reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "PatternInit.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"

using namespace clang;
using namespace CodeGen;

void CodeGenFunction::EmitDecl(const Decl &D) {
  switch (D.getKind()) {
  case Decl::BuiltinTemplate:
  case Decl::TranslationUnit:
  case Decl::ExternCContext:
  case Decl::Namespace:
  case Decl::UnresolvedUsingTypename:
  case Decl::ClassTemplateSpecialization:
  case Decl::ClassTemplatePartialSpecialization:
  case Decl::VarTemplateSpecialization:
  case Decl::VarTemplatePartialSpecialization:
  case Decl::TemplateTypeParm:
  case Decl::UnresolvedUsingValue:
  case Decl::NonTypeTemplateParm:
  case Decl::CXXDeductionGuide:
  case Decl::CXXMethod:
  case Decl::CXXConstructor:
  case Decl::CXXDestructor:
  case Decl::CXXConversion:
  case Decl::Field:
  case Decl::MSProperty:
  case Decl::IndirectField:
  case Decl::ObjCIvar:
  case Decl::ObjCAtDefsField:
  case Decl::ParmVar:
  case Decl::ImplicitParam:
  case Decl::ClassTemplate:
  case Decl::VarTemplate:
  case Decl::FunctionTemplate:
  case Decl::TypeAliasTemplate:
  case Decl::TemplateTemplateParm:
  case Decl::ObjCMethod:
  case Decl::ObjCCategory:
  case Decl::ObjCProtocol:
  case Decl::ObjCInterface:
  case Decl::ObjCCategoryImpl:
  case Decl::ObjCImplementation:
  case Decl::ObjCProperty:
  case Decl::ObjCCompatibleAlias:
  case Decl::PragmaComment:
  case Decl::PragmaDetectMismatch:
  case Decl::AccessSpec:
  case Decl::LinkageSpec:
  case Decl::Export:
  case Decl::ObjCPropertyImpl:
  case Decl::FileScopeAsm:
  case Decl::Friend:
  case Decl::FriendTemplate:
  case Decl::Block:
  case Decl::Captured:
  case Decl::ClassScopeFunctionSpecialization:
  case Decl::UsingShadow:
  case Decl::ConstructorUsingShadow:
  case Decl::ObjCTypeParam:
  case Decl::Binding:
    llvm_unreachable("Declaration should not be in declstmts!");
  case Decl::Function:  // void X();
  case Decl::Record:    // struct/union/class X;
  case Decl::Enum:      // enum X;
  case Decl::EnumConstant: // enum ? { X = ? }
  case Decl::CXXRecord: // struct/union/class X; [C++]
  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
  case Decl::Label:        // __label__ x;
  case Decl::Import:
  case Decl::OMPThreadPrivate:
  case Decl::OMPAllocate:
  case Decl::OMPCapturedExpr:
  case Decl::OMPRequires:
  case Decl::Empty:
  case Decl::Concept:
    // None of these decls require codegen support.
    return;

  case Decl::NamespaceAlias:
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
    return;
  case Decl::Using:          // using X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitUsingDecl(cast<UsingDecl>(D));
    return;
  case Decl::UsingPack:
    for (auto *Using : cast<UsingPackDecl>(D).expansions())
      EmitDecl(*Using);
    return;
  case Decl::UsingDirective: // using namespace X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
    return;
  case Decl::Var:
  case Decl::Decomposition: {
    const VarDecl &VD = cast<VarDecl>(D);
    assert(VD.isLocalVarDecl() &&
           "Should not see file-scope variables inside a function!");
    EmitVarDecl(VD);
    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
      for (auto *B : DD->bindings())
        if (auto *HD = B->getHoldingVar())
          EmitVarDecl(*HD);
    return;
  }

  case Decl::OMPDeclareReduction:
    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);

  case Decl::OMPDeclareMapper:
    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);

  case Decl::Typedef:      // typedef int X;
  case Decl::TypeAlias: {  // using X = int; [C++0x]
    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    QualType Ty = TD.getUnderlyingType();

    if (Ty->isVariablyModifiedType())
      EmitVariablyModifiedType(Ty);

    return;
  }
  }
}

/// EmitVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
  if (D.hasExternalStorage())
    // Don't emit it now, allow it to be emitted lazily on its first use.
    return;

  // Some function-scope variable does not have static storage but still
  // needs to be emitted like a static variable, e.g. a function-scope
  // variable in constant address space in OpenCL.
  if (D.getStorageDuration() != SD_Automatic) {
    // Static sampler variables translated to function calls.
    if (D.getType()->isSamplerT())
      return;

    llvm::GlobalValue::LinkageTypes Linkage =
        CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);

    // FIXME: We need to force the emission/use of a guard variable for
    // some variables even if we can constant-evaluate them because
    // we can't guarantee every translation unit will constant-evaluate them.

    return EmitStaticVarDecl(D, Linkage);
  }

  if (D.getType().getAddressSpace() == LangAS::opencl_local)
    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);

  assert(D.hasLocalStorage());
  return EmitAutoVarDecl(D);
}

static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
  if (CGM.getLangOpts().CPlusPlus)
    return CGM.getMangledName(&D).str();

  // If this isn't C++, we don't need a mangled name, just a pretty one.
  assert(!D.isExternallyVisible() && "name shouldn't matter");
  std::string ContextName;
  const DeclContext *DC = D.getDeclContext();
  if (auto *CD = dyn_cast<CapturedDecl>(DC))
    DC = cast<DeclContext>(CD->getNonClosureContext());
  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    ContextName = CGM.getMangledName(FD);
  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
    ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
    ContextName = OMD->getSelector().getAsString();
  else
    llvm_unreachable("Unknown context for static var decl");

  ContextName += "." + D.getNameAsString();
  return ContextName;
}

llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
  // In general, we don't always emit static var decls once before we reference
  // them. It is possible to reference them before emitting the function that
  // contains them, and it is possible to emit the containing function multiple
  // times.
  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
    return ExistingGV;

  QualType Ty = D.getType();
  assert(Ty->isConstantSizeType() && "VLAs can't be static");

  // Use the label if the variable is renamed with the asm-label extension.
  std::string Name;
  if (D.hasAttr<AsmLabelAttr>())
    Name = getMangledName(&D);
  else
    Name = getStaticDeclName(*this, D);

  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
  LangAS AS = GetGlobalVarAddressSpace(&D);
  unsigned TargetAS = getContext().getTargetAddressSpace(AS);

  // OpenCL variables in local address space and CUDA shared
  // variables cannot have an initializer.
  llvm::Constant *Init = nullptr;
  if (Ty.getAddressSpace() == LangAS::opencl_local ||
      D.hasAttr<CUDASharedAttr>())
    Init = llvm::UndefValue::get(LTy);
  else
    Init = EmitNullConstant(Ty);

  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
  GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());

  if (supportsCOMDAT() && GV->isWeakForLinker())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));

  if (D.getTLSKind())
    setTLSMode(GV, D);

  setGVProperties(GV, &D);

  // Make sure the result is of the correct type.
  LangAS ExpectedAS = Ty.getAddressSpace();
  llvm::Constant *Addr = GV;
  if (AS != ExpectedAS) {
    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
        *this, GV, AS, ExpectedAS,
        LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
  }

  setStaticLocalDeclAddress(&D, Addr);

  // Ensure that the static local gets initialized by making sure the parent
  // function gets emitted eventually.
  const Decl *DC = cast<Decl>(D.getDeclContext());

  // We can't name blocks or captured statements directly, so try to emit their
  // parents.
  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
    DC = DC->getNonClosureContext();
    // FIXME: Ensure that global blocks get emitted.
    if (!DC)
      return Addr;
  }

  GlobalDecl GD;
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    GD = GlobalDecl(CD, Ctor_Base);
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    GD = GlobalDecl(DD, Dtor_Base);
  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    GD = GlobalDecl(FD);
  else {
    // Don't do anything for Obj-C method decls or global closures. We should
    // never defer them.
    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
  }
  if (GD.getDecl()) {
    // Disable emission of the parent function for the OpenMP device codegen.
    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
    (void)GetAddrOfGlobal(GD);
  }

  return Addr;
}

/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it.  If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one.  Otherwise it just returns GV.
llvm::GlobalVariable *
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
                                               llvm::GlobalVariable *GV) {
  ConstantEmitter emitter(*this);
  llvm::Constant *Init = emitter.tryEmitForInitializer(D);

