reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions can be
/// combined to provide implicit vector predication within a low-overhead loop.
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon the iteration counter. This pass looks at these predicated
/// vector loops, that are targets for low-overhead loops, and prepares it for
/// code generation. Once the vectorizer has produced a masked loop, there's a
/// couple of final forms:
/// - A tail-predicated loop, with implicit predication.
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
///   blocks of instructions operating on different vector types.

#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "ARM.h"
#include "ARMSubtarget.h"

using namespace llvm;

#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"

static cl::opt<bool>
DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
                       cl::init(true),
                       cl::desc("Disable MVE Tail Predication"));
namespace {

class MVETailPredication : public LoopPass {
  SmallVector<IntrinsicInst*, 4> MaskedInsts;
  Loop *L = nullptr;
  ScalarEvolution *SE = nullptr;
  TargetTransformInfo *TTI = nullptr;

public:
  static char ID;

  MVETailPredication() : LoopPass(ID) { }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.setPreservesCFG();
  }

  bool runOnLoop(Loop *L, LPPassManager&) override;

private:

  /// Perform the relevant checks on the loop and convert if possible.
  bool TryConvert(Value *TripCount);

  /// Return whether this is a vectorized loop, that contains masked
  /// load/stores.
  bool IsPredicatedVectorLoop();

  /// Compute a value for the total number of elements that the predicated
  /// loop will process.
  Value *ComputeElements(Value *TripCount, VectorType *VecTy);

  /// Is the icmp that generates an i1 vector, based upon a loop counter
  /// and a limit that is defined outside the loop.
  bool isTailPredicate(Instruction *Predicate, Value *NumElements);
};

} // end namespace

static bool IsDecrement(Instruction &I) {
  auto *Call = dyn_cast<IntrinsicInst>(&I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  return ID == Intrinsic::loop_decrement_reg;
}

static bool IsMasked(Instruction *I) {
  auto *Call = dyn_cast<IntrinsicInst>(I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  // TODO: Support gather/scatter expand/compress operations.
  return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
}

bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
  if (skipLoop(L) || DisableTailPredication)
    return false;

  Function &F = *L->getHeader()->getParent();
  auto &TPC = getAnalysis<TargetPassConfig>();
  auto &TM = TPC.getTM<TargetMachine>();
  auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  this->L = L;

  // The MVE and LOB extensions are combined to enable tail-predication, but
  // there's nothing preventing us from generating VCTP instructions for v8.1m.
  if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
    LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n");
    return false;
  }

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;

  auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
    for (auto &I : *BB) {
      auto *Call = dyn_cast<IntrinsicInst>(&I);
      if (!Call)
        continue;

      Intrinsic::ID ID = Call->getIntrinsicID();
      if (ID == Intrinsic::set_loop_iterations ||
          ID == Intrinsic::test_set_loop_iterations)
        return cast<IntrinsicInst>(&I);
    }
    return nullptr;
  };

  // Look for the hardware loop intrinsic that sets the iteration count.
  IntrinsicInst *Setup = FindLoopIterations(Preheader);

  // The test.set iteration could live in the pre- preheader.
  if (!Setup) {
    if (!Preheader->getSinglePredecessor())
      return false;
    Setup = FindLoopIterations(Preheader->getSinglePredecessor());
    if (!Setup)
      return false;
  }

  // Search for the hardware loop intrinic that decrements the loop counter.
  IntrinsicInst *Decrement = nullptr;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      if (IsDecrement(I)) {
        Decrement = cast<IntrinsicInst>(&I);
        break;
      }
    }
  }

  if (!Decrement)
    return false;

  LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L
             << *Setup << "\n"
             << *Decrement << "\n");
  bool Changed = TryConvert(Setup->getArgOperand(0));
  return Changed;
}

bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
  // Look for the following:

  // %trip.count.minus.1 = add i32 %N, -1
  // %broadcast.splatinsert10 = insertelement <4 x i32> undef,
  //                                          i32 %trip.count.minus.1, i32 0
  // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
  //                                    <4 x i32> undef,
  //                                    <4 x i32> zeroinitializer
  // ...
  // ...
  // %index = phi i32
  // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
  // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
  //                                  <4 x i32> undef,
  //                                  <4 x i32> zeroinitializer
  // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
  // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11

  // And return whether V == %pred.

  using namespace PatternMatch;

  CmpInst::Predicate Pred;
  Instruction *Shuffle = nullptr;
  Instruction *Induction = nullptr;

