reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
//===- BypassSlowDivision.cpp - Bypass slow division ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an optimization for div and rem on architectures that
// execute short instructions significantly faster than longer instructions.
// For example, on Intel Atom 32-bit divides are slow enough that during
// runtime it is profitable to check the value of the operands, and if they are
// positive and less than 256 use an unsigned 8-bit divide.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "bypass-slow-division"

namespace {

  struct QuotRemPair {
    Value *Quotient;
    Value *Remainder;

    QuotRemPair(Value *InQuotient, Value *InRemainder)
        : Quotient(InQuotient), Remainder(InRemainder) {}
  };

  /// A quotient and remainder, plus a BB from which they logically "originate".
  /// If you use Quotient or Remainder in a Phi node, you should use BB as its
  /// corresponding predecessor.
  struct QuotRemWithBB {
    BasicBlock *BB = nullptr;
    Value *Quotient = nullptr;
    Value *Remainder = nullptr;
  };

using DivCacheTy = DenseMap<DivRemMapKey, QuotRemPair>;
using BypassWidthsTy = DenseMap<unsigned, unsigned>;
using VisitedSetTy = SmallPtrSet<Instruction *, 4>;

enum ValueRange {
  /// Operand definitely fits into BypassType. No runtime checks are needed.
  VALRNG_KNOWN_SHORT,
  /// A runtime check is required, as value range is unknown.
  VALRNG_UNKNOWN,
  /// Operand is unlikely to fit into BypassType. The bypassing should be
  /// disabled.
  VALRNG_LIKELY_LONG
};

class FastDivInsertionTask {
  bool IsValidTask = false;
  Instruction *SlowDivOrRem = nullptr;
  IntegerType *BypassType = nullptr;
  BasicBlock *MainBB = nullptr;

  bool isHashLikeValue(Value *V, VisitedSetTy &Visited);
  ValueRange getValueRange(Value *Op, VisitedSetTy &Visited);
  QuotRemWithBB createSlowBB(BasicBlock *Successor);
  QuotRemWithBB createFastBB(BasicBlock *Successor);
  QuotRemPair createDivRemPhiNodes(QuotRemWithBB &LHS, QuotRemWithBB &RHS,
                                   BasicBlock *PhiBB);
  Value *insertOperandRuntimeCheck(Value *Op1, Value *Op2);
  Optional<QuotRemPair> insertFastDivAndRem();

  bool isSignedOp() {
    return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
           SlowDivOrRem->getOpcode() == Instruction::SRem;
  }

  bool isDivisionOp() {
    return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
           SlowDivOrRem->getOpcode() == Instruction::UDiv;
  }

  Type *getSlowType() { return SlowDivOrRem->getType(); }

public:
  FastDivInsertionTask(Instruction *I, const BypassWidthsTy &BypassWidths);

  Value *getReplacement(DivCacheTy &Cache);
};

} // end anonymous namespace

FastDivInsertionTask::FastDivInsertionTask(Instruction *I,
                                           const BypassWidthsTy &BypassWidths) {
  switch (I->getOpcode()) {
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
    SlowDivOrRem = I;
    break;
  default:
    // I is not a div/rem operation.
    return;
  }

  // Skip division on vector types. Only optimize integer instructions.
  IntegerType *SlowType = dyn_cast<IntegerType>(SlowDivOrRem->getType());
  if (!SlowType)
    return;

  // Skip if this bitwidth is not bypassed.
  auto BI = BypassWidths.find(SlowType->getBitWidth());
  if (BI == BypassWidths.end())
    return;

  // Get type for div/rem instruction with bypass bitwidth.
  IntegerType *BT = IntegerType::get(I->getContext(), BI->second);
  BypassType = BT;

  // The original basic block.
  MainBB = I->getParent();

  // The instruction is indeed a slow div or rem operation.
  IsValidTask = true;
}

/// Reuses previously-computed dividend or remainder from the current BB if
/// operands and operation are identical. Otherwise calls insertFastDivAndRem to
/// perform the optimization and caches the resulting dividend and remainder.
/// If no replacement can be generated, nullptr is returned.
Value *FastDivInsertionTask::getReplacement(DivCacheTy &Cache) {
  // First, make sure that the task is valid.
  if (!IsValidTask)
    return nullptr;

