1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
| //===- InstCombineSelect.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitSelect function.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
static Value *createMinMax(InstCombiner::BuilderTy &Builder,
SelectPatternFlavor SPF, Value *A, Value *B) {
CmpInst::Predicate Pred = getMinMaxPred(SPF);
assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
}
/// Replace a select operand based on an equality comparison with the identity
/// constant of a binop.
static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
const TargetLibraryInfo &TLI) {
// The select condition must be an equality compare with a constant operand.
Value *X;
Constant *C;
CmpInst::Predicate Pred;
if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
return nullptr;
bool IsEq;
if (ICmpInst::isEquality(Pred))
IsEq = Pred == ICmpInst::ICMP_EQ;
else if (Pred == FCmpInst::FCMP_OEQ)
IsEq = true;
else if (Pred == FCmpInst::FCMP_UNE)
IsEq = false;
else
return nullptr;
// A select operand must be a binop.
BinaryOperator *BO;
if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
return nullptr;
// The compare constant must be the identity constant for that binop.
// If this a floating-point compare with 0.0, any zero constant will do.
Type *Ty = BO->getType();
Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
if (IdC != C) {
if (!IdC || !CmpInst::isFPPredicate(Pred))
return nullptr;
if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
return nullptr;
}
// Last, match the compare variable operand with a binop operand.
Value *Y;
if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
return nullptr;
if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
return nullptr;
// +0.0 compares equal to -0.0, and so it does not behave as required for this
// transform. Bail out if we can not exclude that possibility.
if (isa<FPMathOperator>(BO))
if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
return nullptr;
// BO = binop Y, X
// S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
// =>
// S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
Sel.setOperand(IsEq ? 1 : 2, Y);
return &Sel;
}
/// This folds:
/// select (icmp eq (and X, C1)), TC, FC
/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
/// To something like:
/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
/// Or:
/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
/// With some variations depending if FC is larger than TC, or the shift
/// isn't needed, or the bit widths don't match.
static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
InstCombiner::BuilderTy &Builder) {
const APInt *SelTC, *SelFC;
if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
!match(Sel.getFalseValue(), m_APInt(SelFC)))
return nullptr;
// If this is a vector select, we need a vector compare.
Type *SelType = Sel.getType();
if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
return nullptr;
Value *V;
APInt AndMask;
bool CreateAnd = false;
ICmpInst::Predicate Pred = Cmp->getPredicate();
if (ICmpInst::isEquality(Pred)) {
if (!match(Cmp->getOperand(1), m_Zero()))
return nullptr;
V = Cmp->getOperand(0);
const APInt *AndRHS;
if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
return nullptr;
AndMask = *AndRHS;
} else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
Pred, V, AndMask)) {
assert(ICmpInst::isEquality(Pred) && "Not equality test?");
if (!AndMask.isPowerOf2())
return nullptr;
CreateAnd = true;
} else {
return nullptr;
}
// In general, when both constants are non-zero, we would need an offset to
// replace the select. This would require more instructions than we started
// with. But there's one special-case that we handle here because it can
// simplify/reduce the instructions.
APInt TC = *SelTC;
APInt FC = *SelFC;
if (!TC.isNullValue() && !FC.isNullValue()) {
// If the select constants differ by exactly one bit and that's the same
// bit that is masked and checked by the select condition, the select can
// be replaced by bitwise logic to set/clear one bit of the constant result.
if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
return nullptr;
if (CreateAnd) {
// If we have to create an 'and', then we must kill the cmp to not
// increase the instruction count.
if (!Cmp->hasOneUse())
return nullptr;
V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
}
bool ExtraBitInTC = TC.ugt(FC);
if (Pred == ICmpInst::ICMP_EQ) {
// If the masked bit in V is clear, clear or set the bit in the result:
// (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
// (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
Constant *C = ConstantInt::get(SelType, TC);
return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
}
if (Pred == ICmpInst::ICMP_NE) {
// If the masked bit in V is set, set or clear the bit in the result:
// (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
// (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
Constant *C = ConstantInt::get(SelType, FC);
return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
}
llvm_unreachable("Only expecting equality predicates");
}
// Make sure one of the select arms is a power-of-2.
if (!TC.isPowerOf2() && !FC.isPowerOf2())
return nullptr;
// Determine which shift is needed to transform result of the 'and' into the
// desired result.
const APInt &ValC = !TC.isNullValue() ? TC : FC;
unsigned ValZeros = ValC.logBase2();
unsigned AndZeros = AndMask.logBase2();
// Insert the 'and' instruction on the input to the truncate.
if (CreateAnd)
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
// If types don't match, we can still convert the select by introducing a zext
// or a trunc of the 'and'.
if (ValZeros > AndZeros) {
V = Builder.CreateZExtOrTrunc(V, SelType);
V = Builder.CreateShl(V, ValZeros - AndZeros);
} else if (ValZeros < AndZeros) {
V = Builder.CreateLShr(V, AndZeros - ValZeros);
V = Builder.CreateZExtOrTrunc(V, SelType);
} else {
V = Builder.CreateZExtOrTrunc(V, SelType);
}
// Okay, now we know that everything is set up, we just don't know whether we
// have a icmp_ne or icmp_eq and whether the true or false val is the zero.
bool ShouldNotVal = !TC.isNullValue();
ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
if (ShouldNotVal)
V = Builder.CreateXor(V, ValC);
return V;
}
/// We want to turn code that looks like this:
/// %C = or %A, %B
/// %D = select %cond, %C, %A
/// into:
/// %C = select %cond, %B, 0
/// %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
static unsigned getSelectFoldableOperands(BinaryOperator *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return 3; // Can fold through either operand.
case Instruction::Sub: // Can only fold on the amount subtracted.
case Instruction::Shl: // Can only fold on the shift amount.
case Instruction::LShr:
case Instruction::AShr:
return 1;
default:
return 0; // Cannot fold
}
}
/// For the same transformation as the previous function, return the identity
/// constant that goes into the select.
static APInt getSelectFoldableConstant(BinaryOperator *I) {
switch (I->getOpcode()) {
default: llvm_unreachable("This cannot happen!");
case Instruction::Add:
case Instruction::Sub:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
return APInt::getNullValue(I->getType()->getScalarSizeInBits());
case Instruction::And:
return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
case Instruction::Mul:
return APInt(I->getType()->getScalarSizeInBits(), 1);
}
}
/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
Instruction *FI) {
// Don't break up min/max patterns. The hasOneUse checks below prevent that
// for most cases, but vector min/max with bitcasts can be transformed. If the
// one-use restrictions are eased for other patterns, we still don't want to
// obfuscate min/max.
if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
match(&SI, m_SMax(m_Value(), m_Value())) ||
match(&SI, m_UMin(m_Value(), m_Value())) ||
match(&SI, m_UMax(m_Value(), m_Value()))))
return nullptr;
// If this is a cast from the same type, merge.
Value *Cond = SI.getCondition();
Type *CondTy = Cond->getType();
if (TI->getNumOperands() == 1 && TI->isCast()) {
Type *FIOpndTy = FI->getOperand(0)->getType();
if (TI->getOperand(0)->getType() != FIOpndTy)
return nullptr;
// The select condition may be a vector. We may only change the operand
// type if the vector width remains the same (and matches the condition).
if (CondTy->isVectorTy()) {
if (!FIOpndTy->isVectorTy())
return nullptr;
if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
return nullptr;
// TODO: If the backend knew how to deal with casts better, we could
// remove this limitation. For now, there's too much potential to create
// worse codegen by promoting the select ahead of size-altering casts
// (PR28160).
//
// Note that ValueTracking's matchSelectPattern() looks through casts
// without checking 'hasOneUse' when it matches min/max patterns, so this
// transform may end up happening anyway.
if (TI->getOpcode() != Instruction::BitCast &&
(!TI->hasOneUse() || !FI->hasOneUse()))
return nullptr;
} else if (!TI->hasOneUse() || !FI->hasOneUse()) {
// TODO: The one-use restrictions for a scalar select could be eased if
// the fold of a select in visitLoadInst() was enhanced to match a pattern
// that includes a cast.
return nullptr;
}
// Fold this by inserting a select from the input values.
Value *NewSI =
Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
SI.getName() + ".v", &SI);
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
TI->getType());
}
// Cond ? -X : -Y --> -(Cond ? X : Y)
Value *X, *Y;
if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
(TI->hasOneUse() || FI->hasOneUse())) {
Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
// TODO: Remove the hack for the binop form when the unary op is optimized
// properly with all IR passes.
if (TI->getOpcode() != Instruction::FNeg)
return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
return UnaryOperator::CreateFNeg(NewSel);
}
// Only handle binary operators (including two-operand getelementptr) with
// one-use here. As with the cast case above, it may be possible to relax the
// one-use constraint, but that needs be examined carefully since it may not
// reduce the total number of instructions.
if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
(!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
!TI->hasOneUse() || !FI->hasOneUse())
return nullptr;
// Figure out if the operations have any operands in common.
