBasePtr;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue Val = peekThroughBitcasts(St->getValue());
LoadSDNode *Ld = cast<LoadSDNode>(Val);
BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
// If this is not the first ptr that we check.
int64_t LdOffset = 0;
if (LdBasePtr.getBase().getNode()) {
// The base ptr must be the same.
if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
break;
} else {
// Check that all other base pointers are the same as this one.
LdBasePtr = LdPtr;
}
// We found a potential memory operand to merge.
LoadNodes.push_back(MemOpLink(Ld, LdOffset));
}
while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
// If we have load/store pair instructions and we only have two values,
// don't bother merging.
unsigned RequiredAlignment;
if (LoadNodes.size() == 2 &&
TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
break;
}
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
unsigned FirstLoadAlign = FirstLoad->getAlignment();
// Scan the memory operations on the chain and find the first
// non-consecutive load memory address. These variables hold the index in
// the store node array.
unsigned LastConsecutiveLoad = 1;
// This variable refers to the size and not index in the array.
unsigned LastLegalVectorType = 1;
unsigned LastLegalIntegerType = 1;
bool isDereferenceable = true;
bool DoIntegerTruncate = false;
StartAddress = LoadNodes[0].OffsetFromBase;
SDValue FirstChain = FirstLoad->getChain();
for (unsigned i = 1; i < LoadNodes.size(); ++i) {
// All loads must share the same chain.
if (LoadNodes[i].MemNode->getChain() != FirstChain)
break;
int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
LastConsecutiveLoad = i;
if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
isDereferenceable = false;
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
// Break early when size is too large to be legal.
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
break;
bool IsFastSt, IsFastLd;
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstInChain->getMemOperand(), &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstLoad->getMemOperand(), &IsFastLd) &&
IsFastLd) {
LastLegalVectorType = i + 1;
}
// Find a legal type for the integer store.
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
StoreTy = EVT::getIntegerVT(Context, SizeInBits);
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstInChain->getMemOperand(), &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstLoad->getMemOperand(), &IsFastLd) &&
IsFastLd) {
LastLegalIntegerType = i + 1;
DoIntegerTruncate = false;
// Or check whether a truncstore and extload is legal.
} else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
StoreTy) &&
TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
StoreTy) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstInChain->getMemOperand(),
&IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy,
*FirstLoad->getMemOperand(), &IsFastLd) &&
IsFastLd) {
LastLegalIntegerType = i + 1;
DoIntegerTruncate = true;
}
}
}
// Only use vector types if the vector type is larger than the integer
// type. If they are the same, use integers.
bool UseVectorTy =
LastLegalVectorType > LastLegalIntegerType && !NoVectors;
unsigned LastLegalType =
std::max(LastLegalVectorType, LastLegalIntegerType);
// We add +1 here because the LastXXX variables refer to location while
// the NumElem refers to array/index size.
unsigned NumElem =
std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
NumElem = std::min(LastLegalType, NumElem);
if (NumElem < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have is if the alignment or either
// the load or store has improved. Drop as many candidates as we
// can here.
unsigned NumSkip = 1;
while ((NumSkip < LoadNodes.size()) &&
(LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
RootNode)) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
continue;
}
// Find if it is better to use vectors or integers to load and store
// to memory.
EVT JointMemOpVT;
if (UseVectorTy) {
// Find a legal type for the vector store.
unsigned Elts = NumElem * NumMemElts;
JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
} else {
unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
}
SDLoc LoadDL(LoadNodes[0].MemNode);
SDLoc StoreDL(StoreNodes[0].MemNode);
// The merged loads are required to have the same incoming chain, so
// using the first's chain is acceptable.
SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
AddToWorklist(NewStoreChain.getNode());
MachineMemOperand::Flags LdMMOFlags =
isDereferenceable ? MachineMemOperand::MODereferenceable
: MachineMemOperand::MONone;
if (IsNonTemporalLoad)
LdMMOFlags |= MachineMemOperand::MONonTemporal;
MachineMemOperand::Flags StMMOFlags =
IsNonTemporalStore ? MachineMemOperand::MONonTemporal
: MachineMemOperand::MONone;
SDValue NewLoad, NewStore;
if (UseVectorTy || !DoIntegerTruncate) {
NewLoad =
DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
FirstLoadAlign, LdMMOFlags);
NewStore = DAG.getStore(
NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
} else { // This must be the truncstore/extload case
EVT ExtendedTy =
TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
FirstLoad->getChain(), FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), JointMemOpVT,
FirstLoadAlign, LdMMOFlags);
NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(),
JointMemOpVT, FirstInChain->getAlignment(),
FirstInChain->getMemOperand()->getFlags());
}
// Transfer chain users from old loads to the new load.
for (unsigned i = 0; i < NumElem; ++i) {
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
SDValue(NewLoad.getNode(), 1));
}
// Replace the all stores with the new store. Recursively remove
// corresponding value if its no longer used.
for (unsigned i = 0; i < NumElem; ++i) {
SDValue Val = StoreNodes[i].MemNode->getOperand(1);
CombineTo(StoreNodes[i].MemNode, NewStore);
if (Val.getNode()->use_empty())
recursivelyDeleteUnusedNodes(Val.getNode());
}
RV = true;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
}
}
return RV;
}
SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
SDLoc SL(ST);
SDValue ReplStore;
// Replace the chain to avoid dependency.
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
ST->getBasePtr(), ST->getMemoryVT(),
ST->getMemOperand());
} else {
ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
ST->getMemOperand());
}
// Create token to keep both nodes around.
SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
MVT::Other, ST->getChain(), ReplStore);
// Make sure the new and old chains are cleaned up.
AddToWorklist(Token.getNode());
// Don't add users to work list.
return CombineTo(ST, Token, false);
}
SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
SDValue Value = ST->getValue();
if (Value.getOpcode() == ISD::TargetConstantFP)
return SDValue();
SDLoc DL(ST);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
// NOTE: If the original store is volatile, this transform must not increase
// the number of stores. For example, on x86-32 an f64 can be stored in one
// processor operation but an i64 (which is not legal) requires two. So the
// transform should not be done in this case.
SDValue Tmp;
switch (CFP->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unknown FP type");
case MVT::f16: // We don't do this for these yet.
case MVT::f80:
case MVT::f128:
case MVT::ppcf128:
return SDValue();
case MVT::f32:
if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
;
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
bitcastToAPInt().getZExtValue(), SDLoc(CFP),
MVT::i32);
return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
}
return SDValue();
case MVT::f64:
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
ST->isSimple()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
;
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
getZExtValue(), SDLoc(CFP), MVT::i64);
return DAG.getStore(Chain, DL, Tmp,
Ptr, ST->getMemOperand());
}
if (ST->isSimple() &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
// Many FP stores are not made apparent until after legalize, e.g. for
// argument passing. Since this is so common, custom legalize the
// 64-bit integer store into two 32-bit stores.
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
unsigned Alignment = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
ST->getAlignment(), MMOFlags, AAInfo);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(4, DL, Ptr.getValueType()));
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
Alignment, MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
St0, St1);
}
return SDValue();
}
}
SDValue DAGCombiner::visitSTORE(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
// If this is a store of a bit convert, store the input value if the
// resultant store does not need a higher alignment than the original.
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
ST->isUnindexed()) {
EVT SVT = Value.getOperand(0).getValueType();
// If the store is volatile, we only want to change the store type if the
// resulting store is legal. Otherwise we might increase the number of
// memory accesses. We don't care if the original type was legal or not
// as we assume software couldn't rely on the number of accesses of an
// illegal type.
// TODO: May be able to relax for unordered atomics (see D66309)
if (((!LegalOperations && ST->isSimple()) ||
TLI.isOperationLegal(ISD::STORE, SVT)) &&
TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
DAG, *ST->getMemOperand())) {
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
ST->getPointerInfo(), ST->getAlignment(),
ST->getMemOperand()->getFlags(), ST->getAAInfo());
}
}
// Turn 'store undef, Ptr' -> nothing.
if (Value.isUndef() && ST->isUnindexed())
return Chain;
// Try to infer better alignment information than the store already has.
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
SDValue NewStore =
DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
ST->getMemoryVT(), Align,
ST->getMemOperand()->getFlags(), ST->getAAInfo());
// NewStore will always be N as we are only refining the alignment
assert(NewStore.getNode() == N);
(void)NewStore;
}
}
}
// Try transforming a pair floating point load / store ops to integer
// load / store ops.
if (SDValue NewST = TransformFPLoadStorePair(N))
return NewST;
// Try transforming several stores into STORE (BSWAP).
if (SDValue Store = MatchStoreCombine(ST))
return Store;
if (ST->isUnindexed()) {
// Walk up chain skipping non-aliasing memory nodes, on this store and any
// adjacent stores.
if (findBetterNeighborChains(ST)) {
// replaceStoreChain uses CombineTo, which handled all of the worklist
// manipulation. Return the original node to not do anything else.
return SDValue(ST, 0);
}
Chain = ST->getChain();
}
// FIXME: is there such a thing as a truncating indexed store?
if (ST->isTruncatingStore() && ST->isUnindexed() &&
Value.getValueType().isInteger() &&
(!isa<ConstantSDNode>(Value) ||
!cast<ConstantSDNode>(Value)->isOpaque())) {
APInt TruncDemandedBits =
APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
ST->getMemoryVT().getScalarSizeInBits());
// See if we can simplify the input to this truncstore with knowledge that
// only the low bits are being used. For example:
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
AddToWorklist(Value.getNode());
if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
ST->getMemOperand());
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
// Re-visit the store if anything changed and the store hasn't been merged
// with another node (N is deleted) SimplifyDemandedBits will add Value's
// node back to the worklist if necessary, but we also need to re-visit
// the Store node itself.
if (N->getOpcode() != ISD::DELETED_NODE)
AddToWorklist(N);
return SDValue(N, 0);
}
}
// If this is a load followed by a store to the same location, then the store
// is dead/noop.
// TODO: Can relax for unordered atomics (see D66309)
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
ST->isUnindexed() && ST->isSimple() &&
// There can't be any side effects between the load and store, such as
// a call or store.
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
// The store is dead, remove it.
return Chain;
}
}
// TODO: Can relax for unordered atomics (see D66309)
if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
if (ST->isUnindexed() && ST->isSimple() &&
ST1->isUnindexed() && ST1->isSimple()) {
if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
ST->getMemoryVT() == ST1->getMemoryVT()) {
// If this is a store followed by a store with the same value to the
// same location, then the store is dead/noop.
return Chain;
}
if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
!ST1->getBasePtr().isUndef()) {
const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
unsigned STBitSize = ST->getMemoryVT().getSizeInBits();
unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits();
// If this is a store who's preceding store to a subset of the current
// location and no one other node is chained to that store we can
// effectively drop the store. Do not remove stores to undef as they may
// be used as data sinks.
if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
CombineTo(ST1, ST1->getChain());
return SDValue();
}
// If ST stores to a subset of preceding store's write set, we may be
// able to fold ST's value into the preceding stored value. As we know
// the other uses of ST1's chain are unconcerned with ST, this folding
// will not affect those nodes.
int64_t BitOffset;
if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize,
BitOffset)) {
SDValue ChainValue = ST1->getValue();
if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) {
if (auto *C = dyn_cast<ConstantSDNode>(Value)) {
APInt Val = C1->getAPIntValue();
APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize);
// FIXME: Handle Big-endian mode.
if (!DAG.getDataLayout().isBigEndian()) {
Val.insertBits(InsertVal, BitOffset);
SDValue NewSDVal =
DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(),
C1->isTargetOpcode(), C1->isOpaque());
SDNode *NewST1 = DAG.UpdateNodeOperands(
ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2),
ST1->getOperand(3));
return CombineTo(ST, SDValue(NewST1, 0));
}
}
}
} // End ST subset of ST1 case.
}
}
}
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
&& Value.getNode()->hasOneUse() && ST->isUnindexed() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getMemoryVT(), ST->getMemOperand());
}
// Always perform this optimization before types are legal. If the target
// prefers, also try this after legalization to catch stores that were created
// by intrinsics or other nodes.
if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
while (true) {
// There can be multiple store sequences on the same chain.
// Keep trying to merge store sequences until we are unable to do so
// or until we merge the last store on the chain.
bool Changed = MergeConsecutiveStores(ST);
if (!Changed) break;
// Return N as merge only uses CombineTo and no worklist clean
// up is necessary.
if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
return SDValue(N, 0);
}
}
// Try transforming N to an indexed store.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
//
// Make sure to do this only after attempting to merge stores in order to
// avoid changing the types of some subset of stores due to visit order,
// preventing their merging.
if (isa<ConstantFPSDNode>(ST->getValue())) {
if (SDValue NewSt = replaceStoreOfFPConstant(ST))
return NewSt;
}
if (SDValue NewSt = splitMergedValStore(ST))
return NewSt;
return ReduceLoadOpStoreWidth(N);
}
SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
if (!LifetimeEnd->hasOffset())
return SDValue();
const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
LifetimeEnd->getOffset(), false);
// We walk up the chains to find stores.
SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
while (!Chains.empty()) {
SDValue Chain = Chains.back();
Chains.pop_back();
if (!Chain.hasOneUse())
continue;
switch (Chain.getOpcode()) {
case ISD::TokenFactor:
for (unsigned Nops = Chain.getNumOperands(); Nops;)
Chains.push_back(Chain.getOperand(--Nops));
break;
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
// We can forward past any lifetime start/end that can be proven not to
// alias the node.
if (!isAlias(Chain.getNode(), N))
Chains.push_back(Chain.getOperand(0));
break;
case ISD::STORE: {
StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
// TODO: Can relax for unordered atomics (see D66309)
if (!ST->isSimple() || ST->isIndexed())
continue;
const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
// If we store purely within object bounds just before its lifetime ends,
// we can remove the store.
if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
ST->getMemoryVT().getStoreSizeInBits())) {
LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
dbgs() << "\nwithin LIFETIME_END of : ";
LifetimeEndBase.dump(); dbgs() << "\n");
CombineTo(ST, ST->getChain());
return SDValue(N, 0);
}
}
}
}
return SDValue();
}
/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficent to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
/// (store (or (zext (bitcast F to i32) to i64),
/// (shl (zext I to i64), 32)), addr) -->
/// (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8}, i32 store --> two i16 stores.
/// For pair of {i8, i8}, i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
/// void goo(const std::pair<int, float> &);
/// hoo() {
/// ...
/// goo(std::make_pair(tmp, ftmp));
/// ...
/// }
///
SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
if (OptLevel == CodeGenOpt::None)
return SDValue();
// Can't change the number of memory accesses for a volatile store or break
// atomicity for an atomic one.
if (!ST->isSimple())
return SDValue();
SDValue Val = ST->getValue();
SDLoc DL(ST);
// Match OR operand.
if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
return SDValue();
// Match SHL operand and get Lower and Higher parts of Val.