  // If constant emission failed, then this should be a C++ static
  // initializer.
  if (!Init) {
    if (!getLangOpts().CPlusPlus)
      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    else if (HaveInsertPoint()) {
      // Since we have a static initializer, this global variable can't
      // be constant.
      GV->setConstant(false);

      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
    }
    return GV;
  }

  // The initializer may differ in type from the global. Rewrite
  // the global to match the initializer.  (We have to do this
  // because some types, like unions, can't be completely represented
  // in the LLVM type system.)
  if (GV->getType()->getElementType() != Init->getType()) {
    llvm::GlobalVariable *OldGV = GV;

    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
                                  OldGV->isConstant(),
                                  OldGV->getLinkage(), Init, "",
                                  /*InsertBefore*/ OldGV,
                                  OldGV->getThreadLocalMode(),
                           CGM.getContext().getTargetAddressSpace(D.getType()));
    GV->setVisibility(OldGV->getVisibility());
    GV->setDSOLocal(OldGV->isDSOLocal());
    GV->setComdat(OldGV->getComdat());

    // Steal the name of the old global
    GV->takeName(OldGV);

    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    OldGV->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    OldGV->eraseFromParent();
  }

  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
  GV->setInitializer(Init);

  emitter.finalize(GV);

  if (D.needsDestruction(getContext()) && HaveInsertPoint()) {
    // We have a constant initializer, but a nontrivial destructor. We still
    // need to perform a guarded "initialization" in order to register the
    // destructor.
    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
  }

  return GV;
}

void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
                                      llvm::GlobalValue::LinkageTypes Linkage) {
  // Check to see if we already have a global variable for this
  // declaration.  This can happen when double-emitting function
  // bodies, e.g. with complete and base constructors.
  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
  CharUnits alignment = getContext().getDeclAlign(&D);

  // Store into LocalDeclMap before generating initializer to handle
  // circular references.
  setAddrOfLocalVar(&D, Address(addr, alignment));

  // We can't have a VLA here, but we can have a pointer to a VLA,
  // even though that doesn't really make any sense.
  // Make sure to evaluate VLA bounds now so that we have them for later.
  if (D.getType()->isVariablyModifiedType())
    EmitVariablyModifiedType(D.getType());

  // Save the type in case adding the initializer forces a type change.
  llvm::Type *expectedType = addr->getType();

  llvm::GlobalVariable *var =
    cast<llvm::GlobalVariable>(addr->stripPointerCasts());

  // CUDA's local and local static __shared__ variables should not
  // have any non-empty initializers. This is ensured by Sema.
  // Whatever initializer such variable may have when it gets here is
  // a no-op and should not be emitted.
  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
                         D.hasAttr<CUDASharedAttr>();
  // If this value has an initializer, emit it.
  if (D.getInit() && !isCudaSharedVar)
    var = AddInitializerToStaticVarDecl(D, var);

  var->setAlignment(alignment.getAsAlign());

  if (D.hasAttr<AnnotateAttr>())
    CGM.AddGlobalAnnotations(&D, var);

  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
    var->addAttribute("bss-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
    var->addAttribute("data-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
    var->addAttribute("rodata-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
    var->addAttribute("relro-section", SA->getName());

  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    var->setSection(SA->getName());

  if (D.hasAttr<UsedAttr>())
    CGM.addUsedGlobal(var);

  // We may have to cast the constant because of the initializer
  // mismatch above.
  //
  // FIXME: It is really dangerous to store this in the map; if anyone
  // RAUW's the GV uses of this constant will be invalid.
  llvm::Constant *castedAddr =
    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
  if (var != castedAddr)
    LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
  CGM.setStaticLocalDeclAddress(&D, castedAddr);

  CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);

  // Emit global variable debug descriptor for static vars.
  CGDebugInfo *DI = getDebugInfo();
  if (DI &&
      CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
    DI->setLocation(D.getLocation());
    DI->EmitGlobalVariable(var, &D);
  }
}

namespace {
  struct DestroyObject final : EHScopeStack::Cleanup {
    DestroyObject(Address addr, QualType type,
                  CodeGenFunction::Destroyer *destroyer,
                  bool useEHCleanupForArray)
      : addr(addr), type(type), destroyer(destroyer),
        useEHCleanupForArray(useEHCleanupForArray) {}

    Address addr;
    QualType type;
    CodeGenFunction::Destroyer *destroyer;
    bool useEHCleanupForArray;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Don't use an EH cleanup recursively from an EH cleanup.
      bool useEHCleanupForArray =
        flags.isForNormalCleanup() && this->useEHCleanupForArray;

      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    }
  };

  template <class Derived>
  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}

    llvm::Value *NRVOFlag;
    Address Loc;
    QualType Ty;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Along the exceptions path we always execute the dtor.
      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;

      llvm::BasicBlock *SkipDtorBB = nullptr;
      if (NRVO) {
        // If we exited via NRVO, we skip the destructor call.
        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
        llvm::Value *DidNRVO =
          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
        CGF.EmitBlock(RunDtorBB);
      }

      static_cast<Derived *>(this)->emitDestructorCall(CGF);

      if (NRVO) CGF.EmitBlock(SkipDtorBB);
    }

    virtual ~DestroyNRVOVariable() = default;
  };

  struct DestroyNRVOVariableCXX final
      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
    DestroyNRVOVariableCXX(Address addr, QualType type,
                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
          Dtor(Dtor) {}

    const CXXDestructorDecl *Dtor;

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
                                /*ForVirtualBase=*/false,
                                /*Delegating=*/false, Loc, Ty);
    }
  };

  struct DestroyNRVOVariableC final
      : DestroyNRVOVariable<DestroyNRVOVariableC> {
    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
    }
  };

  struct CallStackRestore final : EHScopeStack::Cleanup {
    Address Stack;
    CallStackRestore(Address Stack) : Stack(Stack) {}
    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
      llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
      CGF.Builder.CreateCall(F, V);
    }
  };

  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
    const VarDecl &Var;
    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Compute the address of the local variable, in case it's a
      // byref or something.
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
                                                SourceLocation());
      CGF.EmitExtendGCLifetime(value);
    }
  };

  struct CallCleanupFunction final : EHScopeStack::Cleanup {
    llvm::Constant *CleanupFn;
    const CGFunctionInfo &FnInfo;
    const VarDecl &Var;

    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
                        const VarDecl *Var)
      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      // Compute the address of the local variable, in case it's a byref
      // or something.
      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();

      // In some cases, the type of the function argument will be different from
      // the type of the pointer. An example of this is
      // void f(void* arg);
      // __attribute__((cleanup(f))) void *g;
      //
      // To fix this we insert a bitcast here.
      QualType ArgTy = FnInfo.arg_begin()->type;
      llvm::Value *Arg =
        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));

      CallArgList Args;
      Args.add(RValue::get(Arg),
               CGF.getContext().getPointerType(Var.getType()));
      auto Callee = CGCallee::forDirect(CleanupFn);
      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
    }
  };
} // end anonymous namespace

/// EmitAutoVarWithLifetime - Does the setup required for an automatic
/// variable with lifetime.
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
                                    Address addr,
                                    Qualifiers::ObjCLifetime lifetime) {
  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_ExplicitNone:
    // nothing to do
    break;

  case Qualifiers::OCL_Strong: {
    CodeGenFunction::Destroyer *destroyer =
      (var.hasAttr<ObjCPreciseLifetimeAttr>()
       ? CodeGenFunction::destroyARCStrongPrecise
       : CodeGenFunction::destroyARCStrongImprecise);

