1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach. It should eventually be removed.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "codegenprepare"
STATISTIC(NumBlocksElim, "Number of blocks eliminated");
STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
"sunken Cmps");
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
"of sunken Casts");
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
"computations were sunk");
STATISTIC(NumMemoryInstsPhiCreated,
"Number of phis created when address "
"computations were sunk to memory instructions");
STATISTIC(NumMemoryInstsSelectCreated,
"Number of select created when address "
"computations were sunk to memory instructions");
STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
STATISTIC(NumAndsAdded,
"Number of and mask instructions added to form ext loads");
STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
STATISTIC(NumRetsDup, "Number of return instructions duplicated");
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
static cl::opt<bool> DisableBranchOpts(
"disable-cgp-branch-opts", cl::Hidden, cl::init(false),
cl::desc("Disable branch optimizations in CodeGenPrepare"));
static cl::opt<bool>
DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
cl::desc("Disable GC optimizations in CodeGenPrepare"));
static cl::opt<bool> DisableSelectToBranch(
"disable-cgp-select2branch", cl::Hidden, cl::init(false),
cl::desc("Disable select to branch conversion."));
static cl::opt<bool> AddrSinkUsingGEPs(
"addr-sink-using-gep", cl::Hidden, cl::init(true),
cl::desc("Address sinking in CGP using GEPs."));
static cl::opt<bool> EnableAndCmpSinking(
"enable-andcmp-sinking", cl::Hidden, cl::init(true),
cl::desc("Enable sinkinig and/cmp into branches."));
static cl::opt<bool> DisableStoreExtract(
"disable-cgp-store-extract", cl::Hidden, cl::init(false),
cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
static cl::opt<bool> StressStoreExtract(
"stress-cgp-store-extract", cl::Hidden, cl::init(false),
cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
static cl::opt<bool> DisableExtLdPromotion(
"disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
"CodeGenPrepare"));
static cl::opt<bool> StressExtLdPromotion(
"stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
"optimization in CodeGenPrepare"));
static cl::opt<bool> DisablePreheaderProtect(
"disable-preheader-prot", cl::Hidden, cl::init(false),
cl::desc("Disable protection against removing loop preheaders"));
static cl::opt<bool> ProfileGuidedSectionPrefix(
"profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
cl::desc("Use profile info to add section prefix for hot/cold functions"));
static cl::opt<unsigned> FreqRatioToSkipMerge(
"cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
cl::desc("Skip merging empty blocks if (frequency of empty block) / "
"(frequency of destination block) is greater than this ratio"));
static cl::opt<bool> ForceSplitStore(
"force-split-store", cl::Hidden, cl::init(false),
cl::desc("Force store splitting no matter what the target query says."));
static cl::opt<bool>
EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
cl::desc("Enable merging of redundant sexts when one is dominating"
" the other."), cl::init(true));
static cl::opt<bool> DisableComplexAddrModes(
"disable-complex-addr-modes", cl::Hidden, cl::init(false),
cl::desc("Disables combining addressing modes with different parts "
"in optimizeMemoryInst."));
static cl::opt<bool>
AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
cl::desc("Allow creation of Phis in Address sinking."));
static cl::opt<bool>
AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
cl::desc("Allow creation of selects in Address sinking."));
static cl::opt<bool> AddrSinkCombineBaseReg(
"addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
cl::desc("Allow combining of BaseReg field in Address sinking."));
static cl::opt<bool> AddrSinkCombineBaseGV(
"addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
cl::desc("Allow combining of BaseGV field in Address sinking."));
static cl::opt<bool> AddrSinkCombineBaseOffs(
"addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
cl::desc("Allow combining of BaseOffs field in Address sinking."));
static cl::opt<bool> AddrSinkCombineScaledReg(
"addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
cl::desc("Allow combining of ScaledReg field in Address sinking."));
static cl::opt<bool>
EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
cl::init(true),
cl::desc("Enable splitting large offset of GEP."));
namespace {
enum ExtType {
ZeroExtension, // Zero extension has been seen.
SignExtension, // Sign extension has been seen.
BothExtension // This extension type is used if we saw sext after
// ZeroExtension had been set, or if we saw zext after
// SignExtension had been set. It makes the type
// information of a promoted instruction invalid.