SDValue Op1 = Val.getOperand(0);
SDValue Op2 = Val.getOperand(1);
SDValue Lo, Hi;
if (Op1.getOpcode() != ISD::SHL) {
std::swap(Op1, Op2);
if (Op1.getOpcode() != ISD::SHL)
return SDValue();
}
Lo = Op2;
Hi = Op1.getOperand(0);
if (!Op1.hasOneUse())
return SDValue();
// Match shift amount to HalfValBitSize.
unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
return SDValue();
// Lo and Hi are zero-extended from int with size less equal than 32
// to i64.
if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
!Lo.getOperand(0).getValueType().isScalarInteger() ||
Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
!Hi.getOperand(0).getValueType().isScalarInteger() ||
Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
return SDValue();
// Use the EVT of low and high parts before bitcast as the input
// of target query.
EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
? Lo.getOperand(0).getValueType()
: Lo.getValueType();
EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
? Hi.getOperand(0).getValueType()
: Hi.getValueType();
if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
return SDValue();
// Start to split store.
unsigned Alignment = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
// Change the sizes of Lo and Hi's value types to HalfValBitSize.
EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
// Lower value store.
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
ST->getAlignment(), MMOFlags, AAInfo);
Ptr =
DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
// Higher value store.
SDValue St1 =
DAG.getStore(St0, DL, Hi, Ptr,
ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
Alignment / 2, MMOFlags, AAInfo);
return St1;
}
/// Convert a disguised subvector insertion into a shuffle:
SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
SDValue InsertVal = N->getOperand(1);
SDValue Vec = N->getOperand(0);
// (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex)
// --> (vector_shuffle X, Y)
if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(InsertVal.getOperand(1))) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
ArrayRef<int> Mask = SVN->getMask();
SDValue X = Vec.getOperand(0);
SDValue Y = Vec.getOperand(1);
// Vec's operand 0 is using indices from 0 to N-1 and
// operand 1 from N to 2N - 1, where N is the number of
// elements in the vectors.
int XOffset = -1;
if (InsertVal.getOperand(0) == X) {
XOffset = 0;
} else if (InsertVal.getOperand(0) == Y) {
XOffset = X.getValueType().getVectorNumElements();
}
if (XOffset != -1) {
SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
NewMask[InsIndex] = XOffset + ExtrIndex->getZExtValue();
assert(NewMask[InsIndex] <
(int)(2 * Vec.getValueType().getVectorNumElements()) &&
NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");
SDValue LegalShuffle =
TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
Y, NewMask, DAG);
if (LegalShuffle)
return LegalShuffle;
}
}
// insert_vector_elt V, (bitcast X from vector type), IdxC -->
// bitcast(shuffle (bitcast V), (extended X), Mask)
// Note: We do not use an insert_subvector node because that requires a
// legal subvector type.
if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
!InsertVal.getOperand(0).getValueType().isVector())
return SDValue();
SDValue SubVec = InsertVal.getOperand(0);
SDValue DestVec = N->getOperand(0);
EVT SubVecVT = SubVec.getValueType();
EVT VT = DestVec.getValueType();
unsigned NumSrcElts = SubVecVT.getVectorNumElements();
unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
unsigned NumMaskVals = ExtendRatio * NumSrcElts;
// Step 1: Create a shuffle mask that implements this insert operation. The
// vector that we are inserting into will be operand 0 of the shuffle, so
// those elements are just 'i'. The inserted subvector is in the first
// positions of operand 1 of the shuffle. Example:
// insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
SmallVector<int, 16> Mask(NumMaskVals);
for (unsigned i = 0; i != NumMaskVals; ++i) {
if (i / NumSrcElts == InsIndex)
Mask[i] = (i % NumSrcElts) + NumMaskVals;
else
Mask[i] = i;
}
// Bail out if the target can not handle the shuffle we want to create.
EVT SubVecEltVT = SubVecVT.getVectorElementType();
EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
return SDValue();
// Step 2: Create a wide vector from the inserted source vector by appending
// undefined elements. This is the same size as our destination vector.
SDLoc DL(N);
SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
ConcatOps[0] = SubVec;
SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
// Step 3: Shuffle in the padded subvector.
SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
AddToWorklist(PaddedSubV.getNode());
AddToWorklist(DestVecBC.getNode());
AddToWorklist(Shuf.getNode());
return DAG.getBitcast(VT, Shuf);
}
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
SDLoc DL(N);
EVT VT = InVec.getValueType();
unsigned NumElts = VT.getVectorNumElements();
// Remove redundant insertions:
// (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
return InVec;
auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
if (!IndexC) {
// If this is variable insert to undef vector, it might be better to splat:
// inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
SmallVector<SDValue, 8> Ops(NumElts, InVal);
return DAG.getBuildVector(VT, DL, Ops);
}
return SDValue();
}
// We must know which element is being inserted for folds below here.
unsigned Elt = IndexC->getZExtValue();
if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
return Shuf;
// Canonicalize insert_vector_elt dag nodes.
// Example:
// (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
// -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
//
// Do this only if the child insert_vector node has one use; also
// do this only if indices are both constants and Idx1 < Idx0.
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
&& isa<ConstantSDNode>(InVec.getOperand(2))) {
unsigned OtherElt = InVec.getConstantOperandVal(2);
if (Elt < OtherElt) {
// Swap nodes.
SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
InVec.getOperand(0), InVal, EltNo);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
}
}
// If we can't generate a legal BUILD_VECTOR, exit
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return SDValue();
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
// vector elements.
SmallVector<SDValue, 8> Ops;
// Do not combine these two vectors if the output vector will not replace
// the input vector.
if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
Ops.append(InVec.getNode()->op_begin(),
InVec.getNode()->op_end());
} else if (InVec.isUndef()) {
Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
} else {
return SDValue();
}
assert(Ops.size() == NumElts && "Unexpected vector size");
// Insert the element
if (Elt < Ops.size()) {
// All the operands of BUILD_VECTOR must have the same type;
// we enforce that here.
EVT OpVT = Ops[0].getValueType();
Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
}
// Return the new vector
return DAG.getBuildVector(VT, DL, Ops);
}
SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
SDValue EltNo,
LoadSDNode *OriginalLoad) {
assert(OriginalLoad->isSimple());
EVT ResultVT = EVE->getValueType(0);
EVT VecEltVT = InVecVT.getVectorElementType();
unsigned Align = OriginalLoad->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VecEltVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
return SDValue();
ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
ISD::NON_EXTLOAD : ISD::EXTLOAD;
if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
return SDValue();
Align = NewAlign;
SDValue NewPtr = OriginalLoad->getBasePtr();
SDValue Offset;
EVT PtrType = NewPtr.getValueType();
MachinePointerInfo MPI;
SDLoc DL(EVE);
if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
int Elt = ConstEltNo->getZExtValue();
unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
Offset = DAG.getConstant(PtrOff, DL, PtrType);
MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
} else {
Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
Offset = DAG.getNode(
ISD::MUL, DL, PtrType, Offset,
DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
// Discard the pointer info except the address space because the memory
// operand can't represent this new access since the offset is variable.
MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
}
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
// The replacement we need to do here is a little tricky: we need to
// replace an extractelement of a load with a load.
// Use ReplaceAllUsesOfValuesWith to do the replacement.
// Note that this replacement assumes that the extractvalue is the only
// use of the load; that's okay because we don't want to perform this
// transformation in other cases anyway.
SDValue Load;
SDValue Chain;
if (ResultVT.bitsGT(VecEltVT)) {
// If the result type of vextract is wider than the load, then issue an
// extending load instead.
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
VecEltVT)
? ISD::ZEXTLOAD
: ISD::EXTLOAD;
Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
Align, OriginalLoad->getMemOperand()->getFlags(),
OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
} else {
Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
if (ResultVT.bitsLT(VecEltVT))
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
else
Load = DAG.getBitcast(ResultVT, Load);
}
WorklistRemover DeadNodes(*this);
SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
SDValue To[] = { Load, Chain };
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
// Make sure to revisit this node to clean it up; it will usually be dead.
AddToWorklist(EVE);
// Since we're explicitly calling ReplaceAllUses, add the new node to the
// worklist explicitly as well.
AddUsersToWorklist(Load.getNode()); // Add users too
AddToWorklist(Load.getNode());
++OpsNarrowed;
return SDValue(EVE, 0);
}
/// Transform a vector binary operation into a scalar binary operation by moving
/// the math/logic after an extract element of a vector.
static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
bool LegalOperations) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Vec = ExtElt->getOperand(0);
SDValue Index = ExtElt->getOperand(1);
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
Vec.getNode()->getNumValues() != 1)
return SDValue();
// Targets may want to avoid this to prevent an expensive register transfer.
if (!TLI.shouldScalarizeBinop(Vec))
return SDValue();
// Extracting an element of a vector constant is constant-folded, so this
// transform is just replacing a vector op with a scalar op while moving the
// extract.
SDValue Op0 = Vec.getOperand(0);
SDValue Op1 = Vec.getOperand(1);
if (isAnyConstantBuildVector(Op0, true) ||
isAnyConstantBuildVector(Op1, true)) {
// extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
// extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
SDLoc DL(ExtElt);
EVT VT = ExtElt->getValueType(0);
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
}
return SDValue();
}
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
SDValue VecOp = N->getOperand(0);
SDValue Index = N->getOperand(1);
EVT ScalarVT = N->getValueType(0);
EVT VecVT = VecOp.getValueType();
if (VecOp.isUndef())
return DAG.getUNDEF(ScalarVT);
// extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
//
// This only really matters if the index is non-constant since other combines
// on the constant elements already work.
SDLoc DL(N);
if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
Index == VecOp.getOperand(2)) {
SDValue Elt = VecOp.getOperand(1);
return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
}
// (vextract (scalar_to_vector val, 0) -> val
if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// Check if the result type doesn't match the inserted element type. A
// SCALAR_TO_VECTOR may truncate the inserted element and the
// EXTRACT_VECTOR_ELT may widen the extracted vector.
SDValue InOp = VecOp.getOperand(0);
if (InOp.getValueType() != ScalarVT) {
assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
}
return InOp;
}
// extract_vector_elt of out-of-bounds element -> UNDEF
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
unsigned NumElts = VecVT.getVectorNumElements();
if (IndexC && IndexC->getAPIntValue().uge(NumElts))
return DAG.getUNDEF(ScalarVT);
// extract_vector_elt (build_vector x, y), 1 -> y
if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
TLI.isTypeLegal(VecVT) &&
(VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
EVT InEltVT = Elt.getValueType();
// Sometimes build_vector's scalar input types do not match result type.
if (ScalarVT == InEltVT)
return Elt;
// TODO: It may be useful to truncate if free if the build_vector implicitly
// converts.
}
// TODO: These transforms should not require the 'hasOneUse' restriction, but
// there are regressions on multiple targets without it. We can end up with a
// mess of scalar and vector code if we reduce only part of the DAG to scalar.
if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
VecOp.hasOneUse()) {
// The vector index of the LSBs of the source depend on the endian-ness.
bool IsLE = DAG.getDataLayout().isLittleEndian();
unsigned ExtractIndex = IndexC->getZExtValue();
// extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
SDValue BCSrc = VecOp.getOperand(0);
if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
if (LegalTypes && BCSrc.getValueType().isInteger() &&
BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
// trunc i64 X to i32
SDValue X = BCSrc.getOperand(0);
assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
"Extract element and scalar to vector can't change element type "
"from FP to integer.");
unsigned XBitWidth = X.getValueSizeInBits();
unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
// An extract element return value type can be wider than its vector
// operand element type. In that case, the high bits are undefined, so
// it's possible that we may need to extend rather than truncate.
if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
assert(XBitWidth % VecEltBitWidth == 0 &&
"Scalar bitwidth must be a multiple of vector element bitwidth");
return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
}
}
}
if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
return BO;
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
// We only perform this optimization before the op legalization phase because
// we may introduce new vector instructions which are not backed by TD
// patterns. For example on AVX, extracting elements from a wide vector
// without using extract_subvector. However, if we can find an underlying
// scalar value, then we can always use that.
if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
// Find the new index to extract from.
int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
// Extracting an undef index is undef.
if (OrigElt == -1)
return DAG.getUNDEF(ScalarVT);
// Select the right vector half to extract from.
SDValue SVInVec;
if (OrigElt < (int)NumElts) {
SVInVec = VecOp.getOperand(0);
} else {
SVInVec = VecOp.getOperand(1);
OrigElt -= NumElts;
}
if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
SDValue InOp = SVInVec.getOperand(OrigElt);
if (InOp.getValueType() != ScalarVT) {
assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
}
return InOp;
}
// FIXME: We should handle recursing on other vector shuffles and
// scalar_to_vector here as well.
if (!LegalOperations ||
// FIXME: Should really be just isOperationLegalOrCustom.
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
DAG.getConstant(OrigElt, DL, IndexTy));
}
}
// If only EXTRACT_VECTOR_ELT nodes use the source vector we can
// simplify it based on the (valid) extraction indices.
if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Use->getOperand(0) == VecOp &&
isa<ConstantSDNode>(Use->getOperand(1));
})) {
APInt DemandedElts = APInt::getNullValue(NumElts);
for (SDNode *Use : VecOp->uses()) {
auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
if (CstElt->getAPIntValue().ult(NumElts))
DemandedElts.setBit(CstElt->getZExtValue());
}
if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
// We simplified the vector operand of this extract element. If this
// extract is not dead, visit it again so it is folded properly.
if (N->getOpcode() != ISD::DELETED_NODE)
AddToWorklist(N);
return SDValue(N, 0);
}
}
// Everything under here is trying to match an extract of a loaded value.
// If the result of load has to be truncated, then it's not necessarily
// profitable.
bool BCNumEltsChanged = false;
EVT ExtVT = VecVT.getVectorElementType();
EVT LVT = ExtVT;
if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
return SDValue();
if (VecOp.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!VecOp.hasOneUse())
return SDValue();
EVT BCVT = VecOp.getOperand(0).getValueType();
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
return SDValue();
if (NumElts != BCVT.getVectorNumElements())
BCNumEltsChanged = true;
VecOp = VecOp.getOperand(0);
ExtVT = BCVT.getVectorElementType();
}
// extract (vector load $addr), i --> load $addr + i * size
if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
ISD::isNormalLoad(VecOp.getNode()) &&
!Index->hasPredecessor(VecOp.getNode())) {
auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
if (VecLoad && VecLoad->isSimple())
return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
}
// Perform only after legalization to ensure build_vector / vector_shuffle
// optimizations have already been done.
if (!LegalOperations || !IndexC)
return SDValue();
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
int Elt = IndexC->getZExtValue();
LoadSDNode *LN0 = nullptr;
if (ISD::isNormalLoad(VecOp.getNode())) {
LN0 = cast<LoadSDNode>(VecOp);
} else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
VecOp.getOperand(0).getValueType() == ExtVT &&
ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
// Don't duplicate a load with other uses.
if (!VecOp.hasOneUse())
return SDValue();
LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
}
if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
// =>
// (load $addr+1*size)
// Don't duplicate a load with other uses.
if (!VecOp.hasOneUse())
return SDValue();
// If the bit convert changed the number of elements, it is unsafe
// to examine the mask.
if (BCNumEltsChanged)
return SDValue();
// Select the input vector, guarding against out of range extract vector.
int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
if (VecOp.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!VecOp.hasOneUse())
return SDValue();
VecOp = VecOp.getOperand(0);
}
if (ISD::isNormalLoad(VecOp.getNode())) {
LN0 = cast<LoadSDNode>(VecOp);
Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
Index = DAG.getConstant(Elt, DL, Index.getValueType());
}
}
// Make sure we found a non-volatile load and the extractelement is
// the only use.