    CleanupKind cleanupKind = CGF.getARCCleanupKind();
    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
                    cleanupKind & EHCleanup);
    break;
  }
  case Qualifiers::OCL_Autoreleasing:
    // nothing to do
    break;

  case Qualifiers::OCL_Weak:
    // __weak objects always get EH cleanups; otherwise, exceptions
    // could cause really nasty crashes instead of mere leaks.
    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
                    CodeGenFunction::destroyARCWeak,
                    /*useEHCleanup*/ true);
    break;
  }
}

static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
  if (const Expr *e = dyn_cast<Expr>(s)) {
    // Skip the most common kinds of expressions that make
    // hierarchy-walking expensive.
    s = e = e->IgnoreParenCasts();

    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
      return (ref->getDecl() == &var);
    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
      const BlockDecl *block = be->getBlockDecl();
      for (const auto &I : block->captures()) {
        if (I.getVariable() == &var)
          return true;
      }
    }
  }

  for (const Stmt *SubStmt : s->children())
    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
    if (SubStmt && isAccessedBy(var, SubStmt))
      return true;

  return false;
}

static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
  if (!decl) return false;
  if (!isa<VarDecl>(decl)) return false;
  const VarDecl *var = cast<VarDecl>(decl);
  return isAccessedBy(*var, e);
}

static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
                                   const LValue &destLV, const Expr *init) {
  bool needsCast = false;

  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
    switch (castExpr->getCastKind()) {
    // Look through casts that don't require representation changes.
    case CK_NoOp:
    case CK_BitCast:
    case CK_BlockPointerToObjCPointerCast:
      needsCast = true;
      break;

    // If we find an l-value to r-value cast from a __weak variable,
    // emit this operation as a copy or move.
    case CK_LValueToRValue: {
      const Expr *srcExpr = castExpr->getSubExpr();
      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
        return false;

      // Emit the source l-value.
      LValue srcLV = CGF.EmitLValue(srcExpr);

      // Handle a formal type change to avoid asserting.
      auto srcAddr = srcLV.getAddress();
      if (needsCast) {
        srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
                                         destLV.getAddress().getElementType());
      }

      // If it was an l-value, use objc_copyWeak.
      if (srcExpr->getValueKind() == VK_LValue) {
        CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
      } else {
        assert(srcExpr->getValueKind() == VK_XValue);
        CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
      }
      return true;
    }

    // Stop at anything else.
    default:
      return false;
    }

    init = castExpr->getSubExpr();
  }
  return false;
}

static void drillIntoBlockVariable(CodeGenFunction &CGF,
                                   LValue &lvalue,
                                   const VarDecl *var) {
  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
}

void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
                                           SourceLocation Loc) {
  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
    return;

  auto Nullability = LHS.getType()->getNullability(getContext());
  if (!Nullability || *Nullability != NullabilityKind::NonNull)
    return;

  // Check if the right hand side of the assignment is nonnull, if the left
  // hand side must be nonnull.
  SanitizerScope SanScope(this);
  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
  llvm::Constant *StaticData[] = {
      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
            SanitizerHandler::TypeMismatch, StaticData, RHS);
}

void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
  if (!lifetime) {
    llvm::Value *value = EmitScalarExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
    return;
  }

  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
    init = DIE->getExpr();

  // If we're emitting a value with lifetime, we have to do the
  // initialization *before* we leave the cleanup scopes.
  if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
    enterFullExpression(fe);
    init = fe->getSubExpr();
  }
  CodeGenFunction::RunCleanupsScope Scope(*this);

  // We have to maintain the illusion that the variable is
  // zero-initialized.  If the variable might be accessed in its
  // initializer, zero-initialize before running the initializer, then
  // actually perform the initialization with an assign.
  bool accessedByInit = false;
  if (lifetime != Qualifiers::OCL_ExplicitNone)
    accessedByInit = (capturedByInit || isAccessedBy(D, init));
  if (accessedByInit) {
    LValue tempLV = lvalue;
    // Drill down to the __block object if necessary.
    if (capturedByInit) {
      // We can use a simple GEP for this because it can't have been
      // moved yet.
      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
                                              cast<VarDecl>(D),
                                              /*follow*/ false));
    }

    auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());

    // If __weak, we want to use a barrier under certain conditions.
    if (lifetime == Qualifiers::OCL_Weak)
      EmitARCInitWeak(tempLV.getAddress(), zero);

    // Otherwise just do a simple store.
    else
      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
  }

  // Emit the initializer.
  llvm::Value *value = nullptr;

  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_Strong: {
    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
      value = EmitARCRetainScalarExpr(init);
      break;
    }
    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
    // that we omit the retain, and causes non-autoreleased return values to be
    // immediately released.
    LLVM_FALLTHROUGH;
  }

  case Qualifiers::OCL_ExplicitNone:
    value = EmitARCUnsafeUnretainedScalarExpr(init);
    break;

  case Qualifiers::OCL_Weak: {
    // If it's not accessed by the initializer, try to emit the
    // initialization with a copy or move.
    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
      return;
    }

    // No way to optimize a producing initializer into this.  It's not
    // worth optimizing for, because the value will immediately
    // disappear in the common case.
    value = EmitScalarExpr(init);

    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    if (accessedByInit)
      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
    else
      EmitARCInitWeak(lvalue.getAddress(), value);
    return;
  }

  case Qualifiers::OCL_Autoreleasing:
    value = EmitARCRetainAutoreleaseScalarExpr(init);
    break;
  }

  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));

  EmitNullabilityCheck(lvalue, value, init->getExprLoc());

  // If the variable might have been accessed by its initializer, we
  // might have to initialize with a barrier.  We have to do this for
  // both __weak and __strong, but __weak got filtered out above.
  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    EmitARCRelease(oldValue, ARCImpreciseLifetime);
    return;
  }

  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
}

/// Decide whether we can emit the non-zero parts of the specified initializer
/// with equal or fewer than NumStores scalar stores.
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
                                               unsigned &NumStores) {
  // Zero and Undef never requires any extra stores.
  if (isa<llvm::ConstantAggregateZero>(Init) ||
      isa<llvm::ConstantPointerNull>(Init) ||
      isa<llvm::UndefValue>(Init))
    return true;
  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init))
    return Init->isNullValue() || NumStores--;

  // See if we can emit each element.
  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  if (llvm::ConstantDataSequential *CDS =
        dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  // Anything else is hard and scary.
  return false;
}

/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
/// the scalar stores that would be required.
static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
                                        llvm::Constant *Init, Address Loc,
                                        bool isVolatile, CGBuilderTy &Builder) {
  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
         "called emitStoresForInitAfterBZero for zero or undef value.");

  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init)) {
    Builder.CreateStore(Init, Loc, isVolatile);
    return;
  }

  if (llvm::ConstantDataSequential *CDS =
          dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);

      // If necessary, get a pointer to the element and emit it.
      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
        emitStoresForInitAfterBZero(
            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
            Builder);
    }
    return;
  }

  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
         "Unknown value type!");

  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));

    // If necessary, get a pointer to the element and emit it.
    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
      emitStoresForInitAfterBZero(CGM, Elt,
                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
                                  isVolatile, Builder);
  }
}

/// Decide whether we should use bzero plus some stores to initialize a local
/// variable instead of using a memcpy from a constant global.  It is beneficial
/// to use bzero if the global is all zeros, or mostly zeros and large.
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
                                                 uint64_t GlobalSize) {
  // If a global is all zeros, always use a bzero.
  if (isa<llvm::ConstantAggregateZero>(Init)) return true;

  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
  // do it if it will require 6 or fewer scalar stores.
  // TODO: Should budget depends on the size?  Avoiding a large global warrants
  // plopping in more stores.
  unsigned StoreBudget = 6;
  uint64_t SizeLimit = 32;

  return GlobalSize > SizeLimit &&
         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
}

/// Decide whether we should use memset to initialize a local variable instead
/// of using a memcpy from a constant global. Assumes we've already decided to
/// not user bzero.
/// FIXME We could be more clever, as we are for bzero above, and generate
///       memset followed by stores. It's unclear that's worth the effort.
static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
                                                uint64_t GlobalSize,
                                                const llvm::DataLayout &DL) {
  uint64_t SizeLimit = 32;
  if (GlobalSize <= SizeLimit)
    return nullptr;
  return llvm::isBytewiseValue(Init, DL);
}