Value *MatchOp, *OtherOpT, *OtherOpF;
bool MatchIsOpZero;
if (TI->getOperand(0) == FI->getOperand(0)) {
MatchOp = TI->getOperand(0);
OtherOpT = TI->getOperand(1);
OtherOpF = FI->getOperand(1);
MatchIsOpZero = true;
} else if (TI->getOperand(1) == FI->getOperand(1)) {
MatchOp = TI->getOperand(1);
OtherOpT = TI->getOperand(0);
OtherOpF = FI->getOperand(0);
MatchIsOpZero = false;
} else if (!TI->isCommutative()) {
return nullptr;
} else if (TI->getOperand(0) == FI->getOperand(1)) {
MatchOp = TI->getOperand(0);
OtherOpT = TI->getOperand(1);
OtherOpF = FI->getOperand(0);
MatchIsOpZero = true;
} else if (TI->getOperand(1) == FI->getOperand(0)) {
MatchOp = TI->getOperand(1);
OtherOpT = TI->getOperand(0);
OtherOpF = FI->getOperand(1);
MatchIsOpZero = true;
} else {
return nullptr;
}
// If the select condition is a vector, the operands of the original select's
// operands also must be vectors. This may not be the case for getelementptr
// for example.
if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
!OtherOpF->getType()->isVectorTy()))
return nullptr;
// If we reach here, they do have operations in common.
Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
SI.getName() + ".v", &SI);
Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
NewBO->copyIRFlags(TI);
NewBO->andIRFlags(FI);
return NewBO;
}
if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
auto *FGEP = cast<GetElementPtrInst>(FI);
Type *ElementType = TGEP->getResultElementType();
return TGEP->isInBounds() && FGEP->isInBounds()
? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
: GetElementPtrInst::Create(ElementType, Op0, {Op1});
}
llvm_unreachable("Expected BinaryOperator or GEP");
return nullptr;
}
static bool isSelect01(const APInt &C1I, const APInt &C2I) {
if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
return false;
return C1I.isOneValue() || C1I.isAllOnesValue() ||
C2I.isOneValue() || C2I.isAllOnesValue();
}
/// Try to fold the select into one of the operands to allow further
/// optimization.
Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
Value *FalseVal) {
// See the comment above GetSelectFoldableOperands for a description of the
// transformation we are doing here.
if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
if (unsigned SFO = getSelectFoldableOperands(TVI)) {
unsigned OpToFold = 0;
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
OpToFold = 1;
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
OpToFold = 2;
}
if (OpToFold) {
APInt CI = getSelectFoldableConstant(TVI);
Value *OOp = TVI->getOperand(2-OpToFold);
// Avoid creating select between 2 constants unless it's selecting
// between 0, 1 and -1.
const APInt *OOpC;
bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
Value *C = ConstantInt::get(OOp->getType(), CI);
Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
NewSel->takeName(TVI);
BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
FalseVal, NewSel);
BO->copyIRFlags(TVI);
return BO;
}
}
}
}
}
if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
if (unsigned SFO = getSelectFoldableOperands(FVI)) {
unsigned OpToFold = 0;
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
OpToFold = 1;
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
OpToFold = 2;
}
if (OpToFold) {
APInt CI = getSelectFoldableConstant(FVI);
Value *OOp = FVI->getOperand(2-OpToFold);
// Avoid creating select between 2 constants unless it's selecting
// between 0, 1 and -1.
const APInt *OOpC;
bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
Value *C = ConstantInt::get(OOp->getType(), CI);
Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
NewSel->takeName(FVI);
BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
TrueVal, NewSel);
BO->copyIRFlags(FVI);
return BO;
}
}
}
}
}
return nullptr;
}
/// We want to turn:
/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
/// into:
/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
/// Note:
/// Z may be 0 if lshr is missing.
/// Worst-case scenario is that we will replace 5 instructions with 5 different
/// instructions, but we got rid of select.
static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
Value *TVal, Value *FVal,
InstCombiner::BuilderTy &Builder) {
if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
return nullptr;
// The TrueVal has general form of: and %B, 1
Value *B;
if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
return nullptr;
// Where %B may be optionally shifted: lshr %X, %Z.
Value *X, *Z;
const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
if (!HasShift)
X = B;
Value *Y;
if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
return nullptr;
// ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
// ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
Constant *One = ConstantInt::get(SelType, 1);
Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
Value *FullMask = Builder.CreateOr(Y, MaskB);
Value *MaskedX = Builder.CreateAnd(X, FullMask);
Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
return new ZExtInst(ICmpNeZero, SelType);
}
/// We want to turn:
/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
/// into:
/// ashr (X, Y)
static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
Value *FalseVal,
InstCombiner::BuilderTy &Builder) {
ICmpInst::Predicate Pred = IC->getPredicate();
Value *CmpLHS = IC->getOperand(0);
Value *CmpRHS = IC->getOperand(1);
if (!CmpRHS->getType()->isIntOrIntVectorTy())
return nullptr;
Value *X, *Y;
unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
if ((Pred != ICmpInst::ICMP_SGT ||
!match(CmpRHS,
m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
(Pred != ICmpInst::ICMP_SLT ||
!match(CmpRHS,
m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
return nullptr;
// Canonicalize so that ashr is in FalseVal.
if (Pred == ICmpInst::ICMP_SLT)
std::swap(TrueVal, FalseVal);
if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
match(CmpLHS, m_Specific(X))) {
const auto *Ashr = cast<Instruction>(FalseVal);
// if lshr is not exact and ashr is, this new ashr must not be exact.
bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
}
return nullptr;
}
/// We want to turn:
/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
/// into:
/// (or (shl (and X, C1), C3), Y)
/// iff:
/// C1 and C2 are both powers of 2
/// where:
/// C3 = Log(C2) - Log(C1)
///
/// This transform handles cases where:
/// 1. The icmp predicate is inverted
/// 2. The select operands are reversed
/// 3. The magnitude of C2 and C1 are flipped
static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
Value *FalseVal,
InstCombiner::BuilderTy &Builder) {
// Only handle integer compares. Also, if this is a vector select, we need a
// vector compare.
if (!TrueVal->getType()->isIntOrIntVectorTy() ||
TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
return nullptr;
Value *CmpLHS = IC->getOperand(0);
Value *CmpRHS = IC->getOperand(1);
Value *V;
unsigned C1Log;
bool IsEqualZero;
bool NeedAnd = false;
if (IC->isEquality()) {
if (!match(CmpRHS, m_Zero()))
return nullptr;
const APInt *C1;
if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
return nullptr;
V = CmpLHS;
C1Log = C1->logBase2();
IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
} else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
IC->getPredicate() == ICmpInst::ICMP_SGT) {
// We also need to recognize (icmp slt (trunc (X)), 0) and
// (icmp sgt (trunc (X)), -1).
IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
(!IsEqualZero && !match(CmpRHS, m_Zero())))
return nullptr;
if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
return nullptr;
C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
NeedAnd = true;
} else {
return nullptr;
}
const APInt *C2;
bool OrOnTrueVal = false;
bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
if (!OrOnFalseVal)
OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
if (!OrOnFalseVal && !OrOnTrueVal)
return nullptr;
Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
unsigned C2Log = C2->logBase2();
bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
bool NeedShift = C1Log != C2Log;
bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
V->getType()->getScalarSizeInBits();
// Make sure we don't create more instructions than we save.
Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
if ((NeedShift + NeedXor + NeedZExtTrunc) >
(IC->hasOneUse() + Or->hasOneUse()))
return nullptr;
if (NeedAnd) {
// Insert the AND instruction on the input to the truncate.
APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
}
if (C2Log > C1Log) {
V = Builder.CreateZExtOrTrunc(V, Y->getType());
V = Builder.CreateShl(V, C2Log - C1Log);
} else if (C1Log > C2Log) {
V = Builder.CreateLShr(V, C1Log - C2Log);
V = Builder.CreateZExtOrTrunc(V, Y->getType());
} else
V = Builder.CreateZExtOrTrunc(V, Y->getType());
if (NeedXor)
V = Builder.CreateXor(V, *C2);
return Builder.CreateOr(V, Y);
}
/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
/// There are 8 commuted/swapped variants of this pattern.