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
return SDValue();
// If Idx was -1 above, Elt is going to be -1, so just return undef.
if (Elt == -1)
return DAG.getUNDEF(LVT);
return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
}
// Simplify (build_vec (ext )) to (bitcast (build_vec ))
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
// We perform this optimization post type-legalization because
// the type-legalizer often scalarizes integer-promoted vectors.
// Performing this optimization before may create bit-casts which
// will be type-legalized to complex code sequences.
// We perform this optimization only before the operation legalizer because we
// may introduce illegal operations.
if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
return SDValue();
unsigned NumInScalars = N->getNumOperands();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// Check to see if this is a BUILD_VECTOR of a bunch of values
// which come from any_extend or zero_extend nodes. If so, we can create
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
// optimizations. We do not handle sign-extend because we can't fill the sign
// using shuffles.
EVT SourceType = MVT::Other;
bool AllAnyExt = true;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
// Ignore undef inputs.
if (In.isUndef()) continue;
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
// Abort if the element is not an extension.
if (!ZeroExt && !AnyExt) {
SourceType = MVT::Other;
break;
}
// The input is a ZeroExt or AnyExt. Check the original type.
EVT InTy = In.getOperand(0).getValueType();
// Check that all of the widened source types are the same.
if (SourceType == MVT::Other)
// First time.
SourceType = InTy;
else if (InTy != SourceType) {
// Multiple income types. Abort.
SourceType = MVT::Other;
break;
}
// Check if all of the extends are ANY_EXTENDs.
AllAnyExt &= AnyExt;
}
// In order to have valid types, all of the inputs must be extended from the
// same source type and all of the inputs must be any or zero extend.
// Scalar sizes must be a power of two.
EVT OutScalarTy = VT.getScalarType();
bool ValidTypes = SourceType != MVT::Other &&
isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
isPowerOf2_32(SourceType.getSizeInBits());
// Create a new simpler BUILD_VECTOR sequence which other optimizations can
// turn into a single shuffle instruction.
if (!ValidTypes)
return SDValue();
bool isLE = DAG.getDataLayout().isLittleEndian();
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
assert(ElemRatio > 1 && "Invalid element size ratio");
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
DAG.getConstant(0, DL, SourceType);
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
// Populate the new build_vector
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Cast = N->getOperand(i);
assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
Cast.getOpcode() == ISD::ZERO_EXTEND ||
Cast.isUndef()) && "Invalid cast opcode");
SDValue In;
if (Cast.isUndef())
In = DAG.getUNDEF(SourceType);
else
In = Cast->getOperand(0);
unsigned Index = isLE ? (i * ElemRatio) :
(i * ElemRatio + (ElemRatio - 1));
assert(Index < Ops.size() && "Invalid index");
Ops[Index] = In;
}
// The type of the new BUILD_VECTOR node.
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
"Invalid vector size");
// Check if the new vector type is legal.
if (!isTypeLegal(VecVT) ||
(!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
return SDValue();
// Make the new BUILD_VECTOR.
SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
// The new BUILD_VECTOR node has the potential to be further optimized.
AddToWorklist(BV.getNode());
// Bitcast to the desired type.
return DAG.getBitcast(VT, BV);
}
SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
ArrayRef<int> VectorMask,
SDValue VecIn1, SDValue VecIn2,
unsigned LeftIdx, bool DidSplitVec) {
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
EVT VT = N->getValueType(0);
EVT InVT1 = VecIn1.getValueType();
EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
unsigned NumElems = VT.getVectorNumElements();
unsigned ShuffleNumElems = NumElems;
// If we artificially split a vector in two already, then the offsets in the
// operands will all be based off of VecIn1, even those in VecIn2.
unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
// We can't generate a shuffle node with mismatched input and output types.
// Try to make the types match the type of the output.
if (InVT1 != VT || InVT2 != VT) {
if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
// If the output vector length is a multiple of both input lengths,
// we can concatenate them and pad the rest with undefs.
unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
assert(NumConcats >= 2 && "Concat needs at least two inputs!");
SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
ConcatOps[0] = VecIn1;
ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
VecIn2 = SDValue();
} else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
return SDValue();
if (!VecIn2.getNode()) {
// If we only have one input vector, and it's twice the size of the
// output, split it in two.
VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
DAG.getConstant(NumElems, DL, IdxTy));
VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
// Since we now have shorter input vectors, adjust the offset of the
// second vector's start.
Vec2Offset = NumElems;
} else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
// VecIn1 is wider than the output, and we have another, possibly
// smaller input. Pad the smaller input with undefs, shuffle at the
// input vector width, and extract the output.
// The shuffle type is different than VT, so check legality again.
if (LegalOperations &&
!TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
return SDValue();
// Legalizing INSERT_SUBVECTOR is tricky - you basically have to
// lower it back into a BUILD_VECTOR. So if the inserted type is
// illegal, don't even try.
if (InVT1 != InVT2) {
if (!TLI.isTypeLegal(InVT2))
return SDValue();
VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
}
ShuffleNumElems = NumElems * 2;
} else {
// Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
// than VecIn1. We can't handle this for now - this case will disappear
// when we start sorting the vectors by type.
return SDValue();
}
} else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
InVT1.getSizeInBits() == VT.getSizeInBits()) {
SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
ConcatOps[0] = VecIn2;
VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
} else {
// TODO: Support cases where the length mismatch isn't exactly by a
// factor of 2.
// TODO: Move this check upwards, so that if we have bad type
// mismatches, we don't create any DAG nodes.
return SDValue();
}
}
// Initialize mask to undef.
SmallVector<int, 8> Mask(ShuffleNumElems, -1);
// Only need to run up to the number of elements actually used, not the
// total number of elements in the shuffle - if we are shuffling a wider
// vector, the high lanes should be set to undef.
for (unsigned i = 0; i != NumElems; ++i) {
if (VectorMask[i] <= 0)
continue;
unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
if (VectorMask[i] == (int)LeftIdx) {
Mask[i] = ExtIndex;
} else if (VectorMask[i] == (int)LeftIdx + 1) {
Mask[i] = Vec2Offset + ExtIndex;
}
}
// The type the input vectors may have changed above.
InVT1 = VecIn1.getValueType();
// If we already have a VecIn2, it should have the same type as VecIn1.
// If we don't, get an undef/zero vector of the appropriate type.
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
if (ShuffleNumElems > NumElems)
Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
return Shuffle;
}
static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
// First, determine where the build vector is not undef.
// TODO: We could extend this to handle zero elements as well as undefs.
int NumBVOps = BV->getNumOperands();
int ZextElt = -1;
for (int i = 0; i != NumBVOps; ++i) {
SDValue Op = BV->getOperand(i);
if (Op.isUndef())
continue;
if (ZextElt == -1)
ZextElt = i;
else
return SDValue();
}
// Bail out if there's no non-undef element.
if (ZextElt == -1)
return SDValue();
// The build vector contains some number of undef elements and exactly
// one other element. That other element must be a zero-extended scalar
// extracted from a vector at a constant index to turn this into a shuffle.
// Also, require that the build vector does not implicitly truncate/extend
// its elements.
// TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
EVT VT = BV->getValueType(0);
SDValue Zext = BV->getOperand(ZextElt);
if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
// The zero-extend must be a multiple of the source size, and we must be
// building a vector of the same size as the source of the extract element.
SDValue Extract = Zext.getOperand(0);
unsigned DestSize = Zext.getValueSizeInBits();
unsigned SrcSize = Extract.getValueSizeInBits();
if (DestSize % SrcSize != 0 ||
Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
return SDValue();
// Create a shuffle mask that will combine the extracted element with zeros
// and undefs.
int ZextRatio = DestSize / SrcSize;
int NumMaskElts = NumBVOps * ZextRatio;
SmallVector<int, 32> ShufMask(NumMaskElts, -1);
for (int i = 0; i != NumMaskElts; ++i) {
if (i / ZextRatio == ZextElt) {
// The low bits of the (potentially translated) extracted element map to
// the source vector. The high bits map to zero. We will use a zero vector
// as the 2nd source operand of the shuffle, so use the 1st element of
// that vector (mask value is number-of-elements) for the high bits.
if (i % ZextRatio == 0)
ShufMask[i] = Extract.getConstantOperandVal(1);
else
ShufMask[i] = NumMaskElts;
}
// Undef elements of the build vector remain undef because we initialize
// the shuffle mask with -1.
}
// buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
// bitcast (shuffle V, ZeroVec, VectorMask)
SDLoc DL(BV);
EVT VecVT = Extract.getOperand(0).getValueType();
SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
ZeroVec, ShufMask, DAG);
if (!Shuf)
return SDValue();
return DAG.getBitcast(VT, Shuf);
}
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If the types of the vectors we're extracting from allow it,
// turn this into a vector_shuffle node.
SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
if (!isTypeLegal(VT))
return SDValue();
if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
return V;
// May only combine to shuffle after legalize if shuffle is legal.
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
return SDValue();
bool UsesZeroVector = false;
unsigned NumElems = N->getNumOperands();
// Record, for each element of the newly built vector, which input vector
// that element comes from. -1 stands for undef, 0 for the zero vector,
// and positive values for the input vectors.
// VectorMask maps each element to its vector number, and VecIn maps vector
// numbers to their initial SDValues.
SmallVector<int, 8> VectorMask(NumElems, -1);
SmallVector<SDValue, 8> VecIn;
VecIn.push_back(SDValue());
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op = N->getOperand(i);
if (Op.isUndef())
continue;
// See if we can use a blend with a zero vector.
// TODO: Should we generalize this to a blend with an arbitrary constant
// vector?
if (isNullConstant(Op) || isNullFPConstant(Op)) {
UsesZeroVector = true;
VectorMask[i] = 0;
continue;
}
// Not an undef or zero. If the input is something other than an
// EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
SDValue ExtractedFromVec = Op.getOperand(0);
const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
return SDValue();
// All inputs must have the same element type as the output.
if (VT.getVectorElementType() !=
ExtractedFromVec.getValueType().getVectorElementType())
return SDValue();
// Have we seen this input vector before?
// The vectors are expected to be tiny (usually 1 or 2 elements), so using
// a map back from SDValues to numbers isn't worth it.
unsigned Idx = std::distance(
VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
if (Idx == VecIn.size())
VecIn.push_back(ExtractedFromVec);
VectorMask[i] = Idx;
}
// If we didn't find at least one input vector, bail out.
if (VecIn.size() < 2)
return SDValue();
// If all the Operands of BUILD_VECTOR extract from same
// vector, then split the vector efficiently based on the maximum
// vector access index and adjust the VectorMask and
// VecIn accordingly.
bool DidSplitVec = false;
if (VecIn.size() == 2) {
unsigned MaxIndex = 0;
unsigned NearestPow2 = 0;
SDValue Vec = VecIn.back();
EVT InVT = Vec.getValueType();
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SmallVector<unsigned, 8> IndexVec(NumElems, 0);
for (unsigned i = 0; i < NumElems; i++) {
if (VectorMask[i] <= 0)
continue;
unsigned Index = N->getOperand(i).getConstantOperandVal(1);
IndexVec[i] = Index;
MaxIndex = std::max(MaxIndex, Index);
}
NearestPow2 = PowerOf2Ceil(MaxIndex);
if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
NumElems * 2 < NearestPow2) {
unsigned SplitSize = NearestPow2 / 2;
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(), SplitSize);
if (TLI.isTypeLegal(SplitVT)) {
SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
DAG.getConstant(SplitSize, DL, IdxTy));
SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
DAG.getConstant(0, DL, IdxTy));
VecIn.pop_back();
VecIn.push_back(VecIn1);
VecIn.push_back(VecIn2);
DidSplitVec = true;
for (unsigned i = 0; i < NumElems; i++) {
if (VectorMask[i] <= 0)
continue;
VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
}
}
}
}
// TODO: We want to sort the vectors by descending length, so that adjacent
// pairs have similar length, and the longer vector is always first in the
// pair.
// TODO: Should this fire if some of the input vectors has illegal type (like
// it does now), or should we let legalization run its course first?
// Shuffle phase:
// Take pairs of vectors, and shuffle them so that the result has elements
// from these vectors in the correct places.
// For example, given:
// t10: i32 = extract_vector_elt t1, Constant:i64<0>
// t11: i32 = extract_vector_elt t2, Constant:i64<0>
// t12: i32 = extract_vector_elt t3, Constant:i64<0>
// t13: i32 = extract_vector_elt t1, Constant:i64<1>
// t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
// We will generate:
// t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
// t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
SmallVector<SDValue, 4> Shuffles;
for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
unsigned LeftIdx = 2 * In + 1;
SDValue VecLeft = VecIn[LeftIdx];
SDValue VecRight =
(LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
VecRight, LeftIdx, DidSplitVec))
Shuffles.push_back(Shuffle);
else
return SDValue();
}
// If we need the zero vector as an "ingredient" in the blend tree, add it
// to the list of shuffles.
if (UsesZeroVector)
Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT));
// If we only have one shuffle, we're done.
if (Shuffles.size() == 1)
return Shuffles[0];
// Update the vector mask to point to the post-shuffle vectors.
for (int &Vec : VectorMask)
if (Vec == 0)
Vec = Shuffles.size() - 1;
else
Vec = (Vec - 1) / 2;
// More than one shuffle. Generate a binary tree of blends, e.g. if from
// the previous step we got the set of shuffles t10, t11, t12, t13, we will
// generate:
// t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
// t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
// t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
// t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
// t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
// t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
// t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
// Make sure the initial size of the shuffle list is even.
if (Shuffles.size() % 2)
Shuffles.push_back(DAG.getUNDEF(VT));
for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
if (CurSize % 2) {
Shuffles[CurSize] = DAG.getUNDEF(VT);
CurSize++;
}
for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
int Left = 2 * In;
int Right = 2 * In + 1;
SmallVector<int, 8> Mask(NumElems, -1);
for (unsigned i = 0; i != NumElems; ++i) {
if (VectorMask[i] == Left) {
Mask[i] = i;
VectorMask[i] = In;
} else if (VectorMask[i] == Right) {
Mask[i] = i + NumElems;
VectorMask[i] = In;
}
}
Shuffles[In] =
DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
}
}
return Shuffles[0];
}
// Try to turn a build vector of zero extends of extract vector elts into a
// a vector zero extend and possibly an extract subvector.
// TODO: Support sign extend?
// TODO: Allow undef elements?
SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
if (LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
bool FoundZeroExtend = false;
SDValue Op0 = N->getOperand(0);
auto checkElem = [&](SDValue Op) -> int64_t {
unsigned Opc = Op.getOpcode();
FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
return C->getZExtValue();
return -1;
};
// Make sure the first element matches
// (zext (extract_vector_elt X, C))
int64_t Offset = checkElem(Op0);
if (Offset < 0)
return SDValue();
unsigned NumElems = N->getNumOperands();
SDValue In = Op0.getOperand(0).getOperand(0);
EVT InSVT = In.getValueType().getScalarType();
EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
// Don't create an illegal input type after type legalization.
if (LegalTypes && !TLI.isTypeLegal(InVT))
return SDValue();
// Ensure all the elements come from the same vector and are adjacent.
for (unsigned i = 1; i != NumElems; ++i) {
if ((Offset + i) != checkElem(N->getOperand(i)))
return SDValue();
}
SDLoc DL(N);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
Op0.getOperand(0).getOperand(1));
return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
VT, In);
}
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
// A vector built entirely of undefs is undef.
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
// If this is a splat of a bitcast from another vector, change to a
// concat_vector.
// For example:
// (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
// (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
//
// If X is a build_vector itself, the concat can become a larger build_vector.
// TODO: Maybe this is useful for non-splat too?
if (!LegalOperations) {
if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
Splat = peekThroughBitcasts(Splat);
EVT SrcVT = Splat.getValueType();
if (SrcVT.isVector()) {
unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
SrcVT.getVectorElementType(), NumElts);
if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
NewVT, Ops);
return DAG.getBitcast(VT, Concat);
}
}
}
}
// A splat of a single element is a SPLAT_VECTOR if supported on the target.
if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
assert(!V.isUndef() && "Splat of undef should have been handled earlier");
return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
}
// Check if we can express BUILD VECTOR via subvector extract.
if (!LegalTypes && (N->getNumOperands() > 1)) {
SDValue Op0 = N->getOperand(0);
auto checkElem = [&](SDValue Op) -> uint64_t {
if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
(Op0.getOperand(0) == Op.getOperand(0)))
if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return CNode->getZExtValue();
return -1;
};
int Offset = checkElem(Op0);
for (unsigned i = 0; i < N->getNumOperands(); ++i) {
if (Offset + i != checkElem(N->getOperand(i))) {
Offset = -1;
break;
}
}
if ((Offset == 0) &&
(Op0.getOperand(0).getValueType() == N->getValueType(0)))
return Op0.getOperand(0);
if ((Offset != -1) &&
((Offset % N->getValueType(0).getVectorNumElements()) ==
0)) // IDX must be multiple of output size.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
Op0.getOperand(0), Op0.getOperand(1));
}
if (SDValue V = convertBuildVecZextToZext(N))
return V;
if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
return V;
if (SDValue V = reduceBuildVecToShuffle(N))
return V;
return SDValue();
}
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT OpVT = N->getOperand(0).getValueType();
// If the operands are legal vectors, leave them alone.
if (TLI.isTypeLegal(OpVT))
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
SmallVector<SDValue, 8> Ops;
EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
// Keep track of what we encounter.
bool AnyInteger = false;
bool AnyFP = false;
for (const SDValue &Op : N->ops()) {
if (ISD::BITCAST == Op.getOpcode() &&
!Op.getOperand(0).getValueType().isVector())
Ops.push_back(Op.getOperand(0));
else if (ISD::UNDEF == Op.getOpcode())
Ops.push_back(ScalarUndef);
else
return SDValue();
// Note whether we encounter an integer or floating point scalar.
// If it's neither, bail out, it could be something weird like x86mmx.
EVT LastOpVT = Ops.back().getValueType();
if (LastOpVT.isFloatingPoint())
AnyFP = true;
else if (LastOpVT.isInteger())
AnyInteger = true;
else
return SDValue();
}
// If any of the operands is a floating point scalar bitcast to a vector,
// use floating point types throughout, and bitcast everything.
// Replace UNDEFs by another scalar UNDEF node, of the final desired type.
if (AnyFP) {
SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
if (AnyInteger) {
for (SDValue &Op : Ops) {
if (Op.getValueType() == SVT)
continue;
if (Op.isUndef())
Op = ScalarUndef;
else
Op = DAG.getBitcast(SVT, Op);
}
}
}
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
VT.getSizeInBits() / SVT.getSizeInBits());
return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
}
// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
// most two distinct vectors the same size as the result, attempt to turn this
// into a legal shuffle.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
EVT OpVT = N->getOperand(0).getValueType();
int NumElts = VT.getVectorNumElements();
int NumOpElts = OpVT.getVectorNumElements();
SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
SmallVector<int, 8> Mask;
for (SDValue Op : N->ops()) {
Op = peekThroughBitcasts(Op);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (Op.isUndef()) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// What vector are we extracting the subvector from and at what index?
SDValue ExtVec = Op.getOperand(0);
// We want the EVT of the original extraction to correctly scale the
// extraction index.
EVT ExtVT = ExtVec.getValueType();
ExtVec = peekThroughBitcasts(ExtVec);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (ExtVec.isUndef()) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
int ExtIdx = Op.getConstantOperandVal(1);
// Ensure that we are extracting a subvector from a vector the same
// size as the result.
if (ExtVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// Scale the subvector index to account for any bitcast.
int NumExtElts = ExtVT.getVectorNumElements();
if (0 == (NumExtElts % NumElts))
ExtIdx /= (NumExtElts / NumElts);
else if (0 == (NumElts % NumExtElts))
ExtIdx *= (NumElts / NumExtElts);
else
return SDValue();
// At most we can reference 2 inputs in the final shuffle.
if (SV0.isUndef() || SV0 == ExtVec) {
SV0 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx);
} else if (SV1.isUndef() || SV1 == ExtVec) {
SV1 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx + NumElts);
} else {
return SDValue();
}
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
DAG.getBitcast(VT, SV1), Mask, DAG);
}
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
// If we only have one input vector, we don't need to do any concatenation.
if (N->getNumOperands() == 1)
return N->getOperand(0);
// Check if all of the operands are undefs.
EVT VT = N->getValueType(0);
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
// Optimize concat_vectors where all but the first of the vectors are undef.
if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
return Op.isUndef();
})) {
SDValue In = N->getOperand(0);
assert(In.getValueType().isVector() && "Must concat vectors");
// If the input is a concat_vectors, just make a larger concat by padding
// with smaller undefs.
if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
unsigned NumOps = N->getNumOperands() * In.getNumOperands();
SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
SDValue Scalar = peekThroughOneUseBitcasts(In);
// concat_vectors(scalar_to_vector(scalar), undef) ->
// scalar_to_vector(scalar)
if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
Scalar.hasOneUse()) {
EVT SVT = Scalar.getValueType().getVectorElementType();
if (SVT == Scalar.getOperand(0).getValueType())
Scalar = Scalar.getOperand(0);
}
// concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
if (!Scalar.getValueType().isVector()) {
// If the bitcast type isn't legal, it might be a trunc of a legal type;
// look through the trunc so we can still do the transform:
// concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
if (Scalar->getOpcode() == ISD::TRUNCATE &&
!TLI.isTypeLegal(Scalar.getValueType()) &&
TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
Scalar = Scalar->getOperand(0);
EVT SclTy = Scalar.getValueType();
if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
return SDValue();
// Bail out if the vector size is not a multiple of the scalar size.
if (VT.getSizeInBits() % SclTy.getSizeInBits())
return SDValue();
unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
if (VNTNumElms < 2)
return SDValue();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
return SDValue();
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
return DAG.getBitcast(VT, Res);
}
}
// Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
// We have already tested above for an UNDEF only concatenation.
// fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
// -> (BUILD_VECTOR A, B, ..., C, D, ...)
auto IsBuildVectorOrUndef = [](const SDValue &Op) {
return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
};
if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
SmallVector<SDValue, 8> Opnds;
EVT SVT = VT.getScalarType();
EVT MinVT = SVT;
if (!SVT.isFloatingPoint()) {
// If BUILD_VECTOR are from built from integer, they may have different
// operand types. Get the smallest type and truncate all operands to it.
bool FoundMinVT = false;
for (const SDValue &Op : N->ops())
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
EVT OpSVT = Op.getOperand(0).getValueType();
MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
FoundMinVT = true;
}
assert(FoundMinVT && "Concat vector type mismatch");
}
for (const SDValue &Op : N->ops()) {
EVT OpVT = Op.getValueType();
unsigned NumElts = OpVT.getVectorNumElements();
if (ISD::UNDEF == Op.getOpcode())
Opnds.append(NumElts, DAG.getUNDEF(MinVT));
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
if (SVT.isFloatingPoint()) {
assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
} else {
for (unsigned i = 0; i != NumElts; ++i)
Opnds.push_back(
DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
}
}
}
assert(VT.getVectorNumElements() == Opnds.size() &&
"Concat vector type mismatch");
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
}
// Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
if (SDValue V = combineConcatVectorOfScalars(N, DAG))
return V;
// Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
return V;
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
// nodes often generate nop CONCAT_VECTOR nodes.
// Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
// place the incoming vectors at the exact same location.
SDValue SingleSource = SDValue();
unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Op = N->getOperand(i);
if (Op.isUndef())
continue;
// Check if this is the identity extract:
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// Find the single incoming vector for the extract_subvector.
if (SingleSource.getNode()) {
if (Op.getOperand(0) != SingleSource)
return SDValue();
} else {
SingleSource = Op.getOperand(0);
// Check the source type is the same as the type of the result.
// If not, this concat may extend the vector, so we can not
// optimize it away.
if (SingleSource.getValueType() != N->getValueType(0))
return SDValue();
}
auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
// The extract index must be constant.
if (!CS)
return SDValue();
// Check that we are reading from the identity index.
unsigned IdentityIndex = i * PartNumElem;
if (CS->getAPIntValue() != IdentityIndex)
return SDValue();
}
if (SingleSource.getNode())
return SingleSource;
return SDValue();
}
// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
// if the subvector can be sourced for free.
static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
return V.getOperand(1);
}
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
V.getOperand(0).getValueType() == SubVT &&
(IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) {
uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements();
return V.getOperand(SubIdx);
}
return SDValue();
}
static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue BinOp = Extract->getOperand(0);
unsigned BinOpcode = BinOp.getOpcode();
if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
return SDValue();
EVT VecVT = BinOp.getValueType();
SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
return SDValue();
SDValue Index = Extract->getOperand(1);
EVT SubVT = Extract->getValueType(0);
if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT))
return SDValue();
SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
// TODO: We could handle the case where only 1 operand is being inserted by
// creating an extract of the other operand, but that requires checking
// number of uses and/or costs.
if (!Sub0 || !Sub1)
return SDValue();
// We are inserting both operands of the wide binop only to extract back
// to the narrow vector size. Eliminate all of the insert/extract:
// ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
BinOp->getFlags());
}
/// If we are extracting a subvector produced by a wide binary operator try
/// to use a narrow binary operator and/or avoid concatenation and extraction.
static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
// TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
// some of these bailouts with other transforms.
if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG))
return V;
// The extract index must be a constant, so we can map it to a concat operand.
auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
if (!ExtractIndexC)
return SDValue();
// We are looking for an optionally bitcasted wide vector binary operator
// feeding an extract subvector.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
unsigned BOpcode = BinOp.getOpcode();
if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
return SDValue();
// The binop must be a vector type, so we can extract some fraction of it.
EVT WideBVT = BinOp.getValueType();
if (!WideBVT.isVector())
return SDValue();
EVT VT = Extract->getValueType(0);
unsigned ExtractIndex = ExtractIndexC->getZExtValue();
assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
"Extract index is not a multiple of the vector length.");
// Bail out if this is not a proper multiple width extraction.
unsigned WideWidth = WideBVT.getSizeInBits();
unsigned NarrowWidth = VT.getSizeInBits();
if (WideWidth % NarrowWidth != 0)
return SDValue();
// Bail out if we are extracting a fraction of a single operation. This can
// occur because we potentially looked through a bitcast of the binop.
unsigned NarrowingRatio = WideWidth / NarrowWidth;
unsigned WideNumElts = WideBVT.getVectorNumElements();
if (WideNumElts % NarrowingRatio != 0)
return SDValue();
// Bail out if the target does not support a narrower version of the binop.
EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
WideNumElts / NarrowingRatio);
if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
return SDValue();
// If extraction is cheap, we don't need to look at the binop operands
// for concat ops. The narrow binop alone makes this transform profitable.
// We can't just reuse the original extract index operand because we may have
// bitcasted.
unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
// extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
SDLoc DL(Extract);
SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(0), NewExtIndex);
SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(1), NewExtIndex);
SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
BinOp.getNode()->getFlags());
return DAG.getBitcast(VT, NarrowBinOp);
}
// Only handle the case where we are doubling and then halving. A larger ratio
// may require more than two narrow binops to replace the wide binop.
if (NarrowingRatio != 2)
return SDValue();
// TODO: The motivating case for this transform is an x86 AVX1 target. That
// target has temptingly almost legal versions of bitwise logic ops in 256-bit
// flavors, but no other 256-bit integer support. This could be extended to
// handle any binop, but that may require fixing/adding other folds to avoid
// codegen regressions.
if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
return SDValue();
// We need at least one concatenation operation of a binop operand to make
// this transform worthwhile. The concat must double the input vector sizes.
auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
return V.getOperand(ConcatOpNum);
return SDValue();
};
SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
if (SubVecL || SubVecR) {
// If a binop operand was not the result of a concat, we must extract a
// half-sized operand for our new narrow binop:
// extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
// extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
// extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
SDLoc DL(Extract);
SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(0), IndexC);
SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(1), IndexC);
SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
return DAG.getBitcast(VT, NarrowBinOp);
}
return SDValue();
}
/// If we are extracting a subvector from a wide vector load, convert to a
/// narrow load to eliminate the extraction:
/// (extract_subvector (load wide vector)) --> (load narrow vector)
static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
// TODO: Add support for big-endian. The offset calculation must be adjusted.
if (DAG.getDataLayout().isBigEndian())
return SDValue();
auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
!ExtIdx)
return SDValue();
// Allow targets to opt-out.
EVT VT = Extract->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
return SDValue();
// The narrow load will be offset from the base address of the old load if
// we are extracting from something besides index 0 (little-endian).
SDLoc DL(Extract);
SDValue BaseAddr = Ld->getOperand(1);
unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
// TODO: Use "BaseIndexOffset" to make this more effective.
SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
VT.getStoreSize());
SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
return NewLd;
}
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
EVT NVT = N->getValueType(0);
SDValue V = N->getOperand(0);
// Extract from UNDEF is UNDEF.
if (V.isUndef())
return DAG.getUNDEF(NVT);
if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
return NarrowLoad;
// Combine an extract of an extract into a single extract_subvector.