/// Decide whether we want to split a constant structure or array store into a
/// sequence of its fields' stores. This may cost us code size and compilation
/// speed, but plays better with store optimizations.
static bool shouldSplitConstantStore(CodeGenModule &CGM,
                                     uint64_t GlobalByteSize) {
  // Don't break things that occupy more than one cacheline.
  uint64_t ByteSizeLimit = 64;
  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    return false;
  if (GlobalByteSize <= ByteSizeLimit)
    return true;
  return false;
}

enum class IsPattern { No, Yes };

/// Generate a constant filled with either a pattern or zeroes.
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Type *Ty) {
  if (isPattern == IsPattern::Yes)
    return initializationPatternFor(CGM, Ty);
  else
    return llvm::Constant::getNullValue(Ty);
}

static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant);

/// Helper function for constWithPadding() to deal with padding in structures.
static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
                                              IsPattern isPattern,
                                              llvm::StructType *STy,
                                              llvm::Constant *constant) {
  const llvm::DataLayout &DL = CGM.getDataLayout();
  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
  unsigned SizeSoFar = 0;
  SmallVector<llvm::Constant *, 8> Values;
  bool NestedIntact = true;
  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
    unsigned CurOff = Layout->getElementOffset(i);
    if (SizeSoFar < CurOff) {
      assert(!STy->isPacked());
      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
    }
    llvm::Constant *CurOp;
    if (constant->isZeroValue())
      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
    else
      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
    if (CurOp != NewOp)
      NestedIntact = false;
    Values.push_back(NewOp);
    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
  }
  unsigned TotalSize = Layout->getSizeInBytes();
  if (SizeSoFar < TotalSize) {
    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
  }
  if (NestedIntact && Values.size() == STy->getNumElements())
    return constant;
  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
}

/// Replace all padding bytes in a given constant with either a pattern byte or
/// 0x00.
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant) {
  llvm::Type *OrigTy = constant->getType();
  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
    return constStructWithPadding(CGM, isPattern, STy, constant);
  if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
    llvm::SmallVector<llvm::Constant *, 8> Values;
    unsigned Size = STy->getNumElements();
    if (!Size)
      return constant;
    llvm::Type *ElemTy = STy->getElementType();
    bool ZeroInitializer = constant->isZeroValue();
    llvm::Constant *OpValue, *PaddedOp;
    if (ZeroInitializer) {
      OpValue = llvm::Constant::getNullValue(ElemTy);
      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
    }
    for (unsigned Op = 0; Op != Size; ++Op) {
      if (!ZeroInitializer) {
        OpValue = constant->getAggregateElement(Op);
        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
      }
      Values.push_back(PaddedOp);
    }
    auto *NewElemTy = Values[0]->getType();
    if (NewElemTy == ElemTy)
      return constant;
    if (OrigTy->isArrayTy()) {
      auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
      return llvm::ConstantArray::get(ArrayTy, Values);
    } else {
      return llvm::ConstantVector::get(Values);
    }
  }
  return constant;
}

Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
                                               llvm::Constant *Constant,
                                               CharUnits Align) {
  auto FunctionName = [&](const DeclContext *DC) -> std::string {
    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
        return CC->getNameAsString();
      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
        return CD->getNameAsString();
      return getMangledName(FD);
    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
      return OM->getNameAsString();
    } else if (isa<BlockDecl>(DC)) {
      return "<block>";
    } else if (isa<CapturedDecl>(DC)) {
      return "<captured>";
    } else {
      llvm_unreachable("expected a function or method");
    }
  };

  // Form a simple per-variable cache of these values in case we find we
  // want to reuse them.
  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
    auto *Ty = Constant->getType();
    bool isConstant = true;
    llvm::GlobalVariable *InsertBefore = nullptr;
    unsigned AS =
        getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
    std::string Name;
    if (D.hasGlobalStorage())
      Name = getMangledName(&D).str() + ".const";
    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
    else
      llvm_unreachable("local variable has no parent function or method");
    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
    GV->setAlignment(Align.getAsAlign());
    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CacheEntry = GV;
  } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
    CacheEntry->setAlignment(Align.getAsAlign());
  }

  return Address(CacheEntry, Align);
}

static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
                                                const VarDecl &D,
                                                CGBuilderTy &Builder,
                                                llvm::Constant *Constant,
                                                CharUnits Align) {
  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
  llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
                                                   SrcPtr.getAddressSpace());
  if (SrcPtr.getType() != BP)
    SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
  return SrcPtr;
}

static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder,
                                  llvm::Constant *constant) {
  auto *Ty = constant->getType();
  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
  if (!ConstantSize)
    return;

  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
  if (canDoSingleStore) {
    Builder.CreateStore(constant, Loc, isVolatile);
    return;
  }

  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);

  // If the initializer is all or mostly the same, codegen with bzero / memset
  // then do a few stores afterward.
  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
                         isVolatile);

    bool valueAlreadyCorrect =
        constant->isNullValue() || isa<llvm::UndefValue>(constant);
    if (!valueAlreadyCorrect) {
      Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
    }
    return;
  }

  // If the initializer is a repeated byte pattern, use memset.
  llvm::Value *Pattern =
      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
  if (Pattern) {
    uint64_t Value = 0x00;
    if (!isa<llvm::UndefValue>(Pattern)) {
      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
      assert(AP.getBitWidth() <= 8);
      Value = AP.getLimitedValue();
    }
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
                         isVolatile);
    return;
  }

  // If the initializer is small, use a handful of stores.
  if (shouldSplitConstantStore(CGM, ConstantSize)) {
    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
      // FIXME: handle the case when STy != Loc.getElementType().
      if (STy == Loc.getElementType()) {
        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
          Address EltPtr = Builder.CreateStructGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
      // FIXME: handle the case when ATy != Loc.getElementType().
      if (ATy == Loc.getElementType()) {
        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
          Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    }
  }

  // Copy from a global.
  Builder.CreateMemCpy(Loc,
                       createUnnamedGlobalForMemcpyFrom(
                           CGM, D, Builder, constant, Loc.getAlignment()),
                       SizeVal, isVolatile);
}

static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant =
      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
                                     Address Loc, bool isVolatile,
                                     CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant = constWithPadding(
      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
  assert(!isa<llvm::UndefValue>(constant));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static bool containsUndef(llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return true;
  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
    for (llvm::Use &Op : constant->operands())
      if (containsUndef(cast<llvm::Constant>(Op)))
        return true;
  return false;
}

static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
                                    llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return patternOrZeroFor(CGM, isPattern, Ty);
  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
    return constant;
  if (!containsUndef(constant))
    return constant;
  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
  }
  if (Ty->isStructTy())
    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
  if (Ty->isArrayTy())
    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
  assert(Ty->isVectorTy());
  return llvm::ConstantVector::get(Values);
}

/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects, or GlobalValues depending on target.
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
  AutoVarEmission emission = EmitAutoVarAlloca(D);
  EmitAutoVarInit(emission);
  EmitAutoVarCleanups(emission);
}

/// Emit a lifetime.begin marker if some criteria are satisfied.
/// \return a pointer to the temporary size Value if a marker was emitted, null
/// otherwise
llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
                                                llvm::Value *Addr) {
  if (!ShouldEmitLifetimeMarkers)
    return nullptr;

  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
  C->setDoesNotThrow();
  return SizeV;
}

void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
  C->setDoesNotThrow();
}

void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
  // For each dimension stores its QualType and corresponding
  // size-expression Value.
  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
  SmallVector<IdentifierInfo *, 4> VLAExprNames;

  // Break down the array into individual dimensions.
  QualType Type1D = D.getType();
  while (getContext().getAsVariableArrayType(Type1D)) {
    auto VlaSize = getVLAElements1D(Type1D);
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
    else {
      // Generate a locally unique name for the size expression.
      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
      SmallString<12> Buffer;
      StringRef NameRef = Name.toStringRef(Buffer);
      auto &Ident = getContext().Idents.getOwn(NameRef);
      VLAExprNames.push_back(&Ident);
      auto SizeExprAddr =
          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
      Dimensions.emplace_back(SizeExprAddr.getPointer(),
                              Type1D.getUnqualifiedType());
    }
    Type1D = VlaSize.Type;
  }

  if (!EmitDebugInfo)
    return;