  // The vector icmp
  if (!match(I, m_ICmp(Pred, m_Instruction(Induction),
                       m_Instruction(Shuffle))) ||
      Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle))
    return false;

  // First find the stuff outside the loop which is setting up the limit
  // vector....
  // The invariant shuffle that broadcast the limit into a vector.
  Instruction *Insert = nullptr;
  if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
                                      m_Zero())))
    return false;

  // Insert the limit into a vector.
  Instruction *BECount = nullptr;
  if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount),
                                     m_Zero())))
    return false;

  // The limit calculation, backedge count.
  Value *TripCount = nullptr;
  if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
    return false;

  if (TripCount != NumElements)
    return false;

  // Now back to searching inside the loop body...
  // Find the add with takes the index iv and adds a constant vector to it. 
  Instruction *BroadcastSplat = nullptr;
  Constant *Const = nullptr;
  if (!match(Induction, m_Add(m_Instruction(BroadcastSplat),
                              m_Constant(Const))))
   return false;

  // Check that we're adding <0, 1, 2, 3...
  if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
    for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
      if (CDS->getElementAsInteger(i) != i)
        return false;
    }
  } else
    return false;

  // The shuffle which broadcasts the index iv into a vector.
  if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
                                             m_Zero())))
    return false;

  // The insert element which initialises a vector with the index iv.
  Instruction *IV = nullptr;
  if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
    return false;

  // The index iv.
  auto *Phi = dyn_cast<PHINode>(IV);
  if (!Phi)
    return false;

  // TODO: Don't think we need to check the entry value.
  Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
  if (!match(OnEntry, m_Zero()))
    return false;
  
  Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
  unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements();

  Instruction *LHS = nullptr;
  if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
    return false;
  
  return LHS == Phi;
}

static VectorType* getVectorType(IntrinsicInst *I) {
  unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
  auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
  return cast<VectorType>(PtrTy->getElementType());
}

bool MVETailPredication::IsPredicatedVectorLoop() {
  // Check that the loop contains at least one masked load/store intrinsic.
  // We only support 'normal' vector instructions - other than masked
  // load/stores.
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      if (IsMasked(&I)) {
        VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
        unsigned Lanes = VecTy->getNumElements();
        unsigned ElementWidth = VecTy->getScalarSizeInBits();
        // MVE vectors are 128-bit, but don't support 128 x i1.
        // TODO: Can we support vectors larger than 128-bits?
        unsigned MaxWidth = TTI->getRegisterBitWidth(true); 
        if (Lanes * ElementWidth != MaxWidth || Lanes == MaxWidth)
          return false;
        MaskedInsts.push_back(cast<IntrinsicInst>(&I));
      } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
        for (auto &U : Int->args()) {
          if (isa<VectorType>(U->getType()))
            return false;
        }
      }
    }
  }

  return !MaskedInsts.empty();
}

Value* MVETailPredication::ComputeElements(Value *TripCount,
                                           VectorType *VecTy) {
  const SCEV *TripCountSE = SE->getSCEV(TripCount);
  ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()),
                                     VecTy->getNumElements());

  if (VF->equalsInt(1))
    return nullptr;

  // TODO: Support constant trip counts.
  auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* {
    if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
      if (Const->getAPInt() != -VF->getValue())
        return nullptr;
    } else
      return nullptr;
    return dyn_cast<SCEVMulExpr>(S->getOperand(1));
  };

  auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* {
    if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
      if (Const->getValue() != VF)
        return nullptr;
    } else
      return nullptr;
    return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
  };

  auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* {
    if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
      if (Const->getValue() != VF)
        return nullptr;
    } else
      return nullptr;

    if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
      if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
        if (Const->getAPInt() != (VF->getValue() - 1))
          return nullptr;
      } else
        return nullptr;

      return RoundUp->getOperand(1);
    }
    return nullptr;
  };

  // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
  // determine the numbers of elements instead? Looks like this is what is used
  // for delinearization, but I'm not sure if it can be applied to the
  // vectorized form - at least not without a bit more work than I feel
  // comfortable with.