/// TODO: Also support a - UMIN(a,b) patterns.
static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
const Value *TrueVal,
const Value *FalseVal,
InstCombiner::BuilderTy &Builder) {
ICmpInst::Predicate Pred = ICI->getPredicate();
if (!ICmpInst::isUnsigned(Pred))
return nullptr;
// (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
if (match(TrueVal, m_Zero())) {
Pred = ICmpInst::getInversePredicate(Pred);
std::swap(TrueVal, FalseVal);
}
if (!match(FalseVal, m_Zero()))
return nullptr;
Value *A = ICI->getOperand(0);
Value *B = ICI->getOperand(1);
if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
// (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
std::swap(A, B);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
"Unexpected isUnsigned predicate!");
// Account for swapped form of subtraction: ((a > b) ? b - a : 0).
bool IsNegative = false;
if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
IsNegative = true;
else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
return nullptr;
// If sub is used anywhere else, we wouldn't be able to eliminate it
// afterwards.
if (!TrueVal->hasOneUse())
return nullptr;
// (a > b) ? a - b : 0 -> usub.sat(a, b)
// (a > b) ? b - a : 0 -> -usub.sat(a, b)
Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
if (IsNegative)
Result = Builder.CreateNeg(Result);
return Result;
}
static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
InstCombiner::BuilderTy &Builder) {
if (!Cmp->hasOneUse())
return nullptr;
// Match unsigned saturated add with constant.
Value *Cmp0 = Cmp->getOperand(0);
Value *Cmp1 = Cmp->getOperand(1);
ICmpInst::Predicate Pred = Cmp->getPredicate();
Value *X;
const APInt *C, *CmpC;
if (Pred == ICmpInst::ICMP_ULT &&
match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
// (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
return Builder.CreateBinaryIntrinsic(
Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
}
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
// There are 8 commuted variants.
// Canonicalize -1 (saturated result) to true value of the select. Just
// swapping the compare operands is legal, because the selected value is the
// same in case of equality, so we can interchange u< and u<=.
if (match(FVal, m_AllOnes())) {
std::swap(TVal, FVal);
std::swap(Cmp0, Cmp1);
}
if (!match(TVal, m_AllOnes()))
return nullptr;
// Canonicalize predicate to 'ULT'.
if (Pred == ICmpInst::ICMP_UGT) {
Pred = ICmpInst::ICMP_ULT;
std::swap(Cmp0, Cmp1);
}
if (Pred != ICmpInst::ICMP_ULT)
return nullptr;
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
Value *Y;
if (match(Cmp0, m_Not(m_Value(X))) &&
match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
// (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
// (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
}
// The 'not' op may be included in the sum but not the compare.
X = Cmp0;
Y = Cmp1;
if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
// (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
// (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
BinaryOperator *BO = cast<BinaryOperator>(FVal);
return Builder.CreateBinaryIntrinsic(
Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
}
// The overflow may be detected via the add wrapping round.
if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
// ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
// ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
}
return nullptr;
}
/// Fold the following code sequence:
/// \code
/// int a = ctlz(x & -x);
// x ? 31 - a : a;
/// \code
///
/// into:
/// cttz(x)
static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
Value *FalseVal,
InstCombiner::BuilderTy &Builder) {
unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
return nullptr;
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
std::swap(TrueVal, FalseVal);
if (!match(FalseVal,
m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
return nullptr;
if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
return nullptr;
Value *X = ICI->getOperand(0);
auto *II = cast<IntrinsicInst>(TrueVal);
if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
return nullptr;
Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
II->getType());
return CallInst::Create(F, {X, II->getArgOperand(1)});
}
/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
///
/// For example, we can fold the following code sequence:
/// \code
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
/// %1 = icmp ne i32 %x, 0
/// %2 = select i1 %1, i32 %0, i32 32
/// \code
///
/// into:
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
InstCombiner::BuilderTy &Builder) {
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *CmpLHS = ICI->getOperand(0);
Value *CmpRHS = ICI->getOperand(1);
// Check if the condition value compares a value for equality against zero.
if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
return nullptr;
Value *Count = FalseVal;
Value *ValueOnZero = TrueVal;
if (Pred == ICmpInst::ICMP_NE)
std::swap(Count, ValueOnZero);
// Skip zero extend/truncate.
Value *V = nullptr;
if (match(Count, m_ZExt(m_Value(V))) ||
match(Count, m_Trunc(m_Value(V))))
Count = V;
// Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
// input to the cttz/ctlz is used as LHS for the compare instruction.
if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
!match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
return nullptr;
IntrinsicInst *II = cast<IntrinsicInst>(Count);
// Check if the value propagated on zero is a constant number equal to the
// sizeof in bits of 'Count'.
unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
// Explicitly clear the 'undef_on_zero' flag.
IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
Builder.Insert(NewI);
return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
}
// If the ValueOnZero is not the bitwidth, we can at least make use of the
// fact that the cttz/ctlz result will not be used if the input is zero, so
// it's okay to relax it to undef for that case.
if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
return nullptr;
}
/// Return true if we find and adjust an icmp+select pattern where the compare
/// is with a constant that can be incremented or decremented to match the
/// minimum or maximum idiom.
static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
ICmpInst::Predicate Pred = Cmp.getPredicate();
Value *CmpLHS = Cmp.getOperand(0);
Value *CmpRHS = Cmp.getOperand(1);
Value *TrueVal = Sel.getTrueValue();
Value *FalseVal = Sel.getFalseValue();
// We may move or edit the compare, so make sure the select is the only user.
const APInt *CmpC;
if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
return false;
// These transforms only work for selects of integers or vector selects of
// integer vectors.
Type *SelTy = Sel.getType();
auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
return false;
Constant *AdjustedRHS;
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
else
return false;
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
; // Nothing to do here. Values match without any sign/zero extension.
}
// Types do not match. Instead of calculating this with mixed types, promote
// all to the larger type. This enables scalar evolution to analyze this
// expression.
else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
// X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
// X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
// X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
// X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
CmpLHS = TrueVal;
AdjustedRHS = SextRHS;
} else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
SextRHS == TrueVal) {
CmpLHS = FalseVal;
AdjustedRHS = SextRHS;
} else if (Cmp.isUnsigned()) {
Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
// X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
// X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
// zext + signed compare cannot be changed:
// 0xff <s 0x00, but 0x00ff >s 0x0000
if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
CmpLHS = TrueVal;
AdjustedRHS = ZextRHS;
} else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
ZextRHS == TrueVal) {
CmpLHS = FalseVal;
AdjustedRHS = ZextRHS;
} else {
return false;
}
} else {
return false;
}
} else {
return false;
}
Pred = ICmpInst::getSwappedPredicate(Pred);
CmpRHS = AdjustedRHS;
std::swap(FalseVal, TrueVal);
Cmp.setPredicate(Pred);
Cmp.setOperand(0, CmpLHS);
Cmp.setOperand(1, CmpRHS);
Sel.setOperand(1, TrueVal);
Sel.setOperand(2, FalseVal);
Sel.swapProfMetadata();
// Move the compare instruction right before the select instruction. Otherwise
// the sext/zext value may be defined after the compare instruction uses it.
Cmp.moveBefore(&Sel);
return true;
}
/// If this is an integer min/max (icmp + select) with a constant operand,
/// create the canonical icmp for the min/max operation and canonicalize the
/// constant to the 'false' operand of the select:
/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
/// Note: if C1 != C2, this will change the icmp constant to the existing
/// constant operand of the select.
static Instruction *
canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
InstCombiner::BuilderTy &Builder) {
if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
return nullptr;
// Canonicalize the compare predicate based on whether we have min or max.
Value *LHS, *RHS;
SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
return nullptr;
// Is this already canonical?
ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
Cmp.getPredicate() == CanonicalPred)
return nullptr;
// Create the canonical compare and plug it into the select.
Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
// If the select operands did not change, we're done.
if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
return &Sel;
// If we are swapping the select operands, swap the metadata too.
assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
"Unexpected results from matchSelectPattern");
Sel.swapValues();
Sel.swapProfMetadata();
return &Sel;
}
/// There are many select variants for each of ABS/NABS.
/// In matchSelectPattern(), there are different compare constants, compare
/// predicates/operands and select operands.
/// In isKnownNegation(), there are different formats of negated operands.
/// Canonicalize all these variants to 1 pattern.
/// This makes CSE more likely.
static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
InstCombiner::BuilderTy &Builder) {
if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
return nullptr;
// Choose a sign-bit check for the compare (likely simpler for codegen).