  // Register each dimension's size-expression with a DILocalVariable,
  // so that it can be used by CGDebugInfo when instantiating a DISubrange
  // to describe this array.
  unsigned NameIdx = 0;
  for (auto &VlaSize : Dimensions) {
    llvm::Metadata *MD;
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      MD = llvm::ConstantAsMetadata::get(C);
    else {
      // Create an artificial VarDecl to generate debug info for.
      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
      auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
      auto QT = getContext().getIntTypeForBitwidth(
          VlaExprTy->getScalarSizeInBits(), false);
      auto *ArtificialDecl = VarDecl::Create(
          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
          D.getLocation(), D.getLocation(), NameIdent, QT,
          getContext().CreateTypeSourceInfo(QT), SC_Auto);
      ArtificialDecl->setImplicit();

      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
                                         Builder);
    }
    assert(MD && "No Size expression debug node created");
    DI->registerVLASizeExpression(VlaSize.Type, MD);
  }
}

/// EmitAutoVarAlloca - Emit the alloca and debug information for a
/// local variable.  Does not emit initialization or destruction.
CodeGenFunction::AutoVarEmission
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
  QualType Ty = D.getType();
  assert(
      Ty.getAddressSpace() == LangAS::Default ||
      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));

  AutoVarEmission emission(D);

  bool isEscapingByRef = D.isEscapingByref();
  emission.IsEscapingByRef = isEscapingByRef;

  CharUnits alignment = getContext().getDeclAlign(&D);

  // If the type is variably-modified, emit all the VLA sizes for it.
  if (Ty->isVariablyModifiedType())
    EmitVariablyModifiedType(Ty);

  auto *DI = getDebugInfo();
  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
                                 codegenoptions::LimitedDebugInfo;

  Address address = Address::invalid();
  Address AllocaAddr = Address::invalid();
  Address OpenMPLocalAddr =
      getLangOpts().OpenMP
          ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
          : Address::invalid();
  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();

  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
    address = OpenMPLocalAddr;
  } else if (Ty->isConstantSizeType()) {
    // If this value is an array or struct with a statically determinable
    // constant initializer, there are optimizations we can do.
    //
    // TODO: We should constant-evaluate the initializer of any variable,
    // as long as it is initialized by a constant expression. Currently,
    // isConstantInitializer produces wrong answers for structs with
    // reference or bitfield members, and a few other cases, and checking
    // for POD-ness protects us from some of these.
    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
        (D.isConstexpr() ||
         ((Ty.isPODType(getContext()) ||
           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
          D.getInit()->isConstantInitializer(getContext(), false)))) {

      // If the variable's a const type, and it's neither an NRVO
      // candidate nor a __block variable and has no mutable members,
      // emit it as a global instead.
      // Exception is if a variable is located in non-constant address space
      // in OpenCL.
      if ((!getLangOpts().OpenCL ||
           Ty.getAddressSpace() == LangAS::opencl_constant) &&
          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
           !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);

        // Signal this condition to later callbacks.
        emission.Addr = Address::invalid();
        assert(emission.wasEmittedAsGlobal());
        return emission;
      }

      // Otherwise, tell the initialization code that we're in this case.
      emission.IsConstantAggregate = true;
    }

    // A normal fixed sized variable becomes an alloca in the entry block,
    // unless:
    // - it's an NRVO variable.
    // - we are compiling OpenMP and it's an OpenMP local variable.
    if (NRVO) {
      // The named return value optimization: allocate this variable in the
      // return slot, so that we can elide the copy when returning this
      // variable (C++0x [class.copy]p34).
      address = ReturnValue;

      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
        const auto *RD = RecordTy->getDecl();
        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
            RD->isNonTrivialToPrimitiveDestroy()) {
          // Create a flag that is used to indicate when the NRVO was applied
          // to this variable. Set it to zero to indicate that NRVO was not
          // applied.
          llvm::Value *Zero = Builder.getFalse();
          Address NRVOFlag =
            CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
          EnsureInsertPoint();
          Builder.CreateStore(Zero, NRVOFlag);

          // Record the NRVO flag for this variable.
          NRVOFlags[&D] = NRVOFlag.getPointer();
          emission.NRVOFlag = NRVOFlag.getPointer();
        }
      }
    } else {
      CharUnits allocaAlignment;
      llvm::Type *allocaTy;
      if (isEscapingByRef) {
        auto &byrefInfo = getBlockByrefInfo(&D);
        allocaTy = byrefInfo.Type;
        allocaAlignment = byrefInfo.ByrefAlignment;
      } else {
        allocaTy = ConvertTypeForMem(Ty);
        allocaAlignment = alignment;
      }

      // Create the alloca.  Note that we set the name separately from
      // building the instruction so that it's there even in no-asserts
      // builds.
      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
                                 /*ArraySize=*/nullptr, &AllocaAddr);

      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
      // the catch parameter starts in the catchpad instruction, and we can't
      // insert code in those basic blocks.
      bool IsMSCatchParam =
          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();

      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
      // if we don't have a valid insertion point (?).
      if (HaveInsertPoint() && !IsMSCatchParam) {
        // If there's a jump into the lifetime of this variable, its lifetime
        // gets broken up into several regions in IR, which requires more work
        // to handle correctly. For now, just omit the intrinsics; this is a
        // rare case, and it's better to just be conservatively correct.
        // PR28267.
        //
        // We have to do this in all language modes if there's a jump past the
        // declaration. We also have to do it in C if there's a jump to an
        // earlier point in the current block because non-VLA lifetimes begin as
        // soon as the containing block is entered, not when its variables
        // actually come into scope; suppressing the lifetime annotations
        // completely in this case is unnecessarily pessimistic, but again, this
        // is rare.
        if (!Bypasses.IsBypassed(&D) &&
            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
          uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
          emission.SizeForLifetimeMarkers =
              EmitLifetimeStart(size, AllocaAddr.getPointer());
        }
      } else {
        assert(!emission.useLifetimeMarkers());
      }
    }
  } else {
    EnsureInsertPoint();

    if (!DidCallStackSave) {
      // Save the stack.
      Address Stack =
        CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");

      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
      llvm::Value *V = Builder.CreateCall(F);
      Builder.CreateStore(V, Stack);

      DidCallStackSave = true;

      // Push a cleanup block and restore the stack there.
      // FIXME: in general circumstances, this should be an EH cleanup.
      pushStackRestore(NormalCleanup, Stack);
    }

    auto VlaSize = getVLASize(Ty);
    llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);

    // Allocate memory for the array.
    address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
                               &AllocaAddr);

    // If we have debug info enabled, properly describe the VLA dimensions for
    // this type by registering the vla size expression for each of the
    // dimensions.
    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
  }

  setAddrOfLocalVar(&D, address);
  emission.Addr = address;
  emission.AllocaAddr = AllocaAddr;

  // Emit debug info for local var declaration.
  if (EmitDebugInfo && HaveInsertPoint()) {
    Address DebugAddr = address;
    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
    DI->setLocation(D.getLocation());

    // If NRVO, use a pointer to the return address.
    if (UsePointerValue)
      DebugAddr = ReturnValuePointer;

    (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
                                        UsePointerValue);
  }

  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
    EmitVarAnnotations(&D, address.getPointer());

  // Make sure we call @llvm.lifetime.end.
  if (emission.useLifetimeMarkers())
    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
                                         emission.getOriginalAllocatedAddress(),
                                         emission.getSizeForLifetimeMarkers());

  return emission;
}

static bool isCapturedBy(const VarDecl &, const Expr *);

/// Determines whether the given __block variable is potentially
/// captured by the given statement.
static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
  if (const Expr *E = dyn_cast<Expr>(S))
    return isCapturedBy(Var, E);
  for (const Stmt *SubStmt : S->children())
    if (isCapturedBy(Var, SubStmt))
      return true;
  return false;
}