// ext (ext X, C), 0 --> ext X, C
SDValue Index = N->getOperand(1);
if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) {
if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
V.getConstantOperandVal(1)) &&
TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
V.getOperand(1));
}
}
// Try to move vector bitcast after extract_subv by scaling extraction index:
// extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST &&
V.getOperand(0).getValueType().isVector()) {
SDValue SrcOp = V.getOperand(0);
EVT SrcVT = SrcOp.getValueType();
unsigned SrcNumElts = SrcVT.getVectorNumElements();
unsigned DestNumElts = V.getValueType().getVectorNumElements();
if ((SrcNumElts % DestNumElts) == 0) {
unsigned SrcDestRatio = SrcNumElts / DestNumElts;
unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio;
EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
NewExtNumElts);
if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio;
SDLoc DL(N);
SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL);
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
V.getOperand(0), NewIndex);
return DAG.getBitcast(NVT, NewExtract);
}
}
// TODO - handle (DestNumElts % SrcNumElts) == 0
}
// Combine:
// (extract_subvec (concat V1, V2, ...), i)
// Into:
// Vi if possible
// Only operand 0 is checked as 'concat' assumes all inputs of the same
// type.
if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) &&
V.getOperand(0).getValueType() == NVT) {
unsigned Idx = N->getConstantOperandVal(1);
unsigned NumElems = NVT.getVectorNumElements();
assert((Idx % NumElems) == 0 &&
"IDX in concat is not a multiple of the result vector length.");
return V->getOperand(Idx / NumElems);
}
V = peekThroughBitcasts(V);
// If the input is a build vector. Try to make a smaller build vector.
if (V.getOpcode() == ISD::BUILD_VECTOR) {
if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) {
EVT InVT = V.getValueType();
unsigned ExtractSize = NVT.getSizeInBits();
unsigned EltSize = InVT.getScalarSizeInBits();
// Only do this if we won't split any elements.
if (ExtractSize % EltSize == 0) {
unsigned NumElems = ExtractSize / EltSize;
EVT EltVT = InVT.getVectorElementType();
EVT ExtractVT = NumElems == 1 ? EltVT
: EVT::getVectorVT(*DAG.getContext(),
EltVT, NumElems);
if ((Level < AfterLegalizeDAG ||
(NumElems == 1 ||
TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
(!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
unsigned IdxVal = IdxC->getZExtValue();
IdxVal *= NVT.getScalarSizeInBits();
IdxVal /= EltSize;
if (NumElems == 1) {
SDValue Src = V->getOperand(IdxVal);
if (EltVT != Src.getValueType())
Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
return DAG.getBitcast(NVT, Src);
}
// Extract the pieces from the original build_vector.
SDValue BuildVec = DAG.getBuildVector(
ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems));
return DAG.getBitcast(NVT, BuildVec);
}
}
}
}
if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
// Handle only simple case where vector being inserted and vector
// being extracted are of same size.
EVT SmallVT = V.getOperand(1).getValueType();
if (!NVT.bitsEq(SmallVT))
return SDValue();
// Only handle cases where both indexes are constants.
auto *ExtIdx = dyn_cast<ConstantSDNode>(Index);
auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
if (InsIdx && ExtIdx) {
// Combine:
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
// Into:
// indices are equal or bit offsets are equal => V1
// otherwise => (extract_subvec V1, ExtIdx)
if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
return DAG.getBitcast(NVT, V.getOperand(1));
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
Index);
}
}
if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
return NarrowBOp;
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
/// followed by concatenation. Narrow vector ops may have better performance
/// than wide ops, and this can unlock further narrowing of other vector ops.
/// Targets can invert this transform later if it is not profitable.
static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
SelectionDAG &DAG) {
SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
!N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
return SDValue();
// Split the wide shuffle mask into halves. Any mask element that is accessing
// operand 1 is offset down to account for narrowing of the vectors.
ArrayRef<int> Mask = Shuf->getMask();
EVT VT = Shuf->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
unsigned HalfNumElts = NumElts / 2;
SmallVector<int, 16> Mask0(HalfNumElts, -1);
SmallVector<int, 16> Mask1(HalfNumElts, -1);
for (unsigned i = 0; i != NumElts; ++i) {
if (Mask[i] == -1)
continue;
int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
if (i < HalfNumElts)
Mask0[i] = M;
else
Mask1[i - HalfNumElts] = M;
}
// Ask the target if this is a valid transform.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
HalfNumElts);
if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
!TLI.isShuffleMaskLegal(Mask1, HalfVT))
return SDValue();
// shuffle (concat X, undef), (concat Y, undef), Mask -->
// concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
SDLoc DL(Shuf);
SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
}
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
// or turn a shuffle of a single concat into simpler shuffle then concat.
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
ArrayRef<int> Mask = SVN->getMask();
SmallVector<SDValue, 4> Ops;
EVT ConcatVT = N0.getOperand(0).getValueType();
unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
unsigned NumConcats = NumElts / NumElemsPerConcat;
auto IsUndefMaskElt = [](int i) { return i == -1; };
// Special case: shuffle(concat(A,B)) can be more efficiently represented
// as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
// half vector elements.
if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
IsUndefMaskElt)) {
N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
N0.getOperand(1),
Mask.slice(0, NumElemsPerConcat));
N1 = DAG.getUNDEF(ConcatVT);
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
}
// Look at every vector that's inserted. We're looking for exact
// subvector-sized copies from a concatenated vector
for (unsigned I = 0; I != NumConcats; ++I) {
unsigned Begin = I * NumElemsPerConcat;
ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
// Make sure we're dealing with a copy.
if (llvm::all_of(SubMask, IsUndefMaskElt)) {
Ops.push_back(DAG.getUNDEF(ConcatVT));
continue;
}
int OpIdx = -1;
for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
if (IsUndefMaskElt(SubMask[i]))
continue;
if ((SubMask[i] % (int)NumElemsPerConcat) != i)
return SDValue();
int EltOpIdx = SubMask[i] / NumElemsPerConcat;
if (0 <= OpIdx && EltOpIdx != OpIdx)
return SDValue();
OpIdx = EltOpIdx;
}
assert(0 <= OpIdx && "Unknown concat_vectors op");
if (OpIdx < (int)N0.getNumOperands())
Ops.push_back(N0.getOperand(OpIdx));
else
Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
//
// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
// a simplification in some sense, but it isn't appropriate in general: some
// BUILD_VECTORs are substantially cheaper than others. The general case
// of a BUILD_VECTOR requires inserting each element individually (or
// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
// all constants is a single constant pool load. A BUILD_VECTOR where each
// element is identical is a splat. A BUILD_VECTOR where most of the operands
// are undef lowers to a small number of element insertions.
//
// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
// We don't fold shuffles where one side is a non-zero constant, and we don't
// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
// non-constant operands. This seems to work out reasonably well in practice.
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT = SVN->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = SVN->getOperand(0);
SDValue N1 = SVN->getOperand(1);
if (!N0->hasOneUse())
return SDValue();
// If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
// discussed above.
if (!N1.isUndef()) {
if (!N1->hasOneUse())
return SDValue();
bool N0AnyConst = isAnyConstantBuildVector(N0);
bool N1AnyConst = isAnyConstantBuildVector(N1);
if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
return SDValue();
if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
return SDValue();
}
// If both inputs are splats of the same value then we can safely merge this
// to a single BUILD_VECTOR with undef elements based on the shuffle mask.
bool IsSplat = false;
auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
if (BV0 && BV1)
if (SDValue Splat0 = BV0->getSplatValue())
IsSplat = (Splat0 == BV1->getSplatValue());
SmallVector<SDValue, 8> Ops;
SmallSet<SDValue, 16> DuplicateOps;
for (int M : SVN->getMask()) {
SDValue Op = DAG.getUNDEF(VT.getScalarType());
if (M >= 0) {
int Idx = M < (int)NumElts ? M : M - NumElts;
SDValue &S = (M < (int)NumElts ? N0 : N1);
if (S.getOpcode() == ISD::BUILD_VECTOR) {
Op = S.getOperand(Idx);
} else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
SDValue Op0 = S.getOperand(0);
Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
} else {
// Operand can't be combined - bail out.
return SDValue();
}
}
// Don't duplicate a non-constant BUILD_VECTOR operand unless we're
// generating a splat; semantically, this is fine, but it's likely to
// generate low-quality code if the target can't reconstruct an appropriate
// shuffle.
if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
if (!IsSplat && !DuplicateOps.insert(Op).second)
return SDValue();
Ops.push_back(Op);
}
// BUILD_VECTOR requires all inputs to be of the same type, find the
// maximum type and extend them all.
EVT SVT = VT.getScalarType();
if (SVT.isInteger())
for (SDValue &Op : Ops)
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
if (SVT != VT.getScalarType())
for (SDValue &Op : Ops)
Op = TLI.isZExtFree(Op.getValueType(), SVT)
? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
: DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
}
// Match shuffles that can be converted to any_vector_extend_in_reg.
// This is often generated during legalization.
// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG,
const TargetLowering &TLI,
bool LegalOperations) {
EVT VT = SVN->getValueType(0);
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
// TODO Add support for big-endian when we have a test case.
if (!VT.isInteger() || IsBigEndian)
return SDValue();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
ArrayRef<int> Mask = SVN->getMask();
SDValue N0 = SVN->getOperand(0);
// shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
for (unsigned i = 0; i != NumElts; ++i) {
if (Mask[i] < 0)
continue;
if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
continue;
return false;
}
return true;
};
// Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
// power-of-2 extensions as they are the most likely.
for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
// Check for non power of 2 vector sizes
if (NumElts % Scale != 0)
continue;
if (!isAnyExtend(Scale))
continue;
EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
// Never create an illegal type. Only create unsupported operations if we
// are pre-legalization.
if (TLI.isTypeLegal(OutVT))
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
return DAG.getBitcast(VT,
DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
SDLoc(SVN), OutVT, N0));
}
return SDValue();
}
// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
// each source element of a large type into the lowest elements of a smaller
// destination type. This is often generated during legalization.
// If the source node itself was a '*_extend_vector_inreg' node then we should
// then be able to remove it.
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG) {
EVT VT = SVN->getValueType(0);
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
// TODO Add support for big-endian when we have a test case.
if (!VT.isInteger() || IsBigEndian)
return SDValue();
SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
unsigned Opcode = N0.getOpcode();
if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
return SDValue();
SDValue N00 = N0.getOperand(0);
ArrayRef<int> Mask = SVN->getMask();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
return SDValue();
unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
// (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
// (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
// (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
for (unsigned i = 0; i != NumElts; ++i) {
if (Mask[i] < 0)
continue;
if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
continue;
return false;
}
return true;
};
// At the moment we just handle the case where we've truncated back to the
// same size as before the extension.
// TODO: handle more extension/truncation cases as cases arise.
if (EltSizeInBits != ExtSrcSizeInBits)
return SDValue();
// We can remove *extend_vector_inreg only if the truncation happens at
// the same scale as the extension.
if (isTruncate(ExtScale))
return DAG.getBitcast(VT, N00);
return SDValue();
}
// Combine shuffles of splat-shuffles of the form:
// shuffle (shuffle V, undef, splat-mask), undef, M
// If splat-mask contains undef elements, we need to be careful about
// introducing undef's in the folded mask which are not the result of composing
// the masks of the shuffles.
static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
SelectionDAG &DAG) {
if (!Shuf->getOperand(1).isUndef())
return SDValue();
auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
if (!Splat || !Splat->isSplat())
return SDValue();
ArrayRef<int> ShufMask = Shuf->getMask();
ArrayRef<int> SplatMask = Splat->getMask();
assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
// Prefer simplifying to the splat-shuffle, if possible. This is legal if
// every undef mask element in the splat-shuffle has a corresponding undef
// element in the user-shuffle's mask or if the composition of mask elements
// would result in undef.
// Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
// * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
// In this case it is not legal to simplify to the splat-shuffle because we
// may be exposing the users of the shuffle an undef element at index 1
// which was not there before the combine.
// * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
// In this case the composition of masks yields SplatMask, so it's ok to
// simplify to the splat-shuffle.
// * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
// In this case the composed mask includes all undef elements of SplatMask
// and in addition sets element zero to undef. It is safe to simplify to
// the splat-shuffle.
auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
ArrayRef<int> SplatMask) {
for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
if (UserMask[i] != -1 && SplatMask[i] == -1 &&
SplatMask[UserMask[i]] != -1)
return false;
return true;
};
if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
return Shuf->getOperand(0);
// Create a new shuffle with a mask that is composed of the two shuffles'
// masks.
SmallVector<int, 32> NewMask;
for (int Idx : ShufMask)
NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
Splat->getOperand(0), Splat->getOperand(1),
NewMask);
}
/// If the shuffle mask is taking exactly one element from the first vector
/// operand and passing through all other elements from the second vector
/// operand, return the index of the mask element that is choosing an element
/// from the first operand. Otherwise, return -1.
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
int MaskSize = Mask.size();
int EltFromOp0 = -1;
// TODO: This does not match if there are undef elements in the shuffle mask.
// Should we ignore undefs in the shuffle mask instead? The trade-off is
// removing an instruction (a shuffle), but losing the knowledge that some
// vector lanes are not needed.
for (int i = 0; i != MaskSize; ++i) {
if (Mask[i] >= 0 && Mask[i] < MaskSize) {
// We're looking for a shuffle of exactly one element from operand 0.
if (EltFromOp0 != -1)
return -1;
EltFromOp0 = i;
} else if (Mask[i] != i + MaskSize) {
// Nothing from operand 1 can change lanes.
return -1;
}
}
return EltFromOp0;
}
/// If a shuffle inserts exactly one element from a source vector operand into
/// another vector operand and we can access the specified element as a scalar,
/// then we can eliminate the shuffle.
static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
SelectionDAG &DAG) {
// First, check if we are taking one element of a vector and shuffling that
// element into another vector.
ArrayRef<int> Mask = Shuf->getMask();
SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
SDValue Op0 = Shuf->getOperand(0);
SDValue Op1 = Shuf->getOperand(1);
int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
if (ShufOp0Index == -1) {
// Commute mask and check again.
ShuffleVectorSDNode::commuteMask(CommutedMask);
ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
if (ShufOp0Index == -1)
return SDValue();
// Commute operands to match the commuted shuffle mask.
std::swap(Op0, Op1);
Mask = CommutedMask;
}
// The shuffle inserts exactly one element from operand 0 into operand 1.
// Now see if we can access that element as a scalar via a real insert element
// instruction.
// TODO: We can try harder to locate the element as a scalar. Examples: it
// could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
"Shuffle mask value must be from operand 0");
if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
return SDValue();
auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
return SDValue();
// There's an existing insertelement with constant insertion index, so we
// don't need to check the legality/profitability of a replacement operation
// that differs at most in the constant value. The target should be able to
// lower any of those in a similar way. If not, legalization will expand this
// to a scalar-to-vector plus shuffle.
//
// Note that the shuffle may move the scalar from the position that the insert
// element used. Therefore, our new insert element occurs at the shuffle's
// mask index value, not the insert's index value.
// shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
Op0.getOperand(2).getValueType());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
Op1, Op0.getOperand(1), NewInsIndex);
}
/// If we have a unary shuffle of a shuffle, see if it can be folded away
/// completely. This has the potential to lose undef knowledge because the first
/// shuffle may not have an undef mask element where the second one does. So
/// only call this after doing simplifications based on demanded elements.
static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
// shuf (shuf0 X, Y, Mask0), undef, Mask
auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
if (!Shuf0 || !Shuf->getOperand(1).isUndef())
return SDValue();
ArrayRef<int> Mask = Shuf->getMask();
ArrayRef<int> Mask0 = Shuf0->getMask();
for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
// Ignore undef elements.
if (Mask[i] == -1)
continue;
assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
// Is the element of the shuffle operand chosen by this shuffle the same as
// the element chosen by the shuffle operand itself?
if (Mask0[Mask[i]] != Mask0[i])
return SDValue();
}
// Every element of this shuffle is identical to the result of the previous
// shuffle, so we can replace this value.
return Shuf->getOperand(0);
}
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
// Canonicalize shuffle undef, undef -> undef
if (N0.isUndef() && N1.isUndef())
return DAG.getUNDEF(VT);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
// Canonicalize shuffle v, v -> v, undef
if (N0 == N1) {
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) Idx -= NumElts;
NewMask.push_back(Idx);
}
return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N0.isUndef())
return DAG.getCommutedVectorShuffle(*SVN);
// Remove references to rhs if it is undef
if (N1.isUndef()) {
bool Changed = false;
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) {
Idx = -1;
Changed = true;
}
NewMask.push_back(Idx);
}
if (Changed)
return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
}
if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
return InsElt;
// A shuffle of a single vector that is a splatted value can always be folded.
if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
return V;
// If it is a splat, check if the argument vector is another splat or a
// build_vector.
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
int SplatIndex = SVN->getSplatIndex();
if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
// splat (vector_bo L, R), Index -->
// splat (scalar_bo (extelt L, Index), (extelt R, Index))
SDValue L = N0.getOperand(0), R = N0.getOperand(1);
SDLoc DL(N);
EVT EltVT = VT.getScalarType();
SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL);
SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
N0.getNode()->getFlags());
SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
}
// If this is a bit convert that changes the element type of the vector but
// not the number of vector elements, look through it. Be careful not to
// look though conversions that change things like v4f32 to v2f64.
SDNode *V = N0.getNode();
if (V->getOpcode() == ISD::BITCAST) {
SDValue ConvInput = V->getOperand(0);
if (ConvInput.getValueType().isVector() &&
ConvInput.getValueType().getVectorNumElements() == NumElts)
V = ConvInput.getNode();
}
if (V->getOpcode() == ISD::BUILD_VECTOR) {
assert(V->getNumOperands() == NumElts &&
"BUILD_VECTOR has wrong number of operands");
SDValue Base;
bool AllSame = true;
for (unsigned i = 0; i != NumElts; ++i) {
if (!V->getOperand(i).isUndef()) {
Base = V->getOperand(i);
break;
}
}
// Splat of <u, u, u, u>, return <u, u, u, u>
if (!Base.getNode())
return N0;
for (unsigned i = 0; i != NumElts; ++i) {
if (V->getOperand(i) != Base) {
AllSame = false;
break;
}
}
// Splat of <x, x, x, x>, return <x, x, x, x>
if (AllSame)
return N0;
// Canonicalize any other splat as a build_vector.
SDValue Splatted = V->getOperand(SplatIndex);
SmallVector<SDValue, 8> Ops(NumElts, Splatted);
SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
// We may have jumped through bitcasts, so the type of the
// BUILD_VECTOR may not match the type of the shuffle.
if (V->getValueType(0) != VT)
NewBV = DAG.getBitcast(VT, NewBV);
return NewBV;
}
}
// Simplify source operands based on shuffle mask.
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
// This is intentionally placed after demanded elements simplification because
// it could eliminate knowledge of undef elements created by this shuffle.
if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
return ShufOp;
// Match shuffles that can be converted to any_vector_extend_in_reg.
if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
return V;
// Combine "truncate_vector_in_reg" style shuffles.
if (SDValue V = combineTruncationShuffle(SVN, DAG))
return V;
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
Level < AfterLegalizeVectorOps &&
(N1.isUndef() ||
(N1.getOpcode() == ISD::CONCAT_VECTORS &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
if (SDValue V = partitionShuffleOfConcats(N, DAG))
return V;
}
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
return Res;
// If this shuffle only has a single input that is a bitcasted shuffle,
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output
// back to their original types.
if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N1.isUndef() && Level < AfterLegalizeVectorOps &&
TLI.isTypeLegal(VT)) {
auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
if (Scale == 1)
return SmallVector<int, 8>(Mask.begin(), Mask.end());
SmallVector<int, 8> NewMask;
for (int M : Mask)
for (int s = 0; s != Scale; ++s)
NewMask.push_back(M < 0 ? -1 : Scale * M + s);
return NewMask;
};
SDValue BC0 = peekThroughOneUseBitcasts(N0);
if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
EVT SVT = VT.getScalarType();
EVT InnerVT = BC0->getValueType(0);
EVT InnerSVT = InnerVT.getScalarType();
// Determine which shuffle works with the smaller scalar type.
EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
EVT ScaleSVT = ScaleVT.getScalarType();
if (TLI.isTypeLegal(ScaleVT) &&
0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
// Scale the shuffle masks to the smaller scalar type.
ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
SmallVector<int, 8> InnerMask =
ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
SmallVector<int, 8> OuterMask =
ScaleShuffleMask(SVN->getMask(), OuterScale);
// Merge the shuffle masks.
SmallVector<int, 8> NewMask;
for (int M : OuterMask)
NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
// Test for shuffle mask legality over both commutations.
SDValue SV0 = BC0->getOperand(0);
SDValue SV1 = BC0->getOperand(1);
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
if (!LegalMask) {
std::swap(SV0, SV1);
ShuffleVectorSDNode::commuteMask(NewMask);
LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
}
if (LegalMask) {
SV0 = DAG.getBitcast(ScaleVT, SV0);
SV1 = DAG.getBitcast(ScaleVT, SV1);
return DAG.getBitcast(
VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
}
}
}
}
// Canonicalize shuffles according to rules:
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
TLI.isTypeLegal(VT)) {
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(N1->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0 = N1->getOperand(0);
SDValue SV1 = N1->getOperand(1);
bool HasSameOp0 = N0 == SV0;
bool IsSV1Undef = SV1.isUndef();
if (HasSameOp0 || IsSV1Undef || N0 == SV1)
// Commute the operands of this shuffle so that next rule
// will trigger.
return DAG.getCommutedVectorShuffle(*SVN);
}
// Try to fold according to rules:
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
// Don't try to fold shuffles with illegal type.
// Only fold if this shuffle is the only user of the other shuffle.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
// Don't try to fold splats; they're likely to simplify somehow, or they
// might be free.
if (OtherSV->isSplat())
return SDValue();
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(OtherSV->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0, SV1;
SmallVector<int, 4> Mask;
// Compute the combined shuffle mask for a shuffle with SV0 as the first
// operand, and SV1 as the second operand.
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
SDValue CurrentVec;
if (Idx < (int)NumElts) {
// This shuffle index refers to the inner shuffle N0. Lookup the inner
// shuffle mask to identify which vector is actually referenced.
Idx = OtherSV->getMaskElt(Idx);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
: OtherSV->getOperand(1);
} else {
// This shuffle index references an element within N1.
CurrentVec = N1;
}
// Simple case where 'CurrentVec' is UNDEF.
if (CurrentVec.isUndef()) {
Mask.push_back(-1);
continue;
}
// Canonicalize the shuffle index. We don't know yet if CurrentVec
// will be the first or second operand of the combined shuffle.
Idx = Idx % NumElts;
if (!SV0.getNode() || SV0 == CurrentVec) {
// Ok. CurrentVec is the left hand side.
// Update the mask accordingly.
SV0 = CurrentVec;
Mask.push_back(Idx);
continue;
}
// Bail out if we cannot convert the shuffle pair into a single shuffle.
if (SV1.getNode() && SV1 != CurrentVec)
return SDValue();
// Ok. CurrentVec is the right hand side.
// Update the mask accordingly.
SV1 = CurrentVec;
Mask.push_back(Idx + NumElts);
}
// Check if all indices in Mask are Undef. In case, propagate Undef.
bool isUndefMask = true;
for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
isUndefMask &= Mask[i] < 0;
if (isUndefMask)
return DAG.getUNDEF(VT);
if (!SV0.getNode())
SV0 = DAG.getUNDEF(VT);
if (!SV1.getNode())
SV1 = DAG.getUNDEF(VT);
// Avoid introducing shuffles with illegal mask.
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG);
}
if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
return V;
return SDValue();
}
SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
SDValue InVal = N->getOperand(0);
EVT VT = N->getValueType(0);
// Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
// with a VECTOR_SHUFFLE and possible truncate.
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue InVec = InVal->getOperand(0);
SDValue EltNo = InVal->getOperand(1);
auto InVecT = InVec.getValueType();
if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
int Elt = C0->getZExtValue();
NewMask[0] = Elt;
// If we have an implict truncate do truncate here as long as it's legal.
// if it's not legal, this should
if (VT.getScalarType() != InVal.getValueType() &&
InVal.getValueType().isScalarInteger() &&
isTypeLegal(VT.getScalarType())) {
SDValue Val =
DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
}
if (VT.getScalarType() == InVecT.getScalarType() &&
VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
SDValue LegalShuffle =
TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
DAG.getUNDEF(InVecT), NewMask, DAG);
if (LegalShuffle) {
// If the initial vector is the correct size this shuffle is a
// valid result.
if (VT == InVecT)
return LegalShuffle;
// If not we must truncate the vector.
if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
EVT SubVT =
EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
VT.getVectorNumElements());
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
LegalShuffle, ZeroIdx);
}
}
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
// If inserting an UNDEF, just return the original vector.
if (N1.isUndef())
return N0;
// If this is an insert of an extracted vector into an undef vector, we can
// just use the input to the extract.
if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
return N1.getOperand(0);
// If we are inserting a bitcast value into an undef, with the same
// number of elements, just use the bitcast input of the extract.
// i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
// BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getOperand(0).getOperand(1) == N2 &&
N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
VT.getVectorNumElements() &&
N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
VT.getSizeInBits()) {
return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
}
// If both N1 and N2 are bitcast values on which insert_subvector
// would makes sense, pull the bitcast through.
// i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
// BITCAST (INSERT_SUBVECTOR N0 N1 N2)
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
SDValue CN0 = N0.getOperand(0);
SDValue CN1 = N1.getOperand(0);
EVT CN0VT = CN0.getValueType();
EVT CN1VT = CN1.getValueType();
if (CN0VT.isVector() && CN1VT.isVector() &&
CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
CN0.getValueType(), CN0, CN1, N2);
return DAG.getBitcast(VT, NewINSERT);
}
}
// Combine INSERT_SUBVECTORs where we are inserting to the same index.
// INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
// --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
N0.getOperand(1).getValueType() == N1.getValueType() &&
N0.getOperand(2) == N2)
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
N1, N2);
// Eliminate an intermediate insert into an undef vector:
// insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
// insert_subvector undef, X, N2
if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
N1.getOperand(1), N2);
if (!isa<ConstantSDNode>(N2))
return SDValue();
uint64_t InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
// Push subvector bitcasts to the output, adjusting the index as we go.
// insert_subvector(bitcast(v), bitcast(s), c1)
// -> bitcast(insert_subvector(v, s, c2))
if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
N1.getOpcode() == ISD::BITCAST) {
SDValue N0Src = peekThroughBitcasts(N0);
SDValue N1Src = peekThroughBitcasts(N1);
EVT N0SrcSVT = N0Src.getValueType().getScalarType();
EVT N1SrcSVT = N1Src.getValueType().getScalarType();
if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
EVT NewVT;
SDLoc DL(N);
SDValue NewIdx;
MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
LLVMContext &Ctx = *DAG.getContext();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT);
} else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) {
NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale);
NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT);
}
}
if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
SDValue Res = DAG.getBitcast(NewVT, N0Src);
Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
return DAG.getBitcast(VT, Res);
}
}
}
// Canonicalize insert_subvector dag nodes.
// Example:
// (insert_subvector (insert_subvector A, Idx0), Idx1)
// -> (insert_subvector (insert_subvector A, Idx1), Idx0)
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
N1.getValueType() == N0.getOperand(1).getValueType() &&
isa<ConstantSDNode>(N0.getOperand(2))) {
unsigned OtherIdx = N0.getConstantOperandVal(2);
if (InsIdx < OtherIdx) {
// Swap nodes.
SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
N0.getOperand(0), N1, N2);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
VT, NewOp, N0.getOperand(1), N0.getOperand(2));
}
}
// If the input vector is a concatenation, and the insert replaces
// one of the pieces, we can optimize into a single concat_vectors.
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
N0.getOperand(0).getValueType() == N1.getValueType()) {
unsigned Factor = N1.getValueType().getVectorNumElements();
SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
// Simplify source operands based on insertion.
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold (fp_to_fp16 (fp16_to_fp op)) -> op
if (N0->getOpcode() == ISD::FP16_TO_FP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
if (N0->getOpcode() == ISD::AND) {
ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
if (AndConst && AndConst->getAPIntValue() == 0xffff) {
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
N0.getOperand(0));
}
}
return SDValue();
}
SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N0.getValueType();
unsigned Opcode = N->getOpcode();
// VECREDUCE over 1-element vector is just an extract.
if (VT.getVectorNumElements() == 1) {
SDLoc dl(N);
SDValue Res = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
if (Res.getValueType() != N->getValueType(0))
Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
return Res;
}
// On an boolean vector an and/or reduction is the same as a umin/umax
// reduction. Convert them if the latter is legal while the former isn't.
if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
}
return SDValue();
}
/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
/// with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = peekThroughBitcasts(N->getOperand(1));
SDLoc DL(N);
// Make sure we're not running after operation legalization where it
// may have custom lowered the vector shuffles.
if (LegalOperations)
return SDValue();
if (RHS.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
EVT RVT = RHS.getValueType();
unsigned NumElts = RHS.getNumOperands();
// Attempt to create a valid clear mask, splitting the mask into
// sub elements and checking to see if each is
// all zeros or all ones - suitable for shuffle masking.
auto BuildClearMask = [&](int Split) {
int NumSubElts = NumElts * Split;
int NumSubBits = RVT.getScalarSizeInBits() / Split;
SmallVector<int, 8> Indices;
for (int i = 0; i != NumSubElts; ++i) {
int EltIdx = i / Split;
int SubIdx = i % Split;
SDValue Elt = RHS.getOperand(EltIdx);
if (Elt.isUndef()) {
Indices.push_back(-1);
continue;
}
APInt Bits;
if (isa<ConstantSDNode>(Elt))
Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
else if (isa<ConstantFPSDNode>(Elt))
Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
else
return SDValue();
// Extract the sub element from the constant bit mask.
if (DAG.getDataLayout().isBigEndian()) {
Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
} else {
Bits.lshrInPlace(SubIdx * NumSubBits);
}
if (Split > 1)
Bits = Bits.trunc(NumSubBits);
if (Bits.isAllOnesValue())
Indices.push_back(i);
else if (Bits == 0)
Indices.push_back(i + NumSubElts);
else
return SDValue();
}
// Let's see if the target supports this vector_shuffle.
EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
return SDValue();
SDValue Zero = DAG.getConstant(0, DL, ClearVT);
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
DAG.getBitcast(ClearVT, LHS),
Zero, Indices));
};
// Determine maximum split level (byte level masking).
int MaxSplit = 1;
if (RVT.getScalarSizeInBits() % 8 == 0)
MaxSplit = RVT.getScalarSizeInBits() / 8;
for (int Split = 1; Split <= MaxSplit; ++Split)
if (RVT.getScalarSizeInBits() % Split == 0)
if (SDValue S = BuildClearMask(Split))
return S;
return SDValue();
}
/// If a vector binop is performed on splat values, it may be profitable to
/// extract, scalarize, and insert/splat.
static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned Opcode = N->getOpcode();
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// TODO: Remove/replace the extract cost check? If the elements are available
// as scalars, then there may be no extract cost. Should we ask if
// inserting a scalar back into a vector is cheap instead?
int Index0, Index1;
SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
if (!Src0 || !Src1 || Index0 != Index1 ||
Src0.getValueType().getVectorElementType() != EltVT ||
Src1.getValueType().getVectorElementType() != EltVT ||
!TLI.isExtractVecEltCheap(VT, Index0) ||
!TLI.isOperationLegalOrCustom(Opcode, EltVT))
return SDValue();
SDLoc DL(N);
SDValue IndexC =
DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC);
SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC);
SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
// If all lanes but 1 are undefined, no need to splat the scalar result.
// TODO: Keep track of undefs and use that info in the general case.
if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
// bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
// build_vec ..undef, (bo X, Y), undef...
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
Ops[Index0] = ScalarBO;
return DAG.getBuildVector(VT, DL, Ops);
}
// bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
return DAG.getBuildVector(VT, DL, Ops);
}
/// Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
assert(N->getValueType(0).isVector() &&
"SimplifyVBinOp only works on vectors!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Ops[] = {LHS, RHS};
EVT VT = N->getValueType(0);
unsigned Opcode = N->getOpcode();
// See if we can constant fold the vector operation.
if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
return Fold;
// Move unary shuffles with identical masks after a vector binop:
// VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
// --> shuffle (VBinOp A, B), Undef, Mask
// This does not require type legality checks because we are creating the
// same types of operations that are in the original sequence. We do have to
// restrict ops like integer div that have immediate UB (eg, div-by-zero)
// though. This code is adapted from the identical transform in instcombine.
if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
Opcode != ISD::UREM && Opcode != ISD::SREM &&
Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
(LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
SDLoc DL(N);
SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
RHS.getOperand(0), N->getFlags());
SDValue UndefV = LHS.getOperand(1);
return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
}
}
// The following pattern is likely to emerge with vector reduction ops. Moving
// the binary operation ahead of insertion may allow using a narrower vector
// instruction that has better performance than the wide version of the op:
// VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
LHS.getOperand(2) == RHS.getOperand(2) &&
(LHS.hasOneUse() || RHS.hasOneUse())) {
SDValue X = LHS.getOperand(1);
SDValue Y = RHS.getOperand(1);
SDValue Z = LHS.getOperand(2);
EVT NarrowVT = X.getValueType();
if (NarrowVT == Y.getValueType() &&
TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
// (binop undef, undef) may not return undef, so compute that result.
SDLoc DL(N);
SDValue VecC =
DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
}
}
// Make sure all but the first op are undef or constant.
auto ConcatWithConstantOrUndef = [](SDValue Concat) {
return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
std::all_of(std::next(Concat->op_begin()), Concat->op_end(),
[](const SDValue &Op) {
return Op.isUndef() ||
ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
});
};
// The following pattern is likely to emerge with vector reduction ops. Moving
// the binary operation ahead of the concat may allow using a narrower vector
// instruction that has better performance than the wide version of the op:
// VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
// concat (VBinOp X, Y), VecC
if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
(LHS.hasOneUse() || RHS.hasOneUse())) {
EVT NarrowVT = LHS.getOperand(0).getValueType();
if (NarrowVT == RHS.getOperand(0).getValueType() &&
TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
SDLoc DL(N);
unsigned NumOperands = LHS.getNumOperands();
SmallVector<SDValue, 4> ConcatOps;
for (unsigned i = 0; i != NumOperands; ++i) {
// This constant fold for operands 1 and up.
ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
RHS.getOperand(i)));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
}
}
if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
return V;
return SDValue();
}
SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2) {
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If we got a simplified select_cc node back from SimplifySelectCC, then
// break it down into a new SETCC node, and a new SELECT node, and then return
// the SELECT node, since we were called with a SELECT node.
if (SCC.getNode()) {
// Check to see if we got a select_cc back (to turn into setcc/select).
// Otherwise, just return whatever node we got back, like fabs.
if (SCC.getOpcode() == ISD::SELECT_CC) {
const SDNodeFlags Flags = N0.getNode()->getFlags();
SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
N0.getValueType(),
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4), Flags);
AddToWorklist(SETCC.getNode());
SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
SCC.getOperand(2), SCC.getOperand(3));
SelectNode->setFlags(Flags);
return SelectNode;
}
return SCC;
}
return SDValue();
}
/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
/// being selected between, see if we can simplify the select. Callers of this
/// should assume that TheSelect is deleted if this returns true. As such, they
/// should return the appropriate thing (e.g. the node) back to the top-level of
/// the DAG combiner loop to avoid it being looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
SDValue RHS) {
// fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
// The select + setcc is redundant, because fsqrt returns NaN for X < 0.
if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
// We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
SDValue Sqrt = RHS;
ISD::CondCode CC;
SDValue CmpLHS;
const ConstantFPSDNode *Zero = nullptr;
if (TheSelect->getOpcode() == ISD::SELECT_CC) {
CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
CmpLHS = TheSelect->getOperand(0);
Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
} else {
// SELECT or VSELECT
SDValue Cmp = TheSelect->getOperand(0);
if (Cmp.getOpcode() == ISD::SETCC) {
CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
CmpLHS = Cmp.getOperand(0);
Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
}
}
if (Zero && Zero->isZero() &&
Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETLT)) {
// We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
CombineTo(TheSelect, Sqrt);
return true;
}
}
}
// Cannot simplify select with vector condition
if (TheSelect->getOperand(0).getValueType().isVector()) return false;
// If this is a select from two identical things, try to pull the operation
// through the select.
if (LHS.getOpcode() != RHS.getOpcode() ||
!LHS.hasOneUse() || !RHS.hasOneUse())
return false;
// If this is a load and the token chain is identical, replace the select
// of two loads with a load through a select of the address to load from.
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if (LHS.getOpcode() == ISD::LOAD) {
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
// Token chains must be identical.
if (LHS.getOperand(0) != RHS.getOperand(0) ||
// Do not let this transformation reduce the number of volatile loads.
// Be conservative for atomics for the moment
// TODO: This does appear to be legal for unordered atomics (see D66309)
!LLD->isSimple() || !RLD->isSimple() ||
// FIXME: If either is a pre/post inc/dec load,
// we'd need to split out the address adjustment.
LLD->isIndexed() || RLD->isIndexed() ||
// If this is an EXTLOAD, the VT's must match.
LLD->getMemoryVT() != RLD->getMemoryVT() ||
// If this is an EXTLOAD, the kind of extension must match.
(LLD->getExtensionType() != RLD->getExtensionType() &&
// The only exception is if one of the extensions is anyext.
LLD->getExtensionType() != ISD::EXTLOAD &&
RLD->getExtensionType() != ISD::EXTLOAD) ||
// FIXME: this discards src value information. This is
// over-conservative. It would be beneficial to be able to remember
// both potential memory locations. Since we are discarding
// src value info, don't do the transformation if the memory
// locations are not in the default address space.
LLD->getPointerInfo().getAddrSpace() != 0 ||
RLD->getPointerInfo().getAddrSpace() != 0 ||
// We can't produce a CMOV of a TargetFrameIndex since we won't
// generate the address generation required.
LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
!TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
LLD->getBasePtr().getValueType()))
return false;
// The loads must not depend on one another.
if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
return false;
// Check that the select condition doesn't reach either load. If so,
// folding this will induce a cycle into the DAG. If not, this is safe to
// xform, so create a select of the addresses.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
// Always fail if LLD and RLD are not independent. TheSelect is a
// predecessor to all Nodes in question so we need not search past it.
Visited.insert(TheSelect);
Worklist.push_back(LLD);
Worklist.push_back(RLD);
if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
return false;
SDValue Addr;
if (TheSelect->getOpcode() == ISD::SELECT) {
// We cannot do this optimization if any pair of {RLD, LLD} is a
// predecessor to {RLD, LLD, CondNode}. As we've already compared the
// Loads, we only need to check if CondNode is a successor to one of the
// loads. We can further avoid this if there's no use of their chain
// value.
SDNode *CondNode = TheSelect->getOperand(0).getNode();
Worklist.push_back(CondNode);
if ((LLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
(RLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
return false;
Addr = DAG.getSelect(SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0), LLD->getBasePtr(),
RLD->getBasePtr());
} else { // Otherwise SELECT_CC
// We cannot do this optimization if any pair of {RLD, LLD} is a
// predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
// the Loads, we only need to check if CondLHS/CondRHS is a successor to
// one of the loads. We can further avoid this if there's no use of their
// chain value.
SDNode *CondLHS = TheSelect->getOperand(0).getNode();
SDNode *CondRHS = TheSelect->getOperand(1).getNode();
Worklist.push_back(CondLHS);
Worklist.push_back(CondRHS);
if ((LLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
(RLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
return false;
Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0),
TheSelect->getOperand(1),
LLD->getBasePtr(), RLD->getBasePtr(),
TheSelect->getOperand(4));
}
SDValue Load;
// It is safe to replace the two loads if they have different alignments,
// but the new load must be the minimum (most restrictive) alignment of the
// inputs.
unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
if (!RLD->isInvariant())
MMOFlags &= ~MachineMemOperand::MOInvariant;
if (!RLD->isDereferenceable())
MMOFlags &= ~MachineMemOperand::MODereferenceable;
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
// FIXME: Discards pointer and AA info.
Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
MMOFlags);
} else {
// FIXME: Discards pointer and AA info.
Load = DAG.getExtLoad(
LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
: LLD->getExtensionType(),
SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
}
// Users of the select now use the result of the load.
CombineTo(TheSelect, Load);
// Users of the old loads now use the new load's chain. We know the
// old-load value is dead now.
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
return true;
}
return false;
}
/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
/// bitwise 'and'.
SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC) {
// If this is a select where the false operand is zero and the compare is a
// check of the sign bit, see if we can perform the "gzip trick":
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
// select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
EVT XType = N0.getValueType();
EVT AType = N2.getValueType();
if (!isNullConstant(N3) || !XType.bitsGE(AType))
return SDValue();
// If the comparison is testing for a positive value, we have to invert
// the sign bit mask, so only do that transform if the target has a bitwise
// 'and not' instruction (the invert is free).
if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
// (X > -1) ? A : 0
// (X > 0) ? X : 0 <-- This is canonical signed max.
if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
return SDValue();
} else if (CC == ISD::SETLT) {
// (X < 0) ? A : 0
// (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
return SDValue();
} else {
return SDValue();
}
// and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
// constant.
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
if (CC == ISD::SETGT)
Shift = DAG.getNOT(DL, Shift, AType);
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
if (CC == ISD::SETGT)
Shift = DAG.getNOT(DL, Shift, AType);
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
/// in it. This may be a win when the constant is not otherwise available
/// because it replaces two constant pool loads with one.
SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC) {
if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
return SDValue();
// If we are before legalize types, we want the other legalization to happen
// first (for example, to avoid messing with soft float).
auto *TV = dyn_cast<ConstantFPSDNode>(N2);
auto *FV = dyn_cast<ConstantFPSDNode>(N3);
EVT VT = N2.getValueType();
if (!TV || !FV || !TLI.isTypeLegal(VT))
return SDValue();
// If a constant can be materialized without loads, this does not make sense.
if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
return SDValue();
// If both constants have multiple uses, then we won't need to do an extra
// load. The values are likely around in registers for other users.
if (!TV->hasOneUse() && !FV->hasOneUse())
return SDValue();
Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
const_cast<ConstantFP*>(TV->getConstantFPValue()) };
Type *FPTy = Elts[0]->getType();
const DataLayout &TD = DAG.getDataLayout();
// Create a ConstantArray of the two constants.
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
TD.getPrefTypeAlignment(FPTy));
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
// Get offsets to the 0 and 1 elements of the array, so we can select between
// them.
SDValue Zero = DAG.getIntPtrConstant(0, DL);
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
SDValue Cond =
DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
AddToWorklist(Cond.getNode());
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
AddToWorklist(CstOffset.getNode());
CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
AddToWorklist(CPIdx.getNode());
return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(
DAG.getMachineFunction()), Alignment);
}
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare) {
// (x ? y : y) -> y.
if (N2 == N3) return N2;
EVT CmpOpVT = N0.getValueType();
EVT CmpResVT = getSetCCResultType(CmpOpVT);
EVT VT = N2.getValueType();
auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
// Determine if the condition we're dealing with is constant.
if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
AddToWorklist(SCC.getNode());
if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
// fold select_cc true, x, y -> x
// fold select_cc false, x, y -> y
return !(SCCC->isNullValue()) ? N2 : N3;
}
}
if (SDValue V =
convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
return V;
if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
return V;
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
// where y is has a single bit set.
// A plaintext description would be, we can turn the SELECT_CC into an AND
// when the condition can be materialized as an all-ones register. Any
// single bit-test can be materialized as an all-ones register with
// shift-left and shift-right-arith.
// TODO: The operation legality checks could be loosened to include "custom",
// but that may cause regressions for targets that do not have shift
// instructions.
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2) &&
TLI.isOperationLegal(ISD::SHL, VT) &&
TLI.isOperationLegal(ISD::SRA, VT)) {
SDValue AndLHS = N0->getOperand(0);
auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
// Shift the tested bit over the sign bit.
const APInt &AndMask = ConstAndRHS->getAPIntValue();
SDValue ShlAmt =
DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
getShiftAmountTy(AndLHS.getValueType()));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
// Now arithmetic right shift it all the way over, so the result is either
// all-ones, or zero.
SDValue ShrAmt =
DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
getShiftAmountTy(Shl.getValueType()));
SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
}
}
// fold select C, 16, 0 -> shl C, 4
bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
if ((Fold || Swap) &&
TLI.getBooleanContents(CmpOpVT) ==
TargetLowering::ZeroOrOneBooleanContent &&
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
if (Swap) {
CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
std::swap(N2C, N3C);
}
// If the caller doesn't want us to simplify this into a zext of a compare,
// don't do it.
if (NotExtCompare && N2C->isOne())
return SDValue();
SDValue Temp, SCC;
// zext (setcc n0, n1)
if (LegalTypes) {
SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
if (VT.bitsLT(SCC.getValueType()))
Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
else
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
} else {
SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
}
AddToWorklist(SCC.getNode());
AddToWorklist(Temp.getNode());
if (N2C->isOne())
return Temp;
// shl setcc result by log2 n2c
return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
DAG.getConstant(N2C->getAPIntValue().logBase2(),
SDLoc(Temp),
getShiftAmountTy(Temp.getValueType())));
}
// select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
// select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
// select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
// select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
// select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
// select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
// select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
// select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
SDValue ValueOnZero = N2;
SDValue Count = N3;
// If the condition is NE instead of E, swap the operands.
if (CC == ISD::SETNE)
std::swap(ValueOnZero, Count);
// Check if the value on zero is a constant equal to the bits in the type.
if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
// If the other operand is cttz/cttz_zero_undef of N0, and cttz is
// legal, combine to just cttz.
if ((Count.getOpcode() == ISD::CTTZ ||
Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
N0 == Count.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
return DAG.getNode(ISD::CTTZ, DL, VT, N0);
// If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
// legal, combine to just ctlz.
if ((Count.getOpcode() == ISD::CTLZ ||
Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
N0 == Count.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
return DAG.getNode(ISD::CTLZ, DL, VT, N0);
}
}
}
return SDValue();
}
/// This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, const SDLoc &DL,
bool foldBooleans) {
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
/// Given an ISD::SDIV node expressing a divide by constant, return
/// a DAG expression to select that will generate the same value by multiplying
/// by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
// when optimising for minimum size, we don't want to expand a div to a mul
// and a shift.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
/// DAG expression that will generate the same value by right shifting.