  // Then, look for a value in Cache.
  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);
  DivRemMapKey Key(isSignedOp(), Dividend, Divisor);
  auto CacheI = Cache.find(Key);

  if (CacheI == Cache.end()) {
    // If previous instance does not exist, try to insert fast div.
    Optional<QuotRemPair> OptResult = insertFastDivAndRem();
    // Bail out if insertFastDivAndRem has failed.
    if (!OptResult)
      return nullptr;
    CacheI = Cache.insert({Key, *OptResult}).first;
  }

  QuotRemPair &Value = CacheI->second;
  return isDivisionOp() ? Value.Quotient : Value.Remainder;
}

/// Check if a value looks like a hash.
///
/// The routine is expected to detect values computed using the most common hash
/// algorithms. Typically, hash computations end with one of the following
/// instructions:
///
/// 1) MUL with a constant wider than BypassType
/// 2) XOR instruction
///
/// And even if we are wrong and the value is not a hash, it is still quite
/// unlikely that such values will fit into BypassType.
///
/// To detect string hash algorithms like FNV we have to look through PHI-nodes.
/// It is implemented as a depth-first search for values that look neither long
/// nor hash-like.
bool FastDivInsertionTask::isHashLikeValue(Value *V, VisitedSetTy &Visited) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  switch (I->getOpcode()) {
  case Instruction::Xor:
    return true;
  case Instruction::Mul: {
    // After Constant Hoisting pass, long constants may be represented as
    // bitcast instructions. As a result, some constants may look like an
    // instruction at first, and an additional check is necessary to find out if
    // an operand is actually a constant.
    Value *Op1 = I->getOperand(1);
    ConstantInt *C = dyn_cast<ConstantInt>(Op1);
    if (!C && isa<BitCastInst>(Op1))
      C = dyn_cast<ConstantInt>(cast<BitCastInst>(Op1)->getOperand(0));
    return C && C->getValue().getMinSignedBits() > BypassType->getBitWidth();
  }
  case Instruction::PHI:
    // Stop IR traversal in case of a crazy input code. This limits recursion
    // depth.
    if (Visited.size() >= 16)
      return false;
    // Do not visit nodes that have been visited already. We return true because
    // it means that we couldn't find any value that doesn't look hash-like.
    if (Visited.find(I) != Visited.end())
      return true;
    Visited.insert(I);
    return llvm::all_of(cast<PHINode>(I)->incoming_values(), [&](Value *V) {
      // Ignore undef values as they probably don't affect the division
      // operands.
      return getValueRange(V, Visited) == VALRNG_LIKELY_LONG ||
             isa<UndefValue>(V);
    });
  default:
    return false;
  }
}

/// Check if an integer value fits into our bypass type.
ValueRange FastDivInsertionTask::getValueRange(Value *V,
                                               VisitedSetTy &Visited) {
  unsigned ShortLen = BypassType->getBitWidth();
  unsigned LongLen = V->getType()->getIntegerBitWidth();

  assert(LongLen > ShortLen && "Value type must be wider than BypassType");
  unsigned HiBits = LongLen - ShortLen;

  const DataLayout &DL = SlowDivOrRem->getModule()->getDataLayout();
  KnownBits Known(LongLen);

  computeKnownBits(V, Known, DL);

  if (Known.countMinLeadingZeros() >= HiBits)
    return VALRNG_KNOWN_SHORT;

  if (Known.countMaxLeadingZeros() < HiBits)
    return VALRNG_LIKELY_LONG;

  // Long integer divisions are often used in hashtable implementations. It's
  // not worth bypassing such divisions because hash values are extremely
  // unlikely to have enough leading zeros. The call below tries to detect
  // values that are unlikely to fit BypassType (including hashes).
  if (isHashLikeValue(V, Visited))
    return VALRNG_LIKELY_LONG;

  return VALRNG_UNKNOWN;
}

/// Add new basic block for slow div and rem operations and put it before
/// SuccessorBB.
QuotRemWithBB FastDivInsertionTask::createSlowBB(BasicBlock *SuccessorBB) {
  QuotRemWithBB DivRemPair;
  DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
                                     MainBB->getParent(), SuccessorBB);
  IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());

  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);

  if (isSignedOp()) {
    DivRemPair.Quotient = Builder.CreateSDiv(Dividend, Divisor);
    DivRemPair.Remainder = Builder.CreateSRem(Dividend, Divisor);
  } else {
    DivRemPair.Quotient = Builder.CreateUDiv(Dividend, Divisor);
    DivRemPair.Remainder = Builder.CreateURem(Dividend, Divisor);
  }