/// Determines whether the given __block variable is potentially
/// captured by the given expression.
static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
  // Skip the most common kinds of expressions that make
  // hierarchy-walking expensive.
  E = E->IgnoreParenCasts();

  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
    const BlockDecl *Block = BE->getBlockDecl();
    for (const auto &I : Block->captures()) {
      if (I.getVariable() == &Var)
        return true;
    }

    // No need to walk into the subexpressions.
    return false;
  }

  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    const CompoundStmt *CS = SE->getSubStmt();
    for (const auto *BI : CS->body())
      if (const auto *BIE = dyn_cast<Expr>(BI)) {
        if (isCapturedBy(Var, BIE))
          return true;
      }
      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
          // special case declarations
          for (const auto *I : DS->decls()) {
              if (const auto *VD = dyn_cast<VarDecl>((I))) {
                const Expr *Init = VD->getInit();
                if (Init && isCapturedBy(Var, Init))
                  return true;
              }
          }
      }
      else
        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
        // Later, provide code to poke into statements for capture analysis.
        return true;
    return false;
  }

  for (const Stmt *SubStmt : E->children())
    if (isCapturedBy(Var, SubStmt))
      return true;

  return false;
}

/// Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
  if (!Init)
    return true;

  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
      if (Constructor->isTrivial() &&
          Constructor->isDefaultConstructor() &&
          !Construct->requiresZeroInitialization())
        return true;

  return false;
}

void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
                                                      const VarDecl &D,
                                                      Address Loc) {
  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
  CharUnits Size = getContext().getTypeSizeInChars(type);
  bool isVolatile = type.isVolatileQualified();
  if (!Size.isZero()) {
    switch (trivialAutoVarInit) {
    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
      llvm_unreachable("Uninitialized handled by caller");
    case LangOptions::TrivialAutoVarInitKind::Zero:
      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
      break;
    case LangOptions::TrivialAutoVarInitKind::Pattern:
      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
      break;
    }
    return;
  }

  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
  // them, so emit a memcpy with the VLA size to initialize each element.
  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
  // will catch that code, but there exists code which generates zero-sized
  // VLAs. Be nice and initialize whatever they requested.
  const auto *VlaType = getContext().getAsVariableArrayType(type);
  if (!VlaType)
    return;
  auto VlaSize = getVLASize(VlaType);
  auto SizeVal = VlaSize.NumElts;
  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
  switch (trivialAutoVarInit) {
  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
    llvm_unreachable("Uninitialized handled by caller");

  case LangOptions::TrivialAutoVarInitKind::Zero:
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
                         isVolatile);
    break;

  case LangOptions::TrivialAutoVarInitKind::Pattern: {
    llvm::Type *ElTy = Loc.getElementType();
    llvm::Constant *Constant = constWithPadding(
        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
        "vla.iszerosized");
    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
    EmitBlock(SetupBB);
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    llvm::Value *BaseSizeInChars =
        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
    Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
    llvm::Value *End =
        Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
    EmitBlock(LoopBB);
    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
    Cur->addIncoming(Begin.getPointer(), OriginBB);
    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
    Builder.CreateMemCpy(Address(Cur, CurAlign),
                         createUnnamedGlobalForMemcpyFrom(
                             CGM, D, Builder, Constant, ConstantAlign),
                         BaseSizeInChars, isVolatile);
    llvm::Value *Next =
        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
    Builder.CreateCondBr(Done, ContBB, LoopBB);
    Cur->addIncoming(Next, LoopBB);
    EmitBlock(ContBB);
  } break;
  }
}

void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  const VarDecl &D = *emission.Variable;
  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
  QualType type = D.getType();

  // If this local has an initializer, emit it now.
  const Expr *Init = D.getInit();

  // If we are at an unreachable point, we don't need to emit the initializer
  // unless it contains a label.
  if (!HaveInsertPoint()) {
    if (!Init || !ContainsLabel(Init)) return;
    EnsureInsertPoint();
  }

  // Initialize the structure of a __block variable.
  if (emission.IsEscapingByRef)
    emitByrefStructureInit(emission);

  // Initialize the variable here if it doesn't have a initializer and it is a
  // C struct that is non-trivial to initialize or an array containing such a
  // struct.
  if (!Init &&
      type.isNonTrivialToPrimitiveDefaultInitialize() ==
          QualType::PDIK_Struct) {
    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
    if (emission.IsEscapingByRef)
      drillIntoBlockVariable(*this, Dst, &D);
    defaultInitNonTrivialCStructVar(Dst);
    return;
  }

  // Check whether this is a byref variable that's potentially
  // captured and moved by its own initializer.  If so, we'll need to
  // emit the initializer first, then copy into the variable.
  bool capturedByInit =
      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);

  bool locIsByrefHeader = !capturedByInit;
  const Address Loc =
      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;

  // Note: constexpr already initializes everything correctly.
  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
      (D.isConstexpr()
           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
           : (D.getAttr<UninitializedAttr>()
                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
                  : getContext().getLangOpts().getTrivialAutoVarInit()));

  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
    if (trivialAutoVarInit ==
        LangOptions::TrivialAutoVarInitKind::Uninitialized)
      return;

    // Only initialize a __block's storage: we always initialize the header.
    if (emission.IsEscapingByRef && !locIsByrefHeader)
      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);

    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
  };

  if (isTrivialInitializer(Init))
    return initializeWhatIsTechnicallyUninitialized(Loc);

  llvm::Constant *constant = nullptr;
  if (emission.IsConstantAggregate ||
      D.mightBeUsableInConstantExpressions(getContext())) {
    assert(!capturedByInit && "constant init contains a capturing block?");
    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
    if (constant && !constant->isZeroValue() &&
        (trivialAutoVarInit !=
         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
      IsPattern isPattern =
          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
              ? IsPattern::Yes
              : IsPattern::No;
      // C guarantees that brace-init with fewer initializers than members in
      // the aggregate will initialize the rest of the aggregate as-if it were
      // static initialization. In turn static initialization guarantees that
      // padding is initialized to zero bits. We could instead pattern-init if D
      // has any ImplicitValueInitExpr, but that seems to be unintuitive
      // behavior.
      constant = constWithPadding(CGM, IsPattern::No,
                                  replaceUndef(CGM, isPattern, constant));
    }
  }

  if (!constant) {
    initializeWhatIsTechnicallyUninitialized(Loc);
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitExprAsInit(Init, &D, lv, capturedByInit);
  }

  if (!emission.IsConstantAggregate) {
    // For simple scalar/complex initialization, store the value directly.
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
  }

  llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
  emitStoresForConstant(
      CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
      type.isVolatileQualified(), Builder, constant);
}

/// Emit an expression as an initializer for an object (variable, field, etc.)
/// at the given location.  The expression is not necessarily the normal
/// initializer for the object, and the address is not necessarily
/// its normal location.
///
/// \param init the initializing expression
/// \param D the object to act as if we're initializing
/// \param loc the address to initialize; its type is a pointer
///   to the LLVM mapping of the object's type
/// \param alignment the alignment of the address
/// \param capturedByInit true if \p D is a __block variable
///   whose address is potentially changed by the initializer
void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  QualType type = D->getType();

  if (type->isReferenceType()) {
    RValue rvalue = EmitReferenceBindingToExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreThroughLValue(rvalue, lvalue, true);
    return;
  }
  switch (getEvaluationKind(type)) {
  case TEK_Scalar:
    EmitScalarInit(init, D, lvalue, capturedByInit);
    return;
  case TEK_Complex: {
    ComplexPairTy complex = EmitComplexExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
    return;
  }
  case TEK_Aggregate:
    if (type->isAtomicType()) {
      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
    } else {
      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
      if (isa<VarDecl>(D))
        Overlap = AggValueSlot::DoesNotOverlap;
      else if (auto *FD = dyn_cast<FieldDecl>(D))
        Overlap = getOverlapForFieldInit(FD);
      // TODO: how can we delay here if D is captured by its initializer?
      EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
                                              AggValueSlot::IsDestructed,
                                         AggValueSlot::DoesNotNeedGCBarriers,
                                              AggValueSlot::IsNotAliased,
                                              Overlap));
    }
    return;
  }
  llvm_unreachable("bad evaluation kind");
}