};
using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
using SExts = SmallVector<Instruction *, 16>;
using ValueToSExts = DenseMap<Value *, SExts>;
class TypePromotionTransaction;
class CodeGenPrepare : public FunctionPass {
const TargetMachine *TM = nullptr;
const TargetSubtargetInfo *SubtargetInfo;
const TargetLowering *TLI = nullptr;
const TargetRegisterInfo *TRI;
const TargetTransformInfo *TTI = nullptr;
const TargetLibraryInfo *TLInfo;
const LoopInfo *LI;
std::unique_ptr<BlockFrequencyInfo> BFI;
std::unique_ptr<BranchProbabilityInfo> BPI;
/// As we scan instructions optimizing them, this is the next instruction
/// to optimize. Transforms that can invalidate this should update it.
BasicBlock::iterator CurInstIterator;
/// Keeps track of non-local addresses that have been sunk into a block.
/// This allows us to avoid inserting duplicate code for blocks with
/// multiple load/stores of the same address. The usage of WeakTrackingVH
/// enables SunkAddrs to be treated as a cache whose entries can be
/// invalidated if a sunken address computation has been erased.
ValueMap<Value*, WeakTrackingVH> SunkAddrs;
/// Keeps track of all instructions inserted for the current function.
SetOfInstrs InsertedInsts;
/// Keeps track of the type of the related instruction before their
/// promotion for the current function.
InstrToOrigTy PromotedInsts;
/// Keep track of instructions removed during promotion.
SetOfInstrs RemovedInsts;
/// Keep track of sext chains based on their initial value.
DenseMap<Value *, Instruction *> SeenChainsForSExt;
/// Keep track of GEPs accessing the same data structures such as structs or
/// arrays that are candidates to be split later because of their large
/// size.
MapVector<
AssertingVH<Value>,
SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
LargeOffsetGEPMap;
/// Keep track of new GEP base after splitting the GEPs having large offset.
SmallSet<AssertingVH<Value>, 2> NewGEPBases;
/// Map serial numbers to Large offset GEPs.
DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
/// Keep track of SExt promoted.
ValueToSExts ValToSExtendedUses;
/// True if optimizing for size.
bool OptSize;
/// DataLayout for the Function being processed.
const DataLayout *DL = nullptr;
/// Building the dominator tree can be expensive, so we only build it
/// lazily and update it when required.
std::unique_ptr<DominatorTree> DT;
public:
static char ID; // Pass identification, replacement for typeid
CodeGenPrepare() : FunctionPass(ID) {
initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "CodeGen Prepare"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: When we can selectively preserve passes, preserve the domtree.
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
}
private:
template <typename F>
void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
// Substituting can cause recursive simplifications, which can invalidate
// our iterator. Use a WeakTrackingVH to hold onto it in case this
// happens.
Value *CurValue = &*CurInstIterator;
WeakTrackingVH IterHandle(CurValue);
f();
// If the iterator instruction was recursively deleted, start over at the
// start of the block.
if (IterHandle != CurValue) {
CurInstIterator = BB->begin();
SunkAddrs.clear();
}
}
// Get the DominatorTree, building if necessary.
DominatorTree &getDT(Function &F) {
if (!DT)
DT = std::make_unique<DominatorTree>(F);
return *DT;
}
bool eliminateFallThrough(Function &F);
bool eliminateMostlyEmptyBlocks(Function &F);
BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
void eliminateMostlyEmptyBlock(BasicBlock *BB);
bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
bool isPreheader);
bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
bool optimizeInst(Instruction *I, bool &ModifiedDT);
bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
Type *AccessTy, unsigned AddrSpace);
bool optimizeInlineAsmInst(CallInst *CS);
bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
bool optimizeExt(Instruction *&I);
bool optimizeExtUses(Instruction *I);
bool optimizeLoadExt(LoadInst *Load);
bool optimizeShiftInst(BinaryOperator *BO);
bool optimizeSelectInst(SelectInst *SI);
bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
bool optimizeSwitchInst(SwitchInst *SI);
bool optimizeExtractElementInst(Instruction *Inst);
bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
bool placeDbgValues(Function &F);
bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
bool tryToPromoteExts(TypePromotionTransaction &TPT,
const SmallVectorImpl<Instruction *> &Exts,
SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
unsigned CreatedInstsCost = 0);
bool mergeSExts(Function &F);
bool splitLargeGEPOffsets();
bool performAddressTypePromotion(
Instruction *&Inst,
bool AllowPromotionWithoutCommonHeader,
bool HasPromoted, TypePromotionTransaction &TPT,
SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
bool splitBranchCondition(Function &F, bool &ModifiedDT);
bool simplifyOffsetableRelocate(Instruction &I);
bool tryToSinkFreeOperands(Instruction *I);
bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
Intrinsic::ID IID);
bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
};
} // end anonymous namespace
char CodeGenPrepare::ID = 0;
INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
"Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
"Optimize for code generation", false, false)
FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
bool CodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
DL = &F.getParent()->getDataLayout();
bool EverMadeChange = false;
// Clear per function information.