  Builder.CreateBr(SuccessorBB);
  return DivRemPair;
}

/// Add new basic block for fast div and rem operations and put it before
/// SuccessorBB.
QuotRemWithBB FastDivInsertionTask::createFastBB(BasicBlock *SuccessorBB) {
  QuotRemWithBB DivRemPair;
  DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
                                     MainBB->getParent(), SuccessorBB);
  IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());

  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);
  Value *ShortDivisorV =
      Builder.CreateCast(Instruction::Trunc, Divisor, BypassType);
  Value *ShortDividendV =
      Builder.CreateCast(Instruction::Trunc, Dividend, BypassType);

  // udiv/urem because this optimization only handles positive numbers.
  Value *ShortQV = Builder.CreateUDiv(ShortDividendV, ShortDivisorV);
  Value *ShortRV = Builder.CreateURem(ShortDividendV, ShortDivisorV);
  DivRemPair.Quotient =
      Builder.CreateCast(Instruction::ZExt, ShortQV, getSlowType());
  DivRemPair.Remainder =
      Builder.CreateCast(Instruction::ZExt, ShortRV, getSlowType());
  Builder.CreateBr(SuccessorBB);

  return DivRemPair;
}

/// Creates Phi nodes for result of Div and Rem.
QuotRemPair FastDivInsertionTask::createDivRemPhiNodes(QuotRemWithBB &LHS,
                                                       QuotRemWithBB &RHS,
                                                       BasicBlock *PhiBB) {
  IRBuilder<> Builder(PhiBB, PhiBB->begin());
  PHINode *QuoPhi = Builder.CreatePHI(getSlowType(), 2);
  QuoPhi->addIncoming(LHS.Quotient, LHS.BB);
  QuoPhi->addIncoming(RHS.Quotient, RHS.BB);
  PHINode *RemPhi = Builder.CreatePHI(getSlowType(), 2);
  RemPhi->addIncoming(LHS.Remainder, LHS.BB);
  RemPhi->addIncoming(RHS.Remainder, RHS.BB);
  return QuotRemPair(QuoPhi, RemPhi);
}

/// Creates a runtime check to test whether both the divisor and dividend fit
/// into BypassType. The check is inserted at the end of MainBB. True return
/// value means that the operands fit. Either of the operands may be NULL if it
/// doesn't need a runtime check.
Value *FastDivInsertionTask::insertOperandRuntimeCheck(Value *Op1, Value *Op2) {
  assert((Op1 || Op2) && "Nothing to check");
  IRBuilder<> Builder(MainBB, MainBB->end());

  Value *OrV;
  if (Op1 && Op2)
    OrV = Builder.CreateOr(Op1, Op2);
  else
    OrV = Op1 ? Op1 : Op2;

  // BitMask is inverted to check if the operands are
  // larger than the bypass type
  uint64_t BitMask = ~BypassType->getBitMask();
  Value *AndV = Builder.CreateAnd(OrV, BitMask);

  // Compare operand values
  Value *ZeroV = ConstantInt::getSigned(getSlowType(), 0);
  return Builder.CreateICmpEQ(AndV, ZeroV);
}

/// Substitutes the div/rem instruction with code that checks the value of the
/// operands and uses a shorter-faster div/rem instruction when possible.
Optional<QuotRemPair> FastDivInsertionTask::insertFastDivAndRem() {
  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);

  VisitedSetTy SetL;
  ValueRange DividendRange = getValueRange(Dividend, SetL);
  if (DividendRange == VALRNG_LIKELY_LONG)
    return None;

  VisitedSetTy SetR;
  ValueRange DivisorRange = getValueRange(Divisor, SetR);
  if (DivisorRange == VALRNG_LIKELY_LONG)
    return None;

  bool DividendShort = (DividendRange == VALRNG_KNOWN_SHORT);
  bool DivisorShort = (DivisorRange == VALRNG_KNOWN_SHORT);

  if (DividendShort && DivisorShort) {
    // If both operands are known to be short then just replace the long
    // division with a short one in-place.  Since we're not introducing control
    // flow in this case, narrowing the division is always a win, even if the
    // divisor is a constant (and will later get replaced by a multiplication).