/// Enter a destroy cleanup for the given local variable.
void CodeGenFunction::emitAutoVarTypeCleanup(
                            const CodeGenFunction::AutoVarEmission &emission,
                            QualType::DestructionKind dtorKind) {
  assert(dtorKind != QualType::DK_none);

  // Note that for __block variables, we want to destroy the
  // original stack object, not the possibly forwarded object.
  Address addr = emission.getObjectAddress(*this);

  const VarDecl *var = emission.Variable;
  QualType type = var->getType();

  CleanupKind cleanupKind = NormalAndEHCleanup;
  CodeGenFunction::Destroyer *destroyer = nullptr;

  switch (dtorKind) {
  case QualType::DK_none:
    llvm_unreachable("no cleanup for trivially-destructible variable");

  case QualType::DK_cxx_destructor:
    // If there's an NRVO flag on the emission, we need a different
    // cleanup.
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
                                                  emission.NRVOFlag);
      return;
    }
    break;

  case QualType::DK_objc_strong_lifetime:
    // Suppress cleanups for pseudo-strong variables.
    if (var->isARCPseudoStrong()) return;

    // Otherwise, consider whether to use an EH cleanup or not.
    cleanupKind = getARCCleanupKind();

    // Use the imprecise destroyer by default.
    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
      destroyer = CodeGenFunction::destroyARCStrongImprecise;
    break;

  case QualType::DK_objc_weak_lifetime:
    break;

  case QualType::DK_nontrivial_c_struct:
    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
                                                emission.NRVOFlag, type);
      return;
    }
    break;
  }

  // If we haven't chosen a more specific destroyer, use the default.
  if (!destroyer) destroyer = getDestroyer(dtorKind);

  // Use an EH cleanup in array destructors iff the destructor itself
  // is being pushed as an EH cleanup.
  bool useEHCleanup = (cleanupKind & EHCleanup);
  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
                                     useEHCleanup);
}

void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  // If we don't have an insertion point, we're done.  Sema prevents
  // us from jumping into any of these scopes anyway.
  if (!HaveInsertPoint()) return;

  const VarDecl &D = *emission.Variable;

  // Check the type for a cleanup.
  if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
    emitAutoVarTypeCleanup(emission, dtorKind);

  // In GC mode, honor objc_precise_lifetime.
  if (getLangOpts().getGC() != LangOptions::NonGC &&
      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
  }

  // Handle the cleanup attribute.
  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
    const FunctionDecl *FD = CA->getFunctionDecl();

    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
    assert(F && "Could not find function!");

    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
  }

  // If this is a block variable, call _Block_object_destroy
  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
  // mode.
  if (emission.IsEscapingByRef &&
      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
    if (emission.Variable->getType().isObjCGCWeak())
      Flags |= BLOCK_FIELD_IS_WEAK;
    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
                      /*LoadBlockVarAddr*/ false,
                      cxxDestructorCanThrow(emission.Variable->getType()));
  }
}

CodeGenFunction::Destroyer *
CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
  switch (kind) {
  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
  case QualType::DK_cxx_destructor:
    return destroyCXXObject;
  case QualType::DK_objc_strong_lifetime:
    return destroyARCStrongPrecise;
  case QualType::DK_objc_weak_lifetime:
    return destroyARCWeak;
  case QualType::DK_nontrivial_c_struct:
    return destroyNonTrivialCStruct;
  }
  llvm_unreachable("Unknown DestructionKind");
}

/// pushEHDestroy - Push the standard destructor for the given type as
/// an EH-only cleanup.
void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
                                    Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");
  assert(needsEHCleanup(dtorKind));

  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
}

/// pushDestroy - Push the standard destructor for the given type as
/// at least a normal cleanup.
void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
                                  Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");

  CleanupKind cleanupKind = getCleanupKind(dtorKind);
  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
              cleanupKind & EHCleanup);
}

void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
                                  QualType type, Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
                                     destroyer, useEHCleanupForArray);
}

void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
}

void CodeGenFunction::pushLifetimeExtendedDestroy(
    CleanupKind cleanupKind, Address addr, QualType type,
    Destroyer *destroyer, bool useEHCleanupForArray) {
  // Push an EH-only cleanup for the object now.
  // FIXME: When popping normal cleanups, we need to keep this EH cleanup
  // around in case a temporary's destructor throws an exception.
  if (cleanupKind & EHCleanup)
    EHStack.pushCleanup<DestroyObject>(
        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
        destroyer, useEHCleanupForArray);

  // Remember that we need to push a full cleanup for the object at the
  // end of the full-expression.
  pushCleanupAfterFullExpr<DestroyObject>(
      cleanupKind, addr, type, destroyer, useEHCleanupForArray);
}

/// emitDestroy - Immediately perform the destruction of the given
/// object.
///
/// \param addr - the address of the object; a type*
/// \param type - the type of the object; if an array type, all
///   objects are destroyed in reverse order
/// \param destroyer - the function to call to destroy individual
///   elements
/// \param useEHCleanupForArray - whether an EH cleanup should be
///   used when destroying array elements, in case one of the
///   destructions throws an exception
void CodeGenFunction::emitDestroy(Address addr, QualType type,
                                  Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  const ArrayType *arrayType = getContext().getAsArrayType(type);
  if (!arrayType)
    return destroyer(*this, addr, type);

  llvm::Value *length = emitArrayLength(arrayType, type, addr);

  CharUnits elementAlign =
    addr.getAlignment()
        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));

  // Normally we have to check whether the array is zero-length.
  bool checkZeroLength = true;

  // But if the array length is constant, we can suppress that.
  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
    // ...and if it's constant zero, we can just skip the entire thing.
    if (constLength->isZero()) return;
    checkZeroLength = false;
  }

  llvm::Value *begin = addr.getPointer();
  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                   checkZeroLength, useEHCleanupForArray);
}

/// emitArrayDestroy - Destroys all the elements of the given array,
/// beginning from last to first.  The array cannot be zero-length.
///
/// \param begin - a type* denoting the first element of the array
/// \param end - a type* denoting one past the end of the array
/// \param elementType - the element type of the array
/// \param destroyer - the function to call to destroy elements
/// \param useEHCleanup - whether to push an EH cleanup to destroy
///   the remaining elements in case the destruction of a single
///   element throws
void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
                                       llvm::Value *end,
                                       QualType elementType,
                                       CharUnits elementAlign,
                                       Destroyer *destroyer,
                                       bool checkZeroLength,
                                       bool useEHCleanup) {
  assert(!elementType->isArrayType());

  // The basic structure here is a do-while loop, because we don't
  // need to check for the zero-element case.
  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");

  if (checkZeroLength) {
    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
                                                "arraydestroy.isempty");
    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
  }

  // Enter the loop body, making that address the current address.
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
  EmitBlock(bodyBB);
  llvm::PHINode *elementPast =
    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
  elementPast->addIncoming(end, entryBB);

  // Shift the address back by one element.
  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
                                                   "arraydestroy.element");

  if (useEHCleanup)
    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
                                   destroyer);

  // Perform the actual destruction there.
  destroyer(*this, Address(element, elementAlign), elementType);

  if (useEHCleanup)
    PopCleanupBlock();

  // Check whether we've reached the end.
  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
  Builder.CreateCondBr(done, doneBB, bodyBB);
  elementPast->addIncoming(element, Builder.GetInsertBlock());

  // Done.
  EmitBlock(doneBB);
}

/// Perform partial array destruction as if in an EH cleanup.  Unlike
/// emitArrayDestroy, the element type here may still be an array type.
static void emitPartialArrayDestroy(CodeGenFunction &CGF,
                                    llvm::Value *begin, llvm::Value *end,
                                    QualType type, CharUnits elementAlign,
                                    CodeGenFunction::Destroyer *destroyer) {
  // If the element type is itself an array, drill down.
  unsigned arrayDepth = 0;
  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
    // VLAs don't require a GEP index to walk into.
    if (!isa<VariableArrayType>(arrayType))
      arrayDepth++;
    type = arrayType->getElementType();
  }

  if (arrayDepth) {
    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);