InsertedInsts.clear();
PromotedInsts.clear();
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
TM = &TPC->getTM<TargetMachine>();
SubtargetInfo = TM->getSubtargetImpl(F);
TLI = SubtargetInfo->getTargetLowering();
TRI = SubtargetInfo->getRegisterInfo();
}
TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BPI.reset(new BranchProbabilityInfo(F, *LI));
BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
OptSize = F.hasOptSize();
ProfileSummaryInfo *PSI =
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
if (ProfileGuidedSectionPrefix) {
if (PSI->isFunctionHotInCallGraph(&F, *BFI))
F.setSectionPrefix(".hot");
else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
F.setSectionPrefix(".unlikely");
}
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
TLI->isSlowDivBypassed()) {
const DenseMap<unsigned int, unsigned int> &BypassWidths =
TLI->getBypassSlowDivWidths();
BasicBlock* BB = &*F.begin();
while (BB != nullptr) {
// bypassSlowDivision may create new BBs, but we don't want to reapply the
// optimization to those blocks.
BasicBlock* Next = BB->getNextNode();
EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
BB = Next;
}
}
// Eliminate blocks that contain only PHI nodes and an
// unconditional branch.
EverMadeChange |= eliminateMostlyEmptyBlocks(F);
bool ModifiedDT = false;
if (!DisableBranchOpts)
EverMadeChange |= splitBranchCondition(F, ModifiedDT);
// Split some critical edges where one of the sources is an indirect branch,
// to help generate sane code for PHIs involving such edges.
EverMadeChange |= SplitIndirectBrCriticalEdges(F);
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
DT.reset();
for (Function::iterator I = F.begin(); I != F.end(); ) {
BasicBlock *BB = &*I++;
bool ModifiedDTOnIteration = false;
MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
// Restart BB iteration if the dominator tree of the Function was changed
if (ModifiedDTOnIteration)
break;
}
if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
MadeChange |= mergeSExts(F);
if (!LargeOffsetGEPMap.empty())
MadeChange |= splitLargeGEPOffsets();
// Really free removed instructions during promotion.
for (Instruction *I : RemovedInsts)
I->deleteValue();
EverMadeChange |= MadeChange;
SeenChainsForSExt.clear();
ValToSExtendedUses.clear();
RemovedInsts.clear();
LargeOffsetGEPMap.clear();
LargeOffsetGEPID.clear();
}
SunkAddrs.clear();
if (!DisableBranchOpts) {
MadeChange = false;
// Use a set vector to get deterministic iteration order. The order the
// blocks are removed may affect whether or not PHI nodes in successors
// are removed.
SmallSetVector<BasicBlock*, 8> WorkList;
for (BasicBlock &BB : F) {
SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
MadeChange |= ConstantFoldTerminator(&BB, true);
if (!MadeChange) continue;
for (SmallVectorImpl<BasicBlock*>::iterator
II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
if (pred_begin(*II) == pred_end(*II))
WorkList.insert(*II);
}
// Delete the dead blocks and any of their dead successors.
MadeChange |= !WorkList.empty();
while (!WorkList.empty()) {
BasicBlock *BB = WorkList.pop_back_val();
SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
DeleteDeadBlock(BB);
for (SmallVectorImpl<BasicBlock*>::iterator
II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
if (pred_begin(*II) == pred_end(*II))
WorkList.insert(*II);
}
// Merge pairs of basic blocks with unconditional branches, connected by
// a single edge.
if (EverMadeChange || MadeChange)
MadeChange |= eliminateFallThrough(F);
EverMadeChange |= MadeChange;
}
if (!DisableGCOpts) {
SmallVector<Instruction *, 2> Statepoints;
for (BasicBlock &BB : F)
for (Instruction &I : BB)
if (isStatepoint(I))
Statepoints.push_back(&I);
for (auto &I : Statepoints)
EverMadeChange |= simplifyOffsetableRelocate(*I);
}
// Do this last to clean up use-before-def scenarios introduced by other
// preparatory transforms.