  // Search for Elems in the following SCEV:
  // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
  const SCEV *Elems = nullptr;
  if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
    if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
      if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
        if (auto *Mul = VisitAdd(Add))
          if (auto *Div = VisitMul(Mul))
            if (auto *Res = VisitDiv(Div))
              Elems = Res;

  if (!Elems)
    return nullptr;

  Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
  if (!isSafeToExpandAt(Elems, InsertPt, *SE))
    return nullptr;

  auto DL = L->getHeader()->getModule()->getDataLayout();
  SCEVExpander Expander(*SE, DL, "elements");
  return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
}

// Look through the exit block to see whether there's a duplicate predicate
// instruction. This can happen when we need to perform a select on values
// from the last and previous iteration. Instead of doing a straight
// replacement of that predicate with the vctp, clone the vctp and place it
// in the block. This means that the VPR doesn't have to be live into the
// exit block which should make it easier to convert this loop into a proper
// tail predicated loop.
static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
                    SetVector<Instruction*> &MaybeDead, Loop *L) {
  if (BasicBlock *Exit = L->getUniqueExitBlock()) {
    for (auto &Pair : NewPredicates) {
      Instruction *OldPred = Pair.first;
      Instruction *NewPred = Pair.second;

      for (auto &I : *Exit) {
        if (I.isSameOperationAs(OldPred)) {
          Instruction *PredClone = NewPred->clone();
          PredClone->insertBefore(&I);
          I.replaceAllUsesWith(PredClone);
          MaybeDead.insert(&I);
          break;
        }
      }
    }
  }

  // Drop references and add operands to check for dead.
  SmallPtrSet<Instruction*, 4> Dead;
  while (!MaybeDead.empty()) {
    auto *I = MaybeDead.front();
    MaybeDead.remove(I);
    if (I->hasNUsesOrMore(1))
      continue;

    for (auto &U : I->operands()) {
      if (auto *OpI = dyn_cast<Instruction>(U))
        MaybeDead.insert(OpI);
    }
    I->dropAllReferences();
    Dead.insert(I);
  }

  for (auto *I : Dead)
    I->eraseFromParent();

  for (auto I : L->blocks())
    DeleteDeadPHIs(I);
}

bool MVETailPredication::TryConvert(Value *TripCount) {
  if (!IsPredicatedVectorLoop())
    return false;

  LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n");

  // Walk through the masked intrinsics and try to find whether the predicate
  // operand is generated from an induction variable.
  Module *M = L->getHeader()->getModule();
  Type *Ty = IntegerType::get(M->getContext(), 32);
  SetVector<Instruction*> Predicates;
  DenseMap<Instruction*, Instruction*> NewPredicates;

  for (auto *I : MaskedInsts) {
    Intrinsic::ID ID = I->getIntrinsicID();
    unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
    auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
    if (!Predicate || Predicates.count(Predicate))
      continue;

    VectorType *VecTy = getVectorType(I);
    Value *NumElements = ComputeElements(TripCount, VecTy);
    if (!NumElements)
      continue;

    if (!isTailPredicate(Predicate, NumElements)) {
      LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate <<  "\n");
      continue;
    }

    LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n");
    Predicates.insert(Predicate);

    // Insert a phi to count the number of elements processed by the loop.
    IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
    PHINode *Processed = Builder.CreatePHI(Ty, 2);
    Processed->addIncoming(NumElements, L->getLoopPreheader());

    // Insert the intrinsic to represent the effect of tail predication.
    Builder.SetInsertPoint(cast<Instruction>(Predicate));
    ConstantInt *Factor =
      ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements());
    Intrinsic::ID VCTPID;
    switch (VecTy->getNumElements()) {
    default:
      llvm_unreachable("unexpected number of lanes");
    case 2:  VCTPID = Intrinsic::arm_vctp64; break;
    case 4:  VCTPID = Intrinsic::arm_vctp32; break;
    case 8:  VCTPID = Intrinsic::arm_vctp16; break;
    case 16: VCTPID = Intrinsic::arm_vctp8; break;
    }
    Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
    Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
    Predicate->replaceAllUsesWith(TailPredicate);
    NewPredicates[Predicate] = cast<Instruction>(TailPredicate);

    // Add the incoming value to the new phi.
    // TODO: This add likely already exists in the loop.
    Value *Remaining = Builder.CreateSub(Processed, Factor);
    Processed->addIncoming(Remaining, L->getLoopLatch());
    LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: "
               << *Processed << "\n"
               << "TP: Inserted VCTP: " << *TailPredicate << "\n");
  }

  // Now clean up.
  Cleanup(NewPredicates, Predicates, L);
  return true;
}

Pass *llvm::createMVETailPredicationPass() {
  return new MVETailPredication();
}

char MVETailPredication::ID = 0;

INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)