// ABS: (X <s 0) ? -X : X
// NABS: (X <s 0) ? X : -X
Value *LHS, *RHS;
SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
if (SPF != SelectPatternFlavor::SPF_ABS &&
SPF != SelectPatternFlavor::SPF_NABS)
return nullptr;
Value *TVal = Sel.getTrueValue();
Value *FVal = Sel.getFalseValue();
assert(isKnownNegation(TVal, FVal) &&
"Unexpected result from matchSelectPattern");
// The compare may use the negated abs()/nabs() operand, or it may use
// negation in non-canonical form such as: sub A, B.
bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
bool CmpCanonicalized = !CmpUsesNegatedOp &&
match(Cmp.getOperand(1), m_ZeroInt()) &&
Cmp.getPredicate() == ICmpInst::ICMP_SLT;
bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
// Is this already canonical?
if (CmpCanonicalized && RHSCanonicalized)
return nullptr;
// If RHS is used by other instructions except compare and select, don't
// canonicalize it to not increase the instruction count.
if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
return nullptr;
// Create the canonical compare: icmp slt LHS 0.
if (!CmpCanonicalized) {
Cmp.setPredicate(ICmpInst::ICMP_SLT);
Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
if (CmpUsesNegatedOp)
Cmp.setOperand(0, LHS);
}
// Create the canonical RHS: RHS = sub (0, LHS).
if (!RHSCanonicalized) {
assert(RHS->hasOneUse() && "RHS use number is not right");
RHS = Builder.CreateNeg(LHS);
if (TVal == LHS) {
Sel.setFalseValue(RHS);
FVal = RHS;
} else {
Sel.setTrueValue(RHS);
TVal = RHS;
}
}
// If the select operands do not change, we're done.
if (SPF == SelectPatternFlavor::SPF_NABS) {
if (TVal == LHS)
return &Sel;
assert(FVal == LHS && "Unexpected results from matchSelectPattern");
} else {
if (FVal == LHS)
return &Sel;
assert(TVal == LHS && "Unexpected results from matchSelectPattern");
}
// We are swapping the select operands, so swap the metadata too.
Sel.swapValues();
Sel.swapProfMetadata();
return &Sel;
}
static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
const SimplifyQuery &Q) {
// If this is a binary operator, try to simplify it with the replaced op
// because we know Op and ReplaceOp are equivalant.
// For example: V = X + 1, Op = X, ReplaceOp = 42
// Simplifies as: add(42, 1) --> 43
if (auto *BO = dyn_cast<BinaryOperator>(V)) {
if (BO->getOperand(0) == Op)
return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
if (BO->getOperand(1) == Op)
return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
}
return nullptr;
}
/// If we have a select with an equality comparison, then we know the value in
/// one of the arms of the select. See if substituting this value into an arm
/// and simplifying the result yields the same value as the other arm.
///
/// To make this transform safe, we must drop poison-generating flags
/// (nsw, etc) if we simplified to a binop because the select may be guarding
/// that poison from propagating. If the existing binop already had no
/// poison-generating flags, then this transform can be done by instsimplify.
///
/// Consider:
/// %cmp = icmp eq i32 %x, 2147483647
/// %add = add nsw i32 %x, 1
/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
///
/// We can't replace %sel with %add unless we strip away the flags.
/// TODO: Wrapping flags could be preserved in some cases with better analysis.
static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
const SimplifyQuery &Q) {
if (!Cmp.isEquality())
return nullptr;
// Canonicalize the pattern to ICMP_EQ by swapping the select operands.
Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
std::swap(TrueVal, FalseVal);
// Try each equivalence substitution possibility.
// We have an 'EQ' comparison, so the select's false value will propagate.
// Example:
// (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
// (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
FalseInst->dropPoisonGeneratingFlags();
return FalseVal;
}
return nullptr;
}
// See if this is a pattern like:
// %old_cmp1 = icmp slt i32 %x, C2
// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
// %old_x_offseted = add i32 %x, C1
// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
// This can be rewritten as more canonical pattern:
// %new_cmp1 = icmp slt i32 %x, -C1
// %new_cmp2 = icmp sge i32 %x, C0-C1
// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
// Iff -C1 s<= C2 s<= C0-C1
// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
InstCombiner::BuilderTy &Builder) {
Value *X = Sel0.getTrueValue();
Value *Sel1 = Sel0.getFalseValue();
// First match the condition of the outermost select.
// Said condition must be one-use.
if (!Cmp0.hasOneUse())
return nullptr;
Value *Cmp00 = Cmp0.getOperand(0);
Constant *C0;
if (!match(Cmp0.getOperand(1),
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
return nullptr;
// Canonicalize Cmp0 into the form we expect.
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
switch (Cmp0.getPredicate()) {
case ICmpInst::Predicate::ICMP_ULT:
break; // Great!
case ICmpInst::Predicate::ICMP_ULE:
// We'd have to increment C0 by one, and for that it must not have all-ones
// element, but then it would have been canonicalized to 'ult' before
// we get here. So we can't do anything useful with 'ule'.
return nullptr;
case ICmpInst::Predicate::ICMP_UGT:
// We want to canonicalize it to 'ult', so we'll need to increment C0,
// which again means it must not have any all-ones elements.
if (!match(C0,
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
APInt::getAllOnesValue(
C0->getType()->getScalarSizeInBits()))))
return nullptr; // Can't do, have all-ones element[s].
C0 = AddOne(C0);
std::swap(X, Sel1);
break;
case ICmpInst::Predicate::ICMP_UGE:
// The only way we'd get this predicate if this `icmp` has extra uses,
// but then we won't be able to do this fold.
return nullptr;
default:
return nullptr; // Unknown predicate.
}
// Now that we've canonicalized the ICmp, we know the X we expect;
// the select in other hand should be one-use.
if (!Sel1->hasOneUse())
return nullptr;
// We now can finish matching the condition of the outermost select:
// it should either be the X itself, or an addition of some constant to X.
Constant *C1;
if (Cmp00 == X)
C1 = ConstantInt::getNullValue(Sel0.getType());
else if (!match(Cmp00,
m_Add(m_Specific(X),
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
return nullptr;
Value *Cmp1;
ICmpInst::Predicate Pred1;
Constant *C2;
Value *ReplacementLow, *ReplacementHigh;
if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
m_Value(ReplacementHigh))) ||
!match(Cmp1,
m_ICmp(Pred1, m_Specific(X),
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
return nullptr;
if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
return nullptr; // Not enough one-use instructions for the fold.
// FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
// two comparisons we'll need to build.
// Canonicalize Cmp1 into the form we expect.
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
switch (Pred1) {
case ICmpInst::Predicate::ICMP_SLT:
break;
case ICmpInst::Predicate::ICMP_SLE:
// We'd have to increment C2 by one, and for that it must not have signed
// max element, but then it would have been canonicalized to 'slt' before
// we get here. So we can't do anything useful with 'sle'.
return nullptr;
case ICmpInst::Predicate::ICMP_SGT:
// We want to canonicalize it to 'slt', so we'll need to increment C2,
// which again means it must not have any signed max elements.
if (!match(C2,
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
APInt::getSignedMaxValue(
C2->getType()->getScalarSizeInBits()))))
return nullptr; // Can't do, have signed max element[s].
C2 = AddOne(C2);
LLVM_FALLTHROUGH;
case ICmpInst::Predicate::ICMP_SGE:
// Also non-canonical, but here we don't need to change C2,
// so we don't have any restrictions on C2, so we can just handle it.
std::swap(ReplacementLow, ReplacementHigh);
break;
default:
return nullptr; // Unknown predicate.
}
// The thresholds of this clamp-like pattern.
auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
// The fold has a precondition 1: C2 s>= ThresholdLow
auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
ThresholdLowIncl);
if (!match(Precond1, m_One()))
return nullptr;
// The fold has a precondition 2: C2 s<= ThresholdHigh
auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
ThresholdHighExcl);
if (!match(Precond2, m_One()))
return nullptr;
// All good, finally emit the new pattern.
Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
Value *MaybeReplacedLow =
Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
Instruction *MaybeReplacedHigh =
SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
return MaybeReplacedHigh;
}
// If we have
// %cmp = icmp [canonical predicate] i32 %x, C0
// %r = select i1 %cmp, i32 %y, i32 C1
// Where C0 != C1 and %x may be different from %y, see if the constant that we
// will have if we flip the strictness of the predicate (i.e. without changing
// the result) is identical to the C1 in select. If it matches we can change
// original comparison to one with swapped predicate, reuse the constant,
// and swap the hands of select.
static Instruction *
tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
InstCombiner::BuilderTy &Builder) {
ICmpInst::Predicate Pred;
Value *X;
Constant *C0;
if (!match(&Cmp, m_OneUse(m_ICmp(
Pred, m_Value(X),
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
return nullptr;
// If comparison predicate is non-relational, we won't be able to do anything.
if (ICmpInst::isEquality(Pred))
return nullptr;
// If comparison predicate is non-canonical, then we certainly won't be able
// to make it canonical; canonicalizeCmpWithConstant() already tried.
if (!isCanonicalPredicate(Pred))
return nullptr;
// If the [input] type of comparison and select type are different, lets abort
// for now. We could try to compare constants with trunc/[zs]ext though.
if (C0->getType() != Sel.getType())
return nullptr;
// FIXME: are there any magic icmp predicate+constant pairs we must not touch?
Value *SelVal0, *SelVal1; // We do not care which one is from where.
match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
// At least one of these values we are selecting between must be a constant
// else we'll never succeed.
if (!match(SelVal0, m_AnyIntegralConstant()) &&
!match(SelVal1, m_AnyIntegralConstant()))
return nullptr;
// Does this constant C match any of the `select` values?
auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
};
// If C0 *already* matches true/false value of select, we are done.
if (MatchesSelectValue(C0))
return nullptr;
// Check the constant we'd have with flipped-strictness predicate.
auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
if (!FlippedStrictness)
return nullptr;
// If said constant doesn't match either, then there is no hope,
if (!MatchesSelectValue(FlippedStrictness->second))
return nullptr;
// It matched! Lets insert the new comparison just before select.
InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(&Sel);
Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
Cmp.getName() + ".inv");
Sel.setCondition(NewCmp);
Sel.swapValues();
Sel.swapProfMetadata();
return &Sel;
}
/// Visit a SelectInst that has an ICmpInst as its first operand.
Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
ICmpInst *ICI) {
if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
return replaceInstUsesWith(SI, V);
if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
return NewSel;
if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
return NewAbs;
if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
return NewAbs;
if (Instruction *NewSel =
tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
return NewSel;
bool Changed = adjustMinMax(SI, *ICI);
if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
return replaceInstUsesWith(SI, V);
// NOTE: if we wanted to, this is where to detect integer MIN/MAX
Value *TrueVal = SI.getTrueValue();
Value *FalseVal = SI.getFalseValue();
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *CmpLHS = ICI->getOperand(0);
Value *CmpRHS = ICI->getOperand(1);
if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
// Transform (X == C) ? X : Y -> (X == C) ? C : Y
SI.setOperand(1, CmpRHS);
Changed = true;
} else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
// Transform (X != C) ? Y : X -> (X != C) ? Y : C
SI.setOperand(2, CmpRHS);
Changed = true;
}
}
// FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
// decomposeBitTestICmp() might help.
{
unsigned BitWidth =
DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
Value *X;
const APInt *Y, *C;
bool TrueWhenUnset;
bool IsBitTest = false;
if (ICmpInst::isEquality(Pred) &&
match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
match(CmpRHS, m_Zero())) {
IsBitTest = true;
TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
} else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
X = CmpLHS;
Y = &MinSignedValue;
IsBitTest = true;
TrueWhenUnset = false;
} else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
X = CmpLHS;
Y = &MinSignedValue;
IsBitTest = true;
TrueWhenUnset = true;
}
if (IsBitTest) {
Value *V = nullptr;
// (X & Y) == 0 ? X : X ^ Y --> X & ~Y
if (TrueWhenUnset && TrueVal == X &&
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
V = Builder.CreateAnd(X, ~(*Y));
// (X & Y) != 0 ? X ^ Y : X --> X & ~Y
else if (!TrueWhenUnset && FalseVal == X &&
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
V = Builder.CreateAnd(X, ~(*Y));
// (X & Y) == 0 ? X ^ Y : X --> X | Y
else if (TrueWhenUnset && FalseVal == X &&
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
V = Builder.CreateOr(X, *Y);
// (X & Y) != 0 ? X : X ^ Y --> X | Y
else if (!TrueWhenUnset && TrueVal == X &&
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
V = Builder.CreateOr(X, *Y);
if (V)
return replaceInstUsesWith(SI, V);
}
}
if (Instruction *V =
foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
return V;
if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
return V;
if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
return replaceInstUsesWith(SI, V);
if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
return replaceInstUsesWith(SI, V);
if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
return replaceInstUsesWith(SI, V);
if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
return replaceInstUsesWith(SI, V);
if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
return replaceInstUsesWith(SI, V);
return Changed ? &SI : nullptr;
}
/// SI is a select whose condition is a PHI node (but the two may be in
/// different blocks). See if the true/false values (V) are live in all of the
/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
///
/// X = phi [ C1, BB1], [C2, BB2]
/// Y = add
/// Z = select X, Y, 0
///
/// because Y is not live in BB1/BB2.
static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
const SelectInst &SI) {
// If the value is a non-instruction value like a constant or argument, it
// can always be mapped.
const Instruction *I = dyn_cast<Instruction>(V);
if (!I) return true;
// If V is a PHI node defined in the same block as the condition PHI, we can
// map the arguments.
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
if (const PHINode *VP = dyn_cast<PHINode>(I))
if (VP->getParent() == CondPHI->getParent())
return true;
// Otherwise, if the PHI and select are defined in the same block and if V is
// defined in a different block, then we can transform it.
if (SI.getParent() == CondPHI->getParent() &&
I->getParent() != CondPHI->getParent())
return true;
// Otherwise we have a 'hard' case and we can't tell without doing more
// detailed dominator based analysis, punt.
return false;
}
/// We have an SPF (e.g. a min or max) of an SPF of the form:
/// SPF2(SPF1(A, B), C)
Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
SelectPatternFlavor SPF1,
Value *A, Value *B,
Instruction &Outer,
SelectPatternFlavor SPF2, Value *C) {
if (Outer.getType() != Inner->getType())
return nullptr;
if (C == A || C == B) {
// MAX(MAX(A, B), B) -> MAX(A, B)
// MIN(MIN(a, b), a) -> MIN(a, b)
// TODO: This could be done in instsimplify.
if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
return replaceInstUsesWith(Outer, Inner);
// MAX(MIN(a, b), a) -> a
// MIN(MAX(a, b), a) -> a
// TODO: This could be done in instsimplify.
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
return replaceInstUsesWith(Outer, C);
}
if (SPF1 == SPF2) {
const APInt *CB, *CC;
if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
// MIN(MIN(A, 23), 97) -> MIN(A, 23)
// MAX(MAX(A, 97), 23) -> MAX(A, 97)
// TODO: This could be done in instsimplify.
if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
(SPF1 == SPF_SMIN && CB->sle(*CC)) ||
(SPF1 == SPF_UMAX && CB->uge(*CC)) ||
(SPF1 == SPF_SMAX && CB->sge(*CC)))
return replaceInstUsesWith(Outer, Inner);
// MIN(MIN(A, 97), 23) -> MIN(A, 23)
// MAX(MAX(A, 23), 97) -> MAX(A, 97)
if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
(SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
(SPF1 == SPF_UMAX && CB->ult(*CC)) ||
(SPF1 == SPF_SMAX && CB->slt(*CC))) {
Outer.replaceUsesOfWith(Inner, A);
return &Outer;
}
}
}
// max(max(A, B), min(A, B)) --> max(A, B)
// min(min(A, B), max(A, B)) --> min(A, B)
// TODO: This could be done in instsimplify.
if (SPF1 == SPF2 &&
((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
(SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
(SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
(SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
return replaceInstUsesWith(Outer, Inner);
// ABS(ABS(X)) -> ABS(X)
// NABS(NABS(X)) -> NABS(X)
// TODO: This could be done in instsimplify.
if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
return replaceInstUsesWith(Outer, Inner);
}
// ABS(NABS(X)) -> ABS(X)
// NABS(ABS(X)) -> NABS(X)
if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
(SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
SelectInst *SI = cast<SelectInst>(Inner);
Value *NewSI =
Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
SI->getTrueValue(), SI->getName(), SI);
return replaceInstUsesWith(Outer, NewSI);
}
auto IsFreeOrProfitableToInvert =
[&](Value *V, Value *&NotV, bool &ElidesXor) {
if (match(V, m_Not(m_Value(NotV)))) {
// If V has at most 2 uses then we can get rid of the xor operation
// entirely.
ElidesXor |= !V->hasNUsesOrMore(3);
return true;
}
if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
NotV = nullptr;
return true;
}
return false;
};
Value *NotA, *NotB, *NotC;
bool ElidesXor = false;
// MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
// MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
// MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
// MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
//
// This transform is performance neutral if we can elide at least one xor from
// the set of three operands, since we'll be tacking on an xor at the very
// end.
if (SelectPatternResult::isMinOrMax(SPF1) &&
SelectPatternResult::isMinOrMax(SPF2) &&
IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
if (!NotA)
NotA = Builder.CreateNot(A);
if (!NotB)
NotB = Builder.CreateNot(B);
if (!NotC)
NotC = Builder.CreateNot(C);
Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
NotB);
Value *NewOuter = Builder.CreateNot(
createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
return replaceInstUsesWith(Outer, NewOuter);
}
return nullptr;
}
/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
/// This is even legal for FP.
