reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
//   void foo(int a, int b) {
//     bar(a + b);
//     bar((a + 2) + b);
//   }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
//   int t = a + b;
//   bar(t);
//   bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
//   (a + c) + d
//   ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
//   ac = a + c
//   ab = a + b
//   abc = ab + c
//   ab2 = ab + b
//   ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/NaryReassociate.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstdint>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "nary-reassociate"

namespace {

class NaryReassociateLegacyPass : public FunctionPass {
public:
  static char ID;

  NaryReassociateLegacyPass() : FunctionPass(ID) {
    initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    return false;
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }

private:
  NaryReassociatePass Impl;
};

} // end anonymous namespace

char NaryReassociateLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
                      "Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
                    "Nary reassociation", false, false)

FunctionPass *llvm::createNaryReassociatePass() {
  return new NaryReassociateLegacyPass();
}

bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
}

PreservedAnalyses NaryReassociatePass::run(Function &F,
                                           FunctionAnalysisManager &AM) {
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);

  if (!runImpl(F, AC, DT, SE, TLI, TTI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<ScalarEvolutionAnalysis>();
  return PA;
}

bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
                                  DominatorTree *DT_, ScalarEvolution *SE_,
                                  TargetLibraryInfo *TLI_,
                                  TargetTransformInfo *TTI_) {
  AC = AC_;
  DT = DT_;
  SE = SE_;
  TLI = TLI_;
  TTI = TTI_;
  DL = &F.getParent()->getDataLayout();

  bool Changed = false, ChangedInThisIteration;
  do {
    ChangedInThisIteration = doOneIteration(F);
    Changed |= ChangedInThisIteration;
  } while (ChangedInThisIteration);
  return Changed;
}

// Whitelist the instruction types NaryReassociate handles for now.
static bool isPotentiallyNaryReassociable(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::GetElementPtr:
  case Instruction::Mul:
    return true;
  default:
    return false;
  }
}

bool NaryReassociatePass::doOneIteration(Function &F) {
  bool Changed = false;
  SeenExprs.clear();
  // Process the basic blocks in a depth first traversal of the dominator
  // tree. This order ensures that all bases of a candidate are in Candidates
  // when we process it.
  for (const auto Node : depth_first(DT)) {
    BasicBlock *BB = Node->getBlock();
    for (auto I = BB->begin(); I != BB->end(); ++I) {
      if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
        const SCEV *OldSCEV = SE->getSCEV(&*I);
        if (Instruction *NewI = tryReassociate(&*I)) {
          Changed = true;
          SE->forgetValue(&*I);
          I->replaceAllUsesWith(NewI);
          WeakVH NewIExist = NewI;
          // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
          // entry will be replaced with nullptr if deleted.
          RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
          if (!NewIExist) {
            // Rare occation where the new instruction (NewI) have been removed,
            // probably due to parts of the input code was dead from the
            // beginning, reset the iterator and start over from the beginning
            I = BB->begin();
            continue;
          }
          I = NewI->getIterator();
        }
        // Add the rewritten instruction to SeenExprs; the original instruction
        // is deleted.
        const SCEV *NewSCEV = SE->getSCEV(&*I);
        SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
        // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
        // is equivalent to I. However, ScalarEvolution::getSCEV may
        // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
        // we reassociate
        //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
        // to
        //   NewI = &a[sext(i)] + sext(j).
        //
        // ScalarEvolution computes
        //   getSCEV(I)    = a + 4 * sext(i + j)
        //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
        // which are different SCEVs.
        //
        // To alleviate this issue of ScalarEvolution not always capturing
        // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
        // map both SCEV before and after tryReassociate(I) to I.
        //
        // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
        if (NewSCEV != OldSCEV)
          SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
      }
    }
  }
  return Changed;
}

Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
    return tryReassociateBinaryOp(cast<BinaryOperator>(I));
  case Instruction::GetElementPtr:
    return tryReassociateGEP(cast<GetElementPtrInst>(I));
  default:
    llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
  }
}

static bool isGEPFoldable(GetElementPtrInst *GEP,
                          const TargetTransformInfo *TTI) {
  SmallVector<const Value*, 4> Indices;
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
    Indices.push_back(*I);
  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
                         Indices) == TargetTransformInfo::TCC_Free;
}

Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
  // Not worth reassociating GEP if it is foldable.
  if (isGEPFoldable(GEP, TTI))
    return nullptr;

  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
                                                  GTI.getIndexedType())) {
        return NewGEP;
      }
    }
  }
  return nullptr;
}

bool NaryReassociatePass::requiresSignExtension(Value *Index,
                                                GetElementPtrInst *GEP) {
  unsigned PointerSizeInBits =
      DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
  return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
}

GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Type *IndexedType) {
  Value *IndexToSplit = GEP->getOperand(I + 1);
  if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
    IndexToSplit = SExt->getOperand(0);
  } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
    // zext can be treated as sext if the source is non-negative.
    if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
      IndexToSplit = ZExt->getOperand(0);
  }

  if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
    // If the I-th index needs sext and the underlying add is not equipped with
    // nsw, we cannot split the add because
    //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
    if (requiresSignExtension(IndexToSplit, GEP) &&
        computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
            OverflowResult::NeverOverflows)
      return nullptr;

    Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
    // IndexToSplit = LHS + RHS.
    if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
      return NewGEP;
    // Symmetrically, try IndexToSplit = RHS + LHS.
    if (LHS != RHS) {
      if (auto *NewGEP =
              tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
        return NewGEP;
    }
  }
  return nullptr;
}

GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Value *LHS,
                                              Value *RHS, Type *IndexedType) {
  // Look for GEP's closest dominator that has the same SCEV as GEP except that
  // the I-th index is replaced with LHS.
  SmallVector<const SCEV *, 4> IndexExprs;
  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
    IndexExprs.push_back(SE->getSCEV(*Index));
  // Replace the I-th index with LHS.
  IndexExprs[I] = SE->getSCEV(LHS);
  if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
      DL->getTypeSizeInBits(LHS->getType()) <
          DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
    // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
    // zext if the source operand is proved non-negative. We should do that
    // consistently so that CandidateExpr more likely appears before. See
    // @reassociate_gep_assume for an example of this canonicalization.
    IndexExprs[I] =
        SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
  }
  const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
                                             IndexExprs);

  Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
  if (Candidate == nullptr)
    return nullptr;

  IRBuilder<> Builder(GEP);
  // Candidate does not necessarily have the same pointer type as GEP. Use
  // bitcast or pointer cast to make sure they have the same type, so that the
  // later RAUW doesn't complain.
  Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
  assert(Candidate->getType() == GEP->getType());

  // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
  uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
  Type *ElementType = GEP->getResultElementType();
  uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
  // Another less rare case: because I is not necessarily the last index of the
  // GEP, the size of the type at the I-th index (IndexedSize) is not
  // necessarily divisible by ElementSize. For example,
  //
  // #pragma pack(1)
  // struct S {
  //   int a[3];
  //   int64 b[8];
  // };
  // #pragma pack()
  //
  // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
  //
  // TODO: bail out on this case for now. We could emit uglygep.
  if (IndexedSize % ElementSize != 0)
    return nullptr;

  // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
  if (RHS->getType() != IntPtrTy)
    RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
  if (IndexedSize != ElementSize) {
    RHS = Builder.CreateMul(
        RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
  }
  GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
      Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
  NewGEP->setIsInBounds(GEP->isInBounds());
  NewGEP->takeName(GEP);
  return NewGEP;
}

Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  // There is no need to reassociate 0.
  if (SE->getSCEV(I)->isZero())
    return nullptr;
  if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
    return NewI;
  if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
    return NewI;
  return nullptr;
}

Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
                                                         BinaryOperator *I) {
  Value *A = nullptr, *B = nullptr;
  // To be conservative, we reassociate I only when it is the only user of (A op
  // B).
  if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
    // I = (A op B) op RHS
    //   = (A op RHS) op B or (B op RHS) op A
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
    const SCEV *RHSExpr = SE->getSCEV(RHS);
    if (BExpr != RHSExpr) {
      if (auto *NewI =
              tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
        return NewI;
    }
    if (AExpr != RHSExpr) {
      if (auto *NewI =
              tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
        return NewI;
    }
  }
  return nullptr;
}

Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
                                                          Value *RHS,
                                                          BinaryOperator *I) {
  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
  // I with LHS op RHS.
  auto *LHS = findClosestMatchingDominator(LHSExpr, I);
  if (LHS == nullptr)
    return nullptr;

  Instruction *NewI = nullptr;
  switch (I->getOpcode()) {
  case Instruction::Add:
    NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
    break;
  case Instruction::Mul:
    NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
    break;
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  NewI->takeName(I);
  return NewI;
}

bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
                                         Value *&Op1, Value *&Op2) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
  case Instruction::Mul:
    return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  return false;
}

const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
                                               const SCEV *LHS,
                                               const SCEV *RHS) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    return SE->getAddExpr(LHS, RHS);
  case Instruction::Mul:
    return SE->getMulExpr(LHS, RHS);
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  return nullptr;
}

Instruction *
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
                                                  Instruction *Dominatee) {
  auto Pos = SeenExprs.find(CandidateExpr);
  if (Pos == SeenExprs.end())
    return nullptr;

  auto &Candidates = Pos->second;
  // Because we process the basic blocks in pre-order of the dominator tree, a
  // candidate that doesn't dominate the current instruction won't dominate any
  // future instruction either. Therefore, we pop it out of the stack. This
  // optimization makes the algorithm O(n).
  while (!Candidates.empty()) {
    // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
    // removed
    // during rewriting.
    if (Value *Candidate = Candidates.back()) {
      Instruction *CandidateInstruction = cast<Instruction>(Candidate);
      if (DT->dominates(CandidateInstruction, Dominatee))
        return CandidateInstruction;
    }
    Candidates.pop_back();
  }
  return nullptr;
}