EverMadeChange |= placeDbgValues(F);
return EverMadeChange;
}
/// Merge basic blocks which are connected by a single edge, where one of the
/// basic blocks has a single successor pointing to the other basic block,
/// which has a single predecessor.
bool CodeGenPrepare::eliminateFallThrough(Function &F) {
bool Changed = false;
// Scan all of the blocks in the function, except for the entry block.
// Use a temporary array to avoid iterator being invalidated when
// deleting blocks.
SmallVector<WeakTrackingVH, 16> Blocks;
for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
Blocks.push_back(&Block);
for (auto &Block : Blocks) {
auto *BB = cast_or_null<BasicBlock>(Block);
if (!BB)
continue;
// If the destination block has a single pred, then this is a trivial
// edge, just collapse it.
BasicBlock *SinglePred = BB->getSinglePredecessor();
// Don't merge if BB's address is taken.
if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
if (Term && !Term->isConditional()) {
Changed = true;
LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
// Merge BB into SinglePred and delete it.
MergeBlockIntoPredecessor(BB);
}
}
return Changed;
}
/// Find a destination block from BB if BB is mergeable empty block.
BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
// If this block doesn't end with an uncond branch, ignore it.
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isUnconditional())
return nullptr;
// If the instruction before the branch (skipping debug info) isn't a phi
// node, then other stuff is happening here.
BasicBlock::iterator BBI = BI->getIterator();
if (BBI != BB->begin()) {
--BBI;
while (isa<DbgInfoIntrinsic>(BBI)) {
if (BBI == BB->begin())
break;
--BBI;
}
if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
return nullptr;
}
// Do not break infinite loops.
BasicBlock *DestBB = BI->getSuccessor(0);
if (DestBB == BB)
return nullptr;
if (!canMergeBlocks(BB, DestBB))
DestBB = nullptr;
return DestBB;
}
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
/// blocks so we can split them the way we want them.
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 16> Preheaders;
SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
while (!LoopList.empty()) {
Loop *L = LoopList.pop_back_val();
LoopList.insert(LoopList.end(), L->begin(), L->end());
if (BasicBlock *Preheader = L->getLoopPreheader())
Preheaders.insert(Preheader);
}
bool MadeChange = false;
// Copy blocks into a temporary array to avoid iterator invalidation issues
// as we remove them.
// Note that this intentionally skips the entry block.
SmallVector<WeakTrackingVH, 16> Blocks;
for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
Blocks.push_back(&Block);
for (auto &Block : Blocks) {
BasicBlock *BB = cast_or_null<BasicBlock>(Block);
if (!BB)
continue;
BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
if (!DestBB ||
!isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
continue;
eliminateMostlyEmptyBlock(BB);
MadeChange = true;
}
return MadeChange;
}
bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
BasicBlock *DestBB,
bool isPreheader) {
// Do not delete loop preheaders if doing so would create a critical edge.
// Loop preheaders can be good locations to spill registers. If the
// preheader is deleted and we create a critical edge, registers may be
// spilled in the loop body instead.
if (!DisablePreheaderProtect && isPreheader &&
!(BB->getSinglePredecessor() &&
BB->getSinglePredecessor()->getSingleSuccessor()))
return false;
// Skip merging if the block's successor is also a successor to any callbr
// that leads to this block.
// FIXME: Is this really needed? Is this a correctness issue?
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
if (DestBB == CBI->getSuccessor(i))
return false;
}
// Try to skip merging if the unique predecessor of BB is terminated by a
// switch or indirect branch instruction, and BB is used as an incoming block
// of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
// add COPY instructions in the predecessor of BB instead of BB (if it is not
// merged). Note that the critical edge created by merging such blocks wont be
// split in MachineSink because the jump table is not analyzable. By keeping
// such empty block (BB), ISel will place COPY instructions in BB, not in the
// predecessor of BB.
BasicBlock *Pred = BB->getUniquePredecessor();
if (!Pred ||
!(isa<SwitchInst>(Pred->getTerminator()) ||
isa<IndirectBrInst>(Pred->getTerminator())))
return true;
if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
return true;
// We use a simple cost heuristic which determine skipping merging is
// profitable if the cost of skipping merging is less than the cost of
// merging : Cost(skipping merging) < Cost(merging BB), where the
// Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
// the Cost(merging BB) is Freq(Pred) * Cost(Copy).
// Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
// Freq(Pred) / Freq(BB) > 2.