static Instruction *foldAddSubSelect(SelectInst &SI,
InstCombiner::BuilderTy &Builder) {
Value *CondVal = SI.getCondition();
Value *TrueVal = SI.getTrueValue();
Value *FalseVal = SI.getFalseValue();
auto *TI = dyn_cast<Instruction>(TrueVal);
auto *FI = dyn_cast<Instruction>(FalseVal);
if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
return nullptr;
Instruction *AddOp = nullptr, *SubOp = nullptr;
if ((TI->getOpcode() == Instruction::Sub &&
FI->getOpcode() == Instruction::Add) ||
(TI->getOpcode() == Instruction::FSub &&
FI->getOpcode() == Instruction::FAdd)) {
AddOp = FI;
SubOp = TI;
} else if ((FI->getOpcode() == Instruction::Sub &&
TI->getOpcode() == Instruction::Add) ||
(FI->getOpcode() == Instruction::FSub &&
TI->getOpcode() == Instruction::FAdd)) {
AddOp = TI;
SubOp = FI;
}
if (AddOp) {
Value *OtherAddOp = nullptr;
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
OtherAddOp = AddOp->getOperand(1);
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
OtherAddOp = AddOp->getOperand(0);
}
if (OtherAddOp) {
// So at this point we know we have (Y -> OtherAddOp):
// select C, (add X, Y), (sub X, Z)
Value *NegVal; // Compute -Z
if (SI.getType()->isFPOrFPVectorTy()) {
NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
FastMathFlags Flags = AddOp->getFastMathFlags();
Flags &= SubOp->getFastMathFlags();
NegInst->setFastMathFlags(Flags);
}
} else {
NegVal = Builder.CreateNeg(SubOp->getOperand(1));
}
Value *NewTrueOp = OtherAddOp;
Value *NewFalseOp = NegVal;
if (AddOp != TI)
std::swap(NewTrueOp, NewFalseOp);
Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
SI.getName() + ".p", &SI);
if (SI.getType()->isFPOrFPVectorTy()) {
Instruction *RI =
BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
FastMathFlags Flags = AddOp->getFastMathFlags();
Flags &= SubOp->getFastMathFlags();
RI->setFastMathFlags(Flags);
return RI;
} else
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
}
}
return nullptr;
}
Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
Constant *C;
if (!match(Sel.getTrueValue(), m_Constant(C)) &&
!match(Sel.getFalseValue(), m_Constant(C)))
return nullptr;
Instruction *ExtInst;
if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
!match(Sel.getFalseValue(), m_Instruction(ExtInst)))
return nullptr;
auto ExtOpcode = ExtInst->getOpcode();
if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
return nullptr;
// If we are extending from a boolean type or if we can create a select that
// has the same size operands as its condition, try to narrow the select.
Value *X = ExtInst->getOperand(0);
Type *SmallType = X->getType();
Value *Cond = Sel.getCondition();
auto *Cmp = dyn_cast<CmpInst>(Cond);
if (!SmallType->isIntOrIntVectorTy(1) &&
(!Cmp || Cmp->getOperand(0)->getType() != SmallType))
return nullptr;
// If the constant is the same after truncation to the smaller type and
// extension to the original type, we can narrow the select.
Type *SelType = Sel.getType();
Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
if (ExtC == C) {
Value *TruncCVal = cast<Value>(TruncC);
if (ExtInst == Sel.getFalseValue())
std::swap(X, TruncCVal);
// select Cond, (ext X), C --> ext(select Cond, X, C')
// select Cond, C, (ext X) --> ext(select Cond, C', X)
Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
}
// If one arm of the select is the extend of the condition, replace that arm
// with the extension of the appropriate known bool value.
if (Cond == X) {
if (ExtInst == Sel.getTrueValue()) {
// select X, (sext X), C --> select X, -1, C
// select X, (zext X), C --> select X, 1, C
Constant *One = ConstantInt::getTrue(SmallType);
Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
} else {
// select X, C, (sext X) --> select X, C, 0
// select X, C, (zext X) --> select X, C, 0
Constant *Zero = ConstantInt::getNullValue(SelType);
return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
}
}
return nullptr;
}
/// Try to transform a vector select with a constant condition vector into a
/// shuffle for easier combining with other shuffles and insert/extract.
static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
Value *CondVal = SI.getCondition();
Constant *CondC;
if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
return nullptr;
unsigned NumElts = CondVal->getType()->getVectorNumElements();
SmallVector<Constant *, 16> Mask;
Mask.reserve(NumElts);
Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = CondC->getAggregateElement(i);
if (!Elt)
return nullptr;
if (Elt->isOneValue()) {
// If the select condition element is true, choose from the 1st vector.
Mask.push_back(ConstantInt::get(Int32Ty, i));
} else if (Elt->isNullValue()) {
// If the select condition element is false, choose from the 2nd vector.
Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
} else if (isa<UndefValue>(Elt)) {
// Undef in a select condition (choose one of the operands) does not mean
// the same thing as undef in a shuffle mask (any value is acceptable), so
// give up.
return nullptr;
} else {
// Bail out on a constant expression.
return nullptr;
}
}
return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
ConstantVector::get(Mask));
}
/// If we have a select of vectors with a scalar condition, try to convert that
/// to a vector select by splatting the condition. A splat may get folded with
/// other operations in IR and having all operands of a select be vector types
/// is likely better for vector codegen.
static Instruction *canonicalizeScalarSelectOfVecs(
SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
Type *Ty = Sel.getType();
if (!Ty->isVectorTy())
return nullptr;
// We can replace a single-use extract with constant index.
Value *Cond = Sel.getCondition();
if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
return nullptr;
// select (extelt V, Index), T, F --> select (splat V, Index), T, F
// Splatting the extracted condition reduces code (we could directly create a
// splat shuffle of the source vector to eliminate the intermediate step).
unsigned NumElts = Ty->getVectorNumElements();
Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
Sel.setCondition(SplatCond);
return &Sel;
}
/// Reuse bitcasted operands between a compare and select:
/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
InstCombiner::BuilderTy &Builder) {
Value *Cond = Sel.getCondition();
Value *TVal = Sel.getTrueValue();
Value *FVal = Sel.getFalseValue();
CmpInst::Predicate Pred;
Value *A, *B;
if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
return nullptr;
// The select condition is a compare instruction. If the select's true/false
// values are already the same as the compare operands, there's nothing to do.
if (TVal == A || TVal == B || FVal == A || FVal == B)
return nullptr;
Value *C, *D;
if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
return nullptr;
// select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
Value *TSrc, *FSrc;
if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
!match(FVal, m_BitCast(m_Value(FSrc))))
return nullptr;
// If the select true/false values are *different bitcasts* of the same source
// operands, make the select operands the same as the compare operands and
// cast the result. This is the canonical select form for min/max.
Value *NewSel;
if (TSrc == C && FSrc == D) {
// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
// bitcast (select (cmp A, B), A, B)
NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
} else if (TSrc == D && FSrc == C) {
// select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
// bitcast (select (cmp A, B), B, A)
NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
} else {
return nullptr;
}
return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
}
/// Try to eliminate select instructions that test the returned flag of cmpxchg
/// instructions.
///
/// If a select instruction tests the returned flag of a cmpxchg instruction and
/// selects between the returned value of the cmpxchg instruction its compare
/// operand, the result of the select will always be equal to its false value.
/// For example:
///
/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
/// %1 = extractvalue { i64, i1 } %0, 1
/// %2 = extractvalue { i64, i1 } %0, 0
/// %3 = select i1 %1, i64 %compare, i64 %2
/// ret i64 %3
///
/// The returned value of the cmpxchg instruction (%2) is the original value
/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
/// must have been equal to %compare. Thus, the result of the select is always
/// equal to %2, and the code can be simplified to:
///
/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
/// %1 = extractvalue { i64, i1 } %0, 0
/// ret i64 %1
///
static Instruction *foldSelectCmpXchg(SelectInst &SI) {
// A helper that determines if V is an extractvalue instruction whose
// aggregate operand is a cmpxchg instruction and whose single index is equal
// to I. If such conditions are true, the helper returns the cmpxchg
// instruction; otherwise, a nullptr is returned.
auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
auto *Extract = dyn_cast<ExtractValueInst>(V);
if (!Extract)
return nullptr;
if (Extract->getIndices()[0] != I)
return nullptr;
return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
};
// If the select has a single user, and this user is a select instruction that
// we can simplify, skip the cmpxchg simplification for now.
if (SI.hasOneUse())
if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
if (Select->getCondition() == SI.getCondition())
if (Select->getFalseValue() == SI.getTrueValue() ||
Select->getTrueValue() == SI.getFalseValue())
return nullptr;
// Ensure the select condition is the returned flag of a cmpxchg instruction.
auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
if (!CmpXchg)
return nullptr;
// Check the true value case: The true value of the select is the returned
// value of the same cmpxchg used by the condition, and the false value is the
// cmpxchg instruction's compare operand.
if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
SI.setTrueValue(SI.getFalseValue());
return &SI;
}
// Check the false value case: The false value of the select is the returned
// value of the same cmpxchg used by the condition, and the true value is the
// cmpxchg instruction's compare operand.
if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
SI.setTrueValue(SI.getFalseValue());
return &SI;
}
return nullptr;
}
static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
Value *Y,
InstCombiner::BuilderTy &Builder) {
assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
SPF == SelectPatternFlavor::SPF_UMAX;
// TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
// the constant value check to an assert.