    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
  }

  // Destroy the array.  We don't ever need an EH cleanup because we
  // assume that we're in an EH cleanup ourselves, so a throwing
  // destructor causes an immediate terminate.
  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
}

namespace {
  /// RegularPartialArrayDestroy - a cleanup which performs a partial
  /// array destroy where the end pointer is regularly determined and
  /// does not need to be loaded from a local.
  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    llvm::Value *ArrayEnd;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
                               QualType elementType, CharUnits elementAlign,
                               CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };

  /// IrregularPartialArrayDestroy - a cleanup which performs a
  /// partial array destroy where the end pointer is irregularly
  /// determined and must be loaded from a local.
  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    Address ArrayEndPointer;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
                                 Address arrayEndPointer,
                                 QualType elementType,
                                 CharUnits elementAlign,
                                 CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };
} // end anonymous namespace

/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                       Address arrayEndPointer,
                                                       QualType elementType,
                                                       CharUnits elementAlign,
                                                       Destroyer *destroyer) {
  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
                                                    arrayBegin, arrayEndPointer,
                                                    elementType, elementAlign,
                                                    destroyer);
}

/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                     llvm::Value *arrayEnd,
                                                     QualType elementType,
                                                     CharUnits elementAlign,
                                                     Destroyer *destroyer) {
  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
                                                  arrayBegin, arrayEnd,
                                                  elementType, elementAlign,
                                                  destroyer);
}

/// Lazily declare the @llvm.lifetime.start intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
  if (LifetimeStartFn)
    return LifetimeStartFn;
  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
  return LifetimeStartFn;
}

/// Lazily declare the @llvm.lifetime.end intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
  if (LifetimeEndFn)
    return LifetimeEndFn;
  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
  return LifetimeEndFn;
}

namespace {
  /// A cleanup to perform a release of an object at the end of a
  /// function.  This is used to balance out the incoming +1 of a
  /// ns_consumed argument when we can't reasonably do that just by
  /// not doing the initial retain for a __block argument.
  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
    ConsumeARCParameter(llvm::Value *param,
                        ARCPreciseLifetime_t precise)
      : Param(param), Precise(precise) {}

    llvm::Value *Param;
    ARCPreciseLifetime_t Precise;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitARCRelease(Param, Precise);
    }
  };
} // end anonymous namespace

/// Emit an alloca (or GlobalValue depending on target)
/// for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
                                   unsigned ArgNo) {
  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
         "Invalid argument to EmitParmDecl");

  Arg.getAnyValue()->setName(D.getName());

  QualType Ty = D.getType();

  // Use better IR generation for certain implicit parameters.
  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
    // The only implicit argument a block has is its literal.
    // This may be passed as an inalloca'ed value on Windows x86.
    if (BlockInfo) {
      llvm::Value *V = Arg.isIndirect()
                           ? Builder.CreateLoad(Arg.getIndirectAddress())
                           : Arg.getDirectValue();
      setBlockContextParameter(IPD, ArgNo, V);
      return;
    }
  }

  Address DeclPtr = Address::invalid();
  bool DoStore = false;
  bool IsScalar = hasScalarEvaluationKind(Ty);
  // If we already have a pointer to the argument, reuse the input pointer.
  if (Arg.isIndirect()) {
    DeclPtr = Arg.getIndirectAddress();
    // If we have a prettier pointer type at this point, bitcast to that.
    unsigned AS = DeclPtr.getType()->getAddressSpace();
    llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
    if (DeclPtr.getType() != IRTy)
      DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
    // Indirect argument is in alloca address space, which may be different
    // from the default address space.
    auto AllocaAS = CGM.getASTAllocaAddressSpace();
    auto *V = DeclPtr.getPointer();
    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
    auto DestLangAS =
        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
    if (SrcLangAS != DestLangAS) {
      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
             CGM.getDataLayout().getAllocaAddrSpace());
      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
      auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
      DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
                            *this, V, SrcLangAS, DestLangAS, T, true),
                        DeclPtr.getAlignment());
    }

    // Push a destructor cleanup for this parameter if the ABI requires it.
    // Don't push a cleanup in a thunk for a method that will also emit a
    // cleanup.
    if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
        Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
      if (QualType::DestructionKind DtorKind =
              D.needsDestruction(getContext())) {
        assert((DtorKind == QualType::DK_cxx_destructor ||
                DtorKind == QualType::DK_nontrivial_c_struct) &&
               "unexpected destructor type");
        pushDestroy(DtorKind, DeclPtr, Ty);
        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
            EHStack.stable_begin();
      }
    }
  } else {
    // Check if the parameter address is controlled by OpenMP runtime.
    Address OpenMPLocalAddr =
        getLangOpts().OpenMP
            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
            : Address::invalid();
    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
      DeclPtr = OpenMPLocalAddr;
    } else {
      // Otherwise, create a temporary to hold the value.
      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
                              D.getName() + ".addr");
    }
    DoStore = true;
  }

  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);

  LValue lv = MakeAddrLValue(DeclPtr, Ty);
  if (IsScalar) {
    Qualifiers qs = Ty.getQualifiers();
    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
      // We honor __attribute__((ns_consumed)) for types with lifetime.
      // For __strong, it's handled by just skipping the initial retain;
      // otherwise we have to balance out the initial +1 with an extra
      // cleanup to do the release at the end of the function.
      bool isConsumed = D.hasAttr<NSConsumedAttr>();

      // If a parameter is pseudo-strong then we can omit the implicit retain.
      if (D.isARCPseudoStrong()) {
        assert(lt == Qualifiers::OCL_Strong &&
               "pseudo-strong variable isn't strong?");
        assert(qs.hasConst() && "pseudo-strong variable should be const!");
        lt = Qualifiers::OCL_ExplicitNone;
      }

      // Load objects passed indirectly.
      if (Arg.isIndirect() && !ArgVal)
        ArgVal = Builder.CreateLoad(DeclPtr);

      if (lt == Qualifiers::OCL_Strong) {
        if (!isConsumed) {
          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
            // use objc_storeStrong(&dest, value) for retaining the
            // object. But first, store a null into 'dest' because
            // objc_storeStrong attempts to release its old value.
            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
            EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
            DoStore = false;
          }
          else
          // Don't use objc_retainBlock for block pointers, because we
          // don't want to Block_copy something just because we got it
          // as a parameter.
            ArgVal = EmitARCRetainNonBlock(ArgVal);
        }
      } else {
        // Push the cleanup for a consumed parameter.
        if (isConsumed) {
          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
                                                   precise);
        }

        if (lt == Qualifiers::OCL_Weak) {
          EmitARCInitWeak(DeclPtr, ArgVal);
          DoStore = false; // The weak init is a store, no need to do two.
        }
      }

      // Enter the cleanup scope.
      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
    }
  }

  // Store the initial value into the alloca.
  if (DoStore)
    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);

  setAddrOfLocalVar(&D, DeclPtr);

  // Emit debug info for param declarations in non-thunk functions.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (CGM.getCodeGenOpts().getDebugInfo() >=
            codegenoptions::LimitedDebugInfo &&
        !CurFuncIsThunk) {
      DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
    }
  }

  if (D.hasAttr<AnnotateAttr>())
    EmitVarAnnotations(&D, DeclPtr.getPointer());

  // We can only check return value nullability if all arguments to the
  // function satisfy their nullability preconditions. This makes it necessary
  // to emit null checks for args in the function body itself.
  if (requiresReturnValueNullabilityCheck()) {
    auto Nullability = Ty->getNullability(getContext());
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
      SanitizerScope SanScope(this);
      RetValNullabilityPrecondition =
          Builder.CreateAnd(RetValNullabilityPrecondition,
                            Builder.CreateIsNotNull(Arg.getAnyValue()));
    }
  }
}

void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
                                            CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
}

void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
                                         CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
      (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
}

void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
  getOpenMPRuntime().checkArchForUnifiedAddressing(D);
}