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
return SDValue();
// Avoid division by zero.
if (C->isNullValue())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
/// expression that will generate the same value by multiplying by a magic
/// number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
// when optimising for minimum size, we don't want to expand a div to a mul
// and a shift.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Determines the LogBase2 value for a non-null input value using the
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
EVT VT = V.getValueType();
unsigned EltBits = VT.getScalarSizeInBits();
SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
return LogBase2;
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal, we need to find the zero of the function:
/// F(X) = A X - 1 [which has a zero at X = 1/A]
/// =>
/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
/// does not require additional intermediate precision]
/// For the last iteration, put numerator N into it to gain more precision:
/// Result = N X_i + X_i (N - N A X_i)
SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
SDNodeFlags Flags) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// TODO: Handle half and/or extended types?
EVT VT = Op.getValueType();
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
return SDValue();
// If estimates are explicitly disabled for this function, we're done.
MachineFunction &MF = DAG.getMachineFunction();
int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
if (Enabled == TLI.ReciprocalEstimate::Disabled)
return SDValue();
// Estimates may be explicitly enabled for this type with a custom number of
// refinement steps.
int Iterations = TLI.getDivRefinementSteps(VT, MF);
if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
AddToWorklist(Est.getNode());
SDLoc DL(Op);
if (Iterations) {
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
// Newton iterations: Est = Est + Est (N - Arg * Est)
// If this is the last iteration, also multiply by the numerator.
for (int i = 0; i < Iterations; ++i) {
SDValue MulEst = Est;
if (i == Iterations - 1) {
MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
AddToWorklist(MulEst.getNode());
}
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, DL, VT,
(i == Iterations - 1 ? N : FPOne), NewEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
AddToWorklist(Est.getNode());
}
} else {
// If no iterations are available, multiply with N.
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
AddToWorklist(Est.getNode());
}
return Est;
}
return SDValue();
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
/// As a result, we precompute A/2 prior to the iteration loop.
SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
// We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
// this entire sequence requires only one FP constant.
SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
}
// If non-reciprocal square root is requested, multiply the result by Arg.
if (!Reciprocal)
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
return Est;
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
// This routine must enter the loop below to work correctly
// when (Reciprocal == false).
assert(Iterations > 0);
// Newton iterations for reciprocal square root:
// E = (E * -0.5) * ((A * E) * E + -3.0)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
// When calculating a square root at the last iteration build:
// S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
// (notice a common subexpression)
SDValue LHS;
if (Reciprocal || (i + 1) < Iterations) {
// RSQRT: LHS = (E * -0.5)
LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
} else {
// SQRT: LHS = (A * E) * -0.5
LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
}
Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
}
return Est;
}
/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
/// Op can be zero.
SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
bool Reciprocal) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// TODO: Handle half and/or extended types?
EVT VT = Op.getValueType();
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
return SDValue();
// If estimates are explicitly disabled for this function, we're done.
MachineFunction &MF = DAG.getMachineFunction();
int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
if (Enabled == TLI.ReciprocalEstimate::Disabled)
return SDValue();
// Estimates may be explicitly enabled for this type with a custom number of
// refinement steps.
int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
bool UseOneConstNR = false;
if (SDValue Est =
TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
Reciprocal)) {
AddToWorklist(Est.getNode());
if (Iterations) {
Est = UseOneConstNR
? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
: buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
if (!Reciprocal) {
// The estimate is now completely wrong if the input was exactly 0.0 or
// possibly a denormal. Force the answer to 0.0 for those cases.
SDLoc DL(Op);
EVT CCVT = getSetCCResultType(VT);
ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
const Function &F = DAG.getMachineFunction().getFunction();
Attribute Denorms = F.getFnAttribute("denormal-fp-math");
if (Denorms.getValueAsString().equals("ieee")) {
// fabs(X) < SmallestNormal ? 0.0 : Est
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
} else {
// X == 0.0 ? 0.0 : Est
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
}
}
}
return Est;
}
return SDValue();
}
SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
return buildSqrtEstimateImpl(Op, Flags, true);
}
SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
return buildSqrtEstimateImpl(Op, Flags, false);
}
/// Return true if there is any possibility that the two addresses overlap.
bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
struct MemUseCharacteristics {
bool IsVolatile;
bool IsAtomic;
SDValue BasePtr;
int64_t Offset;
Optional<int64_t> NumBytes;
MachineMemOperand *MMO;
};
auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
int64_t Offset = 0;
if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
? C->getSExtValue()
: (LSN->getAddressingMode() == ISD::PRE_DEC)
? -1 * C->getSExtValue()
: 0;
return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
Offset /*base offset*/,
Optional<int64_t>(LSN->getMemoryVT().getStoreSize()),
LSN->getMemOperand()};
}
if (const auto *LN = cast<LifetimeSDNode>(N))
return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
(LN->hasOffset()) ? LN->getOffset() : 0,
(LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
: Optional<int64_t>(),
(MachineMemOperand *)nullptr};
// Default.
return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
(int64_t)0 /*offset*/,
Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
};
MemUseCharacteristics MUC0 = getCharacteristics(Op0),
MUC1 = getCharacteristics(Op1);
// If they are to the same address, then they must be aliases.
if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
MUC0.Offset == MUC1.Offset)
return true;
// If they are both volatile then they cannot be reordered.
if (MUC0.IsVolatile && MUC1.IsVolatile)
return true;
// Be conservative about atomics for the moment
// TODO: This is way overconservative for unordered atomics (see D66309)
if (MUC0.IsAtomic && MUC1.IsAtomic)
return true;
if (MUC0.MMO && MUC1.MMO) {
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
return false;
}
// Try to prove that there is aliasing, or that there is no aliasing. Either
// way, we can return now. If nothing can be proved, proceed with more tests.
bool IsAlias;
if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
DAG, IsAlias))
return IsAlias;
// The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
// either are not known.
if (!MUC0.MMO || !MUC1.MMO)
return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias. These should really be checking the equivalent of mayWrite,
// but it only matters for memory nodes other than load /store.
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
return false;
// If we know required SrcValue1 and SrcValue2 have relatively large
// alignment compared to the size and offset of the access, we may be able
// to prove they do not alias. This check is conservative for now to catch
// cases created by splitting vector types.
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment();
unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment();
if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() &&
*MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) {
int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
// There is no overlap between these relatively aligned accesses of
// similar size. Return no alias.
if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 ||
(OffAlign1 + *MUC1.NumBytes) <= OffAlign0)
return false;
}
bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
? CombinerGlobalAA
: DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
UseAA = false;
#endif
if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset;
int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset;
AliasResult AAResult = AA->alias(
MemoryLocation(MUC0.MMO->getValue(), Overlap0,
UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()));
if (AAResult == NoAlias)
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases) {
SmallVector<SDValue, 8> Chains; // List of chains to visit.
SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
// Get alias information for node.
// TODO: relax aliasing for unordered atomics (see D66309)
const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
// Starting off.
Chains.push_back(OriginalChain);
unsigned Depth = 0;
// Attempt to improve chain by a single step
std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
switch (C.getOpcode()) {
case ISD::EntryToken:
// No need to mark EntryToken.
C = SDValue();
return true;
case ISD::LOAD:
case ISD::STORE: {
// Get alias information for C.
// TODO: Relax aliasing for unordered atomics (see D66309)
bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
cast<LSBaseSDNode>(C.getNode())->isSimple();
if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
// Look further up the chain.
C = C.getOperand(0);
return true;
}
// Alias, so stop here.
return false;
}
case ISD::CopyFromReg:
// Always forward past past CopyFromReg.
C = C.getOperand(0);
return true;
case ISD::LIFETIME_START:
case ISD::LIFETIME_END: {
// We can forward past any lifetime start/end that can be proven not to
// alias the memory access.
if (!isAlias(N, C.getNode())) {
// Look further up the chain.
C = C.getOperand(0);
return true;
}
return false;
}
default:
return false;
}
};
// Look at each chain and determine if it is an alias. If so, add it to the
// aliases list. If not, then continue up the chain looking for the next
// candidate.
while (!Chains.empty()) {
SDValue Chain = Chains.pop_back_val();
// Don't bother if we've seen Chain before.
if (!Visited.insert(Chain.getNode()).second)
continue;
// For TokenFactor nodes, look at each operand and only continue up the
// chain until we reach the depth limit.
//
// FIXME: The depth check could be made to return the last non-aliasing
// chain we found before we hit a tokenfactor rather than the original
// chain.
if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
Aliases.clear();
Aliases.push_back(OriginalChain);
return;
}
if (Chain.getOpcode() == ISD::TokenFactor) {
// We have to check each of the operands of the token factor for "small"
// token factors, so we queue them up. Adding the operands to the queue
// (stack) in reverse order maintains the original order and increases the
// likelihood that getNode will find a matching token factor (CSE.)
if (Chain.getNumOperands() > 16) {
Aliases.push_back(Chain);
continue;
}
for (unsigned n = Chain.getNumOperands(); n;)
Chains.push_back(Chain.getOperand(--n));
++Depth;
continue;
}
// Everything else
if (ImproveChain(Chain)) {
// Updated Chain Found, Consider new chain if one exists.
if (Chain.getNode())
Chains.push_back(Chain);
++Depth;
continue;
}
// No Improved Chain Possible, treat as Alias.
Aliases.push_back(Chain);
}
}
/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
/// (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
if (OptLevel == CodeGenOpt::None)
return OldChain;
// Ops for replacing token factor.
SmallVector<SDValue, 8> Aliases;
// Accumulate all the aliases to this node.
GatherAllAliases(N, OldChain, Aliases);
// If no operands then chain to entry token.
if (Aliases.size() == 0)
return DAG.getEntryNode();
// If a single operand then chain to it. We don't need to revisit it.
if (Aliases.size() == 1)
return Aliases[0];
// Construct a custom tailored token factor.
return DAG.getTokenFactor(SDLoc(N), Aliases);
}
namespace {
// TODO: Replace with with std::monostate when we move to C++17.
struct UnitT { } Unit;
bool operator==(const UnitT &, const UnitT &) { return true; }
bool operator!=(const UnitT &, const UnitT &) { return false; }
} // namespace
// This function tries to collect a bunch of potentially interesting
// nodes to improve the chains of, all at once. This might seem
// redundant, as this function gets called when visiting every store
// node, so why not let the work be done on each store as it's visited?
//
// I believe this is mainly important because MergeConsecutiveStores
// is unable to deal with merging stores of different sizes, so unless
// we improve the chains of all the potential candidates up-front
// before running MergeConsecutiveStores, it might only see some of
// the nodes that will eventually be candidates, and then not be able
// to go from a partially-merged state to the desired final
// fully-merged state.
bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
SmallVector<StoreSDNode *, 8> ChainedStores;
StoreSDNode *STChain = St;
// Intervals records which offsets from BaseIndex have been covered. In
// the common case, every store writes to the immediately previous address
// space and thus merged with the previous interval at insertion time.
using IMap =
llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
IMap::Allocator A;
IMap Intervals(A);
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
// We must have a base and an offset.
if (!BasePtr.getBase().getNode())
return false;
// Do not handle stores to undef base pointers.
if (BasePtr.getBase().isUndef())
return false;
// Add ST's interval.
Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
// If the chain has more than one use, then we can't reorder the mem ops.
if (!SDValue(Chain, 0)->hasOneUse())
break;
// TODO: Relax for unordered atomics (see D66309)
if (!Chain->isSimple() || Chain->isIndexed())
break;
// Find the base pointer and offset for this memory node.
const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
// Check that the base pointer is the same as the original one.
int64_t Offset;
if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
break;
int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
// Make sure we don't overlap with other intervals by checking the ones to
// the left or right before inserting.
auto I = Intervals.find(Offset);
// If there's a next interval, we should end before it.
if (I != Intervals.end() && I.start() < (Offset + Length))
break;
// If there's a previous interval, we should start after it.
if (I != Intervals.begin() && (--I).stop() <= Offset)
break;
Intervals.insert(Offset, Offset + Length, Unit);
ChainedStores.push_back(Chain);
STChain = Chain;
}
// If we didn't find a chained store, exit.
if (ChainedStores.size() == 0)
return false;
// Improve all chained stores (St and ChainedStores members) starting from
// where the store chain ended and return single TokenFactor.
SDValue NewChain = STChain->getChain();
SmallVector<SDValue, 8> TFOps;
for (unsigned I = ChainedStores.size(); I;) {
StoreSDNode *S = ChainedStores[--I];
SDValue BetterChain = FindBetterChain(S, NewChain);
S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
TFOps.push_back(SDValue(S, 0));
ChainedStores[I] = S;
}
// Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
SDValue BetterChain = FindBetterChain(St, NewChain);
SDValue NewST;
if (St->isTruncatingStore())
NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
St->getBasePtr(), St->getMemoryVT(),
St->getMemOperand());
else
NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
St->getBasePtr(), St->getMemOperand());
TFOps.push_back(NewST);
// If we improved every element of TFOps, then we've lost the dependence on
// NewChain to successors of St and we need to add it back to TFOps. Do so at
// the beginning to keep relative order consistent with FindBetterChains.
auto hasImprovedChain = [&](SDValue ST) -> bool {
return ST->getOperand(0) != NewChain;
};
bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
if (AddNewChain)
TFOps.insert(TFOps.begin(), NewChain);
SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
CombineTo(St, TF);
// Add TF and its operands to the worklist.
AddToWorklist(TF.getNode());
for (const SDValue &Op : TF->ops())
AddToWorklist(Op.getNode());
AddToWorklist(STChain);
return true;
}
bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
if (OptLevel == CodeGenOpt::None)
return false;
const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
// We must have a base and an offset.
if (!BasePtr.getBase().getNode())
return false;
// Do not handle stores to undef base pointers.
if (BasePtr.getBase().isUndef())
return false;
// Directly improve a chain of disjoint stores starting at St.
if (parallelizeChainedStores(St))
return true;
// Improve St's Chain..
SDValue BetterChain = FindBetterChain(St, St->getChain());
if (St->getChain() != BetterChain) {
replaceStoreChain(St, BetterChain);
return true;
}
return false;
}
/// This is the entry point for the file.
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
CodeGenOpt::Level OptLevel) {
/// This is the main entry point to this class.
DAGCombiner(*this, AA, OptLevel).Run(Level);
}
|