Value *A;
const APInt *C1, *C2;
if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
// umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
// umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
Value *NewMinMax = createMinMax(Builder, SPF, A,
ConstantInt::get(X->getType(), *C2 - *C1));
return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
ConstantInt::get(X->getType(), *C1));
}
if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
match(Y, m_APInt(C2)) && X->hasNUses(2)) {
bool Overflow;
APInt Diff = C2->ssub_ov(*C1, Overflow);
if (!Overflow) {
// smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
// smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
Value *NewMinMax = createMinMax(Builder, SPF, A,
ConstantInt::get(X->getType(), Diff));
return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
ConstantInt::get(X->getType(), *C1));
}
}
return nullptr;
}
/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
Type *Ty = MinMax1.getType();
// We are looking for a tree of:
// max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
// Where the min and max could be reversed
Instruction *MinMax2;
BinaryOperator *AddSub;
const APInt *MinValue, *MaxValue;
if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
return nullptr;
} else if (match(&MinMax1,
m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
return nullptr;
} else
return nullptr;
// Check that the constants clamp a saturate, and that the new type would be
// sensible to convert to.
if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
return nullptr;
// In what bitwidth can this be treated as saturating arithmetics?
unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
// FIXME: This isn't quite right for vectors, but using the scalar type is a
// good first approximation for what should be done there.
if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
return nullptr;
// Also make sure that the number of uses is as expected. The "3"s are for the
// the two items of min/max (the compare and the select).
if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
return nullptr;
// Create the new type (which can be a vector type)
Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
// Match the two extends from the add/sub
Value *A, *B;
if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
return nullptr;
// And check the incoming values are of a type smaller than or equal to the
// size of the saturation. Otherwise the higher bits can cause different
// results.
if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
B->getType()->getScalarSizeInBits() > NewBitWidth)
return nullptr;
Intrinsic::ID IntrinsicID;
if (AddSub->getOpcode() == Instruction::Add)
IntrinsicID = Intrinsic::sadd_sat;
else if (AddSub->getOpcode() == Instruction::Sub)
IntrinsicID = Intrinsic::ssub_sat;
else
return nullptr;
// Finally create and return the sat intrinsic, truncated to the new type
Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
Value *AT = Builder.CreateSExt(A, NewTy);
Value *BT = Builder.CreateSExt(B, NewTy);
Value *Sat = Builder.CreateCall(F, {AT, BT});
return CastInst::Create(Instruction::SExt, Sat, Ty);
}
/// Reduce a sequence of min/max with a common operand.
static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
Value *RHS,
InstCombiner::BuilderTy &Builder) {
assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
// TODO: Allow FP min/max with nnan/nsz.
if (!LHS->getType()->isIntOrIntVectorTy())
return nullptr;
// Match 3 of the same min/max ops. Example: umin(umin(), umin()).
Value *A, *B, *C, *D;
SelectPatternResult L = matchSelectPattern(LHS, A, B);
SelectPatternResult R = matchSelectPattern(RHS, C, D);
if (SPF != L.Flavor || L.Flavor != R.Flavor)
return nullptr;
// Look for a common operand. The use checks are different than usual because
// a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
// the select.
Value *MinMaxOp = nullptr;
Value *ThirdOp = nullptr;
if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
// If the LHS is only used in this chain and the RHS is used outside of it,
// reuse the RHS min/max because that will eliminate the LHS.
if (D == A || C == A) {
// min(min(a, b), min(c, a)) --> min(min(c, a), b)
// min(min(a, b), min(a, d)) --> min(min(a, d), b)
MinMaxOp = RHS;
ThirdOp = B;
} else if (D == B || C == B) {
// min(min(a, b), min(c, b)) --> min(min(c, b), a)
// min(min(a, b), min(b, d)) --> min(min(b, d), a)
MinMaxOp = RHS;
ThirdOp = A;
}
} else if (!RHS->hasNUsesOrMore(3)) {
// Reuse the LHS. This will eliminate the RHS.
if (D == A || D == B) {
// min(min(a, b), min(c, a)) --> min(min(a, b), c)
// min(min(a, b), min(c, b)) --> min(min(a, b), c)
MinMaxOp = LHS;
ThirdOp = C;
} else if (C == A || C == B) {
// min(min(a, b), min(b, d)) --> min(min(a, b), d)
// min(min(a, b), min(c, b)) --> min(min(a, b), d)
MinMaxOp = LHS;
ThirdOp = D;
}
}
if (!MinMaxOp || !ThirdOp)
return nullptr;
CmpInst::Predicate P = getMinMaxPred(SPF);
Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
}
/// Try to reduce a rotate pattern that includes a compare and select into a
/// funnel shift intrinsic. Example:
/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
/// --> call llvm.fshl.i32(a, a, b)
static Instruction *foldSelectRotate(SelectInst &Sel) {
// The false value of the select must be a rotate of the true value.
Value *Or0, *Or1;
if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
return nullptr;
Value *TVal = Sel.getTrueValue();
Value *SA0, *SA1;
if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
!match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
return nullptr;
auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
if (ShiftOpcode0 == ShiftOpcode1)
return nullptr;
// We have one of these patterns so far:
// select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
// select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
// This must be a power-of-2 rotate for a bitmasking transform to be valid.
unsigned Width = Sel.getType()->getScalarSizeInBits();
if (!isPowerOf2_32(Width))
return nullptr;
// Check the shift amounts to see if they are an opposite pair.
Value *ShAmt;
if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
ShAmt = SA0;
else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
ShAmt = SA1;
else
return nullptr;
// Finally, see if the select is filtering out a shift-by-zero.
Value *Cond = Sel.getCondition();
ICmpInst::Predicate Pred;
if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
Pred != ICmpInst::ICMP_EQ)
return nullptr;
// This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
// Convert to funnel shift intrinsic.
bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
(ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
}
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *CondVal = SI.getCondition();
Value *TrueVal = SI.getTrueValue();
Value *FalseVal = SI.getFalseValue();
Type *SelType = SI.getType();
// FIXME: Remove this workaround when freeze related patches are done.
// For select with undef operand which feeds into an equality comparison,
// don't simplify it so loop unswitch can know the equality comparison
// may have an undef operand. This is a workaround for PR31652 caused by
// descrepancy about branch on undef between LoopUnswitch and GVN.
if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
if (llvm::any_of(SI.users(), [&](User *U) {
ICmpInst *CI = dyn_cast<ICmpInst>(U);
if (CI && CI->isEquality())
return true;
return false;
})) {
return nullptr;
}
}
if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
SQ.getWithInstruction(&SI)))
return replaceInstUsesWith(SI, V);
if (Instruction *I = canonicalizeSelectToShuffle(SI))
return I;
if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
return I;
// Canonicalize a one-use integer compare with a non-canonical predicate by
// inverting the predicate and swapping the select operands. This matches a
// compare canonicalization for conditional branches.
// TODO: Should we do the same for FP compares?
CmpInst::Predicate Pred;
if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
!isCanonicalPredicate(Pred)) {
// Swap true/false values and condition.
CmpInst *Cond = cast<CmpInst>(CondVal);
Cond->setPredicate(CmpInst::getInversePredicate(Pred));
SI.setOperand(1, FalseVal);
SI.setOperand(2, TrueVal);
SI.swapProfMetadata();
Worklist.Add(Cond);
return &SI;
}
if (SelType->isIntOrIntVectorTy(1) &&
TrueVal->getType() == CondVal->getType()) {
if (match(TrueVal, m_One())) {
// Change: A = select B, true, C --> A = or B, C
return BinaryOperator::CreateOr(CondVal, FalseVal);
}
if (match(TrueVal, m_Zero())) {
// Change: A = select B, false, C --> A = and !B, C
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
return BinaryOperator::CreateAnd(NotCond, FalseVal);
}
if (match(FalseVal, m_Zero())) {
// Change: A = select B, C, false --> A = and B, C
return BinaryOperator::CreateAnd(CondVal, TrueVal);
}
if (match(FalseVal, m_One())) {
// Change: A = select B, C, true --> A = or !B, C
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
return BinaryOperator::CreateOr(NotCond, TrueVal);
}
// select a, a, b -> a | b
// select a, b, a -> a & b
if (CondVal == TrueVal)
return BinaryOperator::CreateOr(CondVal, FalseVal);
if (CondVal == FalseVal)
return BinaryOperator::CreateAnd(CondVal, TrueVal);
// select a, ~a, b -> (~a) & b
// select a, b, ~a -> (~a) | b
if (match(TrueVal, m_Not(m_Specific(CondVal))))
return BinaryOperator::CreateAnd(TrueVal, FalseVal);
if (match(FalseVal, m_Not(m_Specific(CondVal))))
return BinaryOperator::CreateOr(TrueVal, FalseVal);
}
// Selecting between two integer or vector splat integer constants?
//
// Note that we don't handle a scalar select of vectors:
// select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
// because that may need 3 instructions to splat the condition value:
// extend, insertelement, shufflevector.
if (SelType->isIntOrIntVectorTy() &&
CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
// select C, 1, 0 -> zext C to int
if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
return new ZExtInst(CondVal, SelType);
// select C, -1, 0 -> sext C to int
if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
return new SExtInst(CondVal, SelType);
// select C, 0, 1 -> zext !C to int
if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
return new ZExtInst(NotCond, SelType);
}
// select C, 0, -1 -> sext !C to int
if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
return new SExtInst(NotCond, SelType);
}
}
// See if we are selecting two values based on a comparison of the two values.
if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
// Canonicalize to use ordered comparisons by swapping the select
// operands.