// Note that if there are multiple empty blocks sharing the same incoming
// value for the PHIs in the DestBB, we consider them together. In such
// case, Cost(merging BB) will be the sum of their frequencies.
if (!isa<PHINode>(DestBB->begin()))
return true;
SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
// Find all other incoming blocks from which incoming values of all PHIs in
// DestBB are the same as the ones from BB.
for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
++PI) {
BasicBlock *DestBBPred = *PI;
if (DestBBPred == BB)
continue;
if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
return DestPN.getIncomingValueForBlock(BB) ==
DestPN.getIncomingValueForBlock(DestBBPred);
}))
SameIncomingValueBBs.insert(DestBBPred);
}
// See if all BB's incoming values are same as the value from Pred. In this
// case, no reason to skip merging because COPYs are expected to be place in
// Pred already.
if (SameIncomingValueBBs.count(Pred))
return true;
BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
BlockFrequency BBFreq = BFI->getBlockFreq(BB);
for (auto SameValueBB : SameIncomingValueBBs)
if (SameValueBB->getUniquePredecessor() == Pred &&
DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
BBFreq += BFI->getBlockFreq(SameValueBB);
return PredFreq.getFrequency() <=
BBFreq.getFrequency() * FreqRatioToSkipMerge;
}
/// Return true if we can merge BB into DestBB if there is a single
/// unconditional branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
const BasicBlock *DestBB) const {
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
// the successor. If there are more complex condition (e.g. preheaders),
// don't mess around with them.
for (const PHINode &PN : BB->phis()) {
for (const User *U : PN.users()) {
const Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != DestBB || !isa<PHINode>(UI))
return false;
// If User is inside DestBB block and it is a PHINode then check
// incoming value. If incoming value is not from BB then this is
// a complex condition (e.g. preheaders) we want to avoid here.
if (UI->getParent() == DestBB) {
if (const PHINode *UPN = dyn_cast<PHINode>(UI))
for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
if (Insn && Insn->getParent() == BB &&
Insn->getParent() != UPN->getIncomingBlock(I))
return false;
}
}
}
}
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
// and DestBB may have conflicting incoming values for the block. If so, we
// can't merge the block.
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
if (!DestBBPN) return true; // no conflict.
// Collect the preds of BB.
SmallPtrSet<const BasicBlock*, 16> BBPreds;
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
// It is faster to get preds from a PHI than with pred_iterator.
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
BBPreds.insert(BBPN->getIncomingBlock(i));
} else {
BBPreds.insert(pred_begin(BB), pred_end(BB));
}
// Walk the preds of DestBB.
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
if (BBPreds.count(Pred)) { // Common predecessor?
for (const PHINode &PN : DestBB->phis()) {
const Value *V1 = PN.getIncomingValueForBlock(Pred);
const Value *V2 = PN.getIncomingValueForBlock(BB);
// If V2 is a phi node in BB, look up what the mapped value will be.
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
if (V2PN->getParent() == BB)
V2 = V2PN->getIncomingValueForBlock(Pred);
// If there is a conflict, bail out.
if (V1 != V2) return false;
}
}
}
return true;
}
/// Eliminate a basic block that has only phi's and an unconditional branch in
/// it.
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
<< *BB << *DestBB);
// If the destination block has a single pred, then this is a trivial edge,
// just collapse it.
if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
if (SinglePred != DestBB) {
assert(SinglePred == BB &&
"Single predecessor not the same as predecessor");
// Merge DestBB into SinglePred/BB and delete it.
MergeBlockIntoPredecessor(DestBB);
// Note: BB(=SinglePred) will not be deleted on this path.
// DestBB(=its single successor) is the one that was deleted.
LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
return;
}
}
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
// to handle the new incoming edges it is about to have.
for (PHINode &PN : DestBB->phis()) {
// Remove the incoming value for BB, and remember it.
Value *InVal = PN.removeIncomingValue(BB, false);
// Two options: either the InVal is a phi node defined in BB or it is some
// value that dominates BB.
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
if (InValPhi && InValPhi->getParent() == BB) {
// Add all of the input values of the input PHI as inputs of this phi.
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
PN.addIncoming(InValPhi->getIncomingValue(i),
InValPhi->getIncomingBlock(i));
} else {
// Otherwise, add one instance of the dominating value for each edge that
// we will be adding.
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
PN.addIncoming(InVal, *PI);
}
}
}
// The PHIs are now updated, change everything that refers to BB to use
// DestBB and remove BB.