    IRBuilder<> Builder(SlowDivOrRem);
    Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType);
    Value *TruncDivisor = Builder.CreateTrunc(Divisor, BypassType);
    Value *TruncDiv = Builder.CreateUDiv(TruncDividend, TruncDivisor);
    Value *TruncRem = Builder.CreateURem(TruncDividend, TruncDivisor);
    Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType());
    Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType());
    return QuotRemPair(ExtDiv, ExtRem);
  }

  if (isa<ConstantInt>(Divisor)) {
    // If the divisor is not a constant, DAGCombiner will convert it to a
    // multiplication by a magic constant.  It isn't clear if it is worth
    // introducing control flow to get a narrower multiply.
    return None;
  }

  // After Constant Hoisting pass, long constants may be represented as
  // bitcast instructions. As a result, some constants may look like an
  // instruction at first, and an additional check is necessary to find out if
  // an operand is actually a constant.
  if (auto *BCI = dyn_cast<BitCastInst>(Divisor))
    if (BCI->getParent() == SlowDivOrRem->getParent() &&
        isa<ConstantInt>(BCI->getOperand(0)))
      return None;

  if (DividendShort && !isSignedOp()) {
    // If the division is unsigned and Dividend is known to be short, then
    // either
    // 1) Divisor is less or equal to Dividend, and the result can be computed
    //    with a short division.
    // 2) Divisor is greater than Dividend. In this case, no division is needed
    //    at all: The quotient is 0 and the remainder is equal to Dividend.
    //
    // So instead of checking at runtime whether Divisor fits into BypassType,
    // we emit a runtime check to differentiate between these two cases. This
    // lets us entirely avoid a long div.

    // Split the basic block before the div/rem.
    BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
    // Remove the unconditional branch from MainBB to SuccessorBB.
    MainBB->getInstList().back().eraseFromParent();
    QuotRemWithBB Long;
    Long.BB = MainBB;
    Long.Quotient = ConstantInt::get(getSlowType(), 0);
    Long.Remainder = Dividend;
    QuotRemWithBB Fast = createFastBB(SuccessorBB);
    QuotRemPair Result = createDivRemPhiNodes(Fast, Long, SuccessorBB);
    IRBuilder<> Builder(MainBB, MainBB->end());
    Value *CmpV = Builder.CreateICmpUGE(Dividend, Divisor);
    Builder.CreateCondBr(CmpV, Fast.BB, SuccessorBB);
    return Result;
  } else {
    // General case. Create both slow and fast div/rem pairs and choose one of
    // them at runtime.

    // Split the basic block before the div/rem.
    BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
    // Remove the unconditional branch from MainBB to SuccessorBB.
    MainBB->getInstList().back().eraseFromParent();
    QuotRemWithBB Fast = createFastBB(SuccessorBB);
    QuotRemWithBB Slow = createSlowBB(SuccessorBB);
    QuotRemPair Result = createDivRemPhiNodes(Fast, Slow, SuccessorBB);
    Value *CmpV = insertOperandRuntimeCheck(DividendShort ? nullptr : Dividend,
                                            DivisorShort ? nullptr : Divisor);
    IRBuilder<> Builder(MainBB, MainBB->end());
    Builder.CreateCondBr(CmpV, Fast.BB, Slow.BB);
    return Result;
  }
}

/// This optimization identifies DIV/REM instructions in a BB that can be
/// profitably bypassed and carried out with a shorter, faster divide.
bool llvm::bypassSlowDivision(BasicBlock *BB,
                              const BypassWidthsTy &BypassWidths) {
  DivCacheTy PerBBDivCache;

  bool MadeChange = false;
  Instruction *Next = &*BB->begin();
  while (Next != nullptr) {
    // We may add instructions immediately after I, but we want to skip over
    // them.
    Instruction *I = Next;
    Next = Next->getNextNode();

    // Ignore dead code to save time and avoid bugs.
    if (I->hasNUses(0))
      continue;

    FastDivInsertionTask Task(I, BypassWidths);
    if (Value *Replacement = Task.getReplacement(PerBBDivCache)) {
      I->replaceAllUsesWith(Replacement);
      I->eraseFromParent();
      MadeChange = true;
    }
  }

  // Above we eagerly create divs and rems, as pairs, so that we can efficiently
  // create divrem machine instructions.  Now erase any unused divs / rems so we
  // don't leave extra instructions sitting around.
  for (auto &KV : PerBBDivCache)
    for (Value *V : {KV.second.Quotient, KV.second.Remainder})
      RecursivelyDeleteTriviallyDeadInstructions(V);

  return MadeChange;
}