//
// e.g.
// (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
FCmpInst::Predicate InvPred = FCI->getInversePredicate();
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(FCI->getFastMathFlags());
Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
FCI->getName() + ".inv");
return SelectInst::Create(NewCond, FalseVal, TrueVal,
SI.getName() + ".p");
}
// NOTE: if we wanted to, this is where to detect MIN/MAX
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
// Canonicalize to use ordered comparisons by swapping the select
// operands.
//
// e.g.
// (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
FCmpInst::Predicate InvPred = FCI->getInversePredicate();
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(FCI->getFastMathFlags());
Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
FCI->getName() + ".inv");
return SelectInst::Create(NewCond, FalseVal, TrueVal,
SI.getName() + ".p");
}
// NOTE: if we wanted to, this is where to detect MIN/MAX
}
}
// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
// also require nnan because we do not want to unintentionally change the
// sign of a NaN value.
// FIXME: These folds should test/propagate FMF from the select, not the
// fsub or fneg.
// (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
Instruction *FSub;
if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
(Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
return replaceInstUsesWith(SI, Fabs);
}
// (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
(Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
return replaceInstUsesWith(SI, Fabs);
}
// With nnan and nsz:
// (X < +/-0.0) ? -X : X --> fabs(X)
// (X <= +/-0.0) ? -X : X --> fabs(X)
Instruction *FNeg;
if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
match(TrueVal, m_Instruction(FNeg)) &&
FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
(Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
return replaceInstUsesWith(SI, Fabs);
}
// With nnan and nsz:
// (X > +/-0.0) ? X : -X --> fabs(X)
// (X >= +/-0.0) ? X : -X --> fabs(X)
if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
match(FalseVal, m_Instruction(FNeg)) &&
FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
(Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
return replaceInstUsesWith(SI, Fabs);
}
// See if we are selecting two values based on a comparison of the two values.
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
return Result;
if (Instruction *Add = foldAddSubSelect(SI, Builder))
return Add;
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
auto *TI = dyn_cast<Instruction>(TrueVal);
auto *FI = dyn_cast<Instruction>(FalseVal);
if (TI && FI && TI->getOpcode() == FI->getOpcode())
if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
return IV;
if (Instruction *I = foldSelectExtConst(SI))
return I;
// See if we can fold the select into one of our operands.
if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
return FoldI;
Value *LHS, *RHS;
Instruction::CastOps CastOp;
SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
auto SPF = SPR.Flavor;
if (SPF) {
Value *LHS2, *RHS2;
if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
RHS2, SI, SPF, RHS))
return R;
if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
RHS2, SI, SPF, LHS))
return R;
// TODO.
// ABS(-X) -> ABS(X)
}
if (SelectPatternResult::isMinOrMax(SPF)) {
// Canonicalize so that
// - type casts are outside select patterns.
// - float clamp is transformed to min/max pattern
bool IsCastNeeded = LHS->getType() != SelType;
Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
if (IsCastNeeded ||
(LHS->getType()->isFPOrFPVectorTy() &&
((CmpLHS != LHS && CmpLHS != RHS) ||
(CmpRHS != LHS && CmpRHS != RHS)))) {
CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
Value *Cmp;
if (CmpInst::isIntPredicate(MinMaxPred)) {
Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
} else {
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
auto FMF =
cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
Builder.setFastMathFlags(FMF);
Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
}
Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
if (!IsCastNeeded)
return replaceInstUsesWith(SI, NewSI);
Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
return replaceInstUsesWith(SI, NewCast);
}
// MAX(~a, ~b) -> ~MIN(a, b)
// MAX(~a, C) -> ~MIN(a, ~C)
// MIN(~a, ~b) -> ~MAX(a, b)
// MIN(~a, C) -> ~MAX(a, ~C)
auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
Value *A;
if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
!isFreeToInvert(A, A->hasOneUse()) &&
// Passing false to only consider m_Not and constants.
isFreeToInvert(Y, false)) {
Value *B = Builder.CreateNot(Y);
Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
A, B);
// Copy the profile metadata.
if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
// Swap the metadata if the operands are swapped.
if (X == SI.getFalseValue() && Y == SI.getTrueValue())
cast<SelectInst>(NewMinMax)->swapProfMetadata();
}
return BinaryOperator::CreateNot(NewMinMax);
}
return nullptr;
};
if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
return I;
if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
return I;
if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
return I;
if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
return I;
if (Instruction *I = matchSAddSubSat(SI))
return I;
}
}
// Canonicalize select of FP values where NaN and -0.0 are not valid as
// minnum/maxnum intrinsics.
if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
Value *X, *Y;
if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
return replaceInstUsesWith(
SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
return replaceInstUsesWith(
SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
}
// See if we can fold the select into a phi node if the condition is a select.
if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
// The true/false values have to be live in the PHI predecessor's blocks.
if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
if (Instruction *NV = foldOpIntoPhi(SI, PN))
return NV;
if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
if (TrueSI->getCondition()->getType() == CondVal->getType()) {
// select(C, select(C, a, b), c) -> select(C, a, c)
if (TrueSI->getCondition() == CondVal) {
if (SI.getTrueValue() == TrueSI->getTrueValue())
return nullptr;
SI.setOperand(1, TrueSI->getTrueValue());
return &SI;
}
// select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
// We choose this as normal form to enable folding on the And and shortening
// paths for the values (this helps GetUnderlyingObjects() for example).
if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
SI.setOperand(0, And);
SI.setOperand(1, TrueSI->getTrueValue());
return &SI;
}
}
}
if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
if (FalseSI->getCondition()->getType() == CondVal->getType()) {
// select(C, a, select(C, b, c)) -> select(C, a, c)
if (FalseSI->getCondition() == CondVal) {
if (SI.getFalseValue() == FalseSI->getFalseValue())
return nullptr;
SI.setOperand(2, FalseSI->getFalseValue());
return &SI;
}
// select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
SI.setOperand(0, Or);
SI.setOperand(2, FalseSI->getFalseValue());
return &SI;
}
}
}
auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
// The select might be preventing a division by 0.
switch (BO->getOpcode()) {
default:
return true;
case Instruction::SRem:
case Instruction::URem:
case Instruction::SDiv:
case Instruction::UDiv:
return false;
}
};
// Try to simplify a binop sandwiched between 2 selects with the same
// condition.
// select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
BinaryOperator *TrueBO;
if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
canMergeSelectThroughBinop(TrueBO)) {
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
if (TrueBOSI->getCondition() == CondVal) {
TrueBO->setOperand(0, TrueBOSI->getTrueValue());
Worklist.Add(TrueBO);
return &SI;
}
}
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
if (TrueBOSI->getCondition() == CondVal) {
TrueBO->setOperand(1, TrueBOSI->getTrueValue());
Worklist.Add(TrueBO);
return &SI;
}
}
}
// select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
BinaryOperator *FalseBO;
if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
canMergeSelectThroughBinop(FalseBO)) {
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
if (FalseBOSI->getCondition() == CondVal) {
FalseBO->setOperand(0, FalseBOSI->getFalseValue());
Worklist.Add(FalseBO);
return &SI;
}
}
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
if (FalseBOSI->getCondition() == CondVal) {
FalseBO->setOperand(1, FalseBOSI->getFalseValue());
Worklist.Add(FalseBO);
return &SI;
}
}
}
Value *NotCond;
if (match(CondVal, m_Not(m_Value(NotCond)))) {
SI.setOperand(0, NotCond);
SI.setOperand(1, FalseVal);
SI.setOperand(2, TrueVal);
SI.swapProfMetadata();
return &SI;
}
if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
unsigned VWidth = VecTy->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
if (V != &SI)
return replaceInstUsesWith(SI, V);
return &SI;
}
}
// If we can compute the condition, there's no need for a select.
// Like the above fold, we are attempting to reduce compile-time cost by
// putting this fold here with limitations rather than in InstSimplify.
// The motivation for this call into value tracking is to take advantage of
// the assumption cache, so make sure that is populated.
if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
KnownBits Known(1);
computeKnownBits(CondVal, Known, 0, &SI);
if (Known.One.isOneValue())
return replaceInstUsesWith(SI, TrueVal);
if (Known.Zero.isOneValue())
return replaceInstUsesWith(SI, FalseVal);
}
if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
return BitCastSel;
// Simplify selects that test the returned flag of cmpxchg instructions.
if (Instruction *Select = foldSelectCmpXchg(SI))
return Select;
if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
return Select;
if (Instruction *Rot = foldSelectRotate(SI))
return Rot;
return nullptr;
}
|