BB->replaceAllUsesWith(DestBB);
BB->eraseFromParent();
++NumBlocksElim;
LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}
// Computes a map of base pointer relocation instructions to corresponding
// derived pointer relocation instructions given a vector of all relocate calls
static void computeBaseDerivedRelocateMap(
const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
&RelocateInstMap) {
// Collect information in two maps: one primarily for locating the base object
// while filling the second map; the second map is the final structure holding
// a mapping between Base and corresponding Derived relocate calls
DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
for (auto *ThisRelocate : AllRelocateCalls) {
auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
ThisRelocate->getDerivedPtrIndex());
RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
}
for (auto &Item : RelocateIdxMap) {
std::pair<unsigned, unsigned> Key = Item.first;
if (Key.first == Key.second)
// Base relocation: nothing to insert
continue;
GCRelocateInst *I = Item.second;
auto BaseKey = std::make_pair(Key.first, Key.first);
// We're iterating over RelocateIdxMap so we cannot modify it.
auto MaybeBase = RelocateIdxMap.find(BaseKey);
if (MaybeBase == RelocateIdxMap.end())
// TODO: We might want to insert a new base object relocate and gep off
// that, if there are enough derived object relocates.
continue;
RelocateInstMap[MaybeBase->second].push_back(I);
}
}
// Accepts a GEP and extracts the operands into a vector provided they're all
// small integer constants
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
SmallVectorImpl<Value *> &OffsetV) {
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
// Only accept small constant integer operands
auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!Op || Op->getZExtValue() > 20)
return false;
}
for (unsigned i = 1; i < GEP->getNumOperands(); i++)
OffsetV.push_back(GEP->getOperand(i));
return true;
}
// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
// replace, computes a replacement, and affects it.
static bool
simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
const SmallVectorImpl<GCRelocateInst *> &Targets) {
bool MadeChange = false;
// We must ensure the relocation of derived pointer is defined after
// relocation of base pointer. If we find a relocation corresponding to base
// defined earlier than relocation of base then we move relocation of base
// right before found relocation. We consider only relocation in the same
// basic block as relocation of base. Relocations from other basic block will
// be skipped by optimization and we do not care about them.
for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
&*R != RelocatedBase; ++R)
if (auto RI = dyn_cast<GCRelocateInst>(R))
if (RI->getStatepoint() == RelocatedBase->getStatepoint())
if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
RelocatedBase->moveBefore(RI);
break;
}
for (GCRelocateInst *ToReplace : Targets) {
assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
"Not relocating a derived object of the original base object");
if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
// A duplicate relocate call. TODO: coalesce duplicates.
continue;
}
if (RelocatedBase->getParent() != ToReplace->getParent()) {
// Base and derived relocates are in different basic blocks.
// In this case transform is only valid when base dominates derived
// relocate. However it would be too expensive to check dominance
// for each such relocate, so we skip the whole transformation.
continue;
}
Value *Base = ToReplace->getBasePtr();
auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
if (!Derived || Derived->getPointerOperand() != Base)
continue;
SmallVector<Value *, 2> OffsetV;
if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
continue;
// Create a Builder and replace the target callsite with a gep
assert(RelocatedBase->getNextNode() &&
"Should always have one since it's not a terminator");
// Insert after RelocatedBase
IRBuilder<> Builder(RelocatedBase->getNextNode());
Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
// If gc_relocate does not match the actual type, cast it to the right type.
// In theory, there must be a bitcast after gc_relocate if the type does not
// match, and we should reuse it to get the derived pointer. But it could be
// cases like this:
// bb1:
// ...
// %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
// br label %merge
//
// bb2:
// ...
// %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
// br label %merge
//
// merge:
// %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
// %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
//
// In this case, we can not find the bitcast any more. So we insert a new bitcast
// no matter there is already one or not. In this way, we can handle all cases, and
// the extra bitcast should be optimized away in later passes.
Value *ActualRelocatedBase = RelocatedBase;
if (RelocatedBase->getType() != Base->getType()) {
ActualRelocatedBase =
Builder.CreateBitCast(RelocatedBase, Base->getType());
}
Value *Replacement = Builder.CreateGEP(
Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
Replacement->takeName(ToReplace);
// If the newly generated derived pointer's type does not match the original derived
// pointer's type, cast the new derived pointer to match it. Same reasoning as above.
Value *ActualReplacement = Replacement;
if (Replacement->getType() != ToReplace->getType()) {
ActualReplacement =
Builder.CreateBitCast(Replacement, ToReplace->getType());
}
ToReplace->replaceAllUsesWith(ActualReplacement);
ToReplace->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
// Turns this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = relocate(%tok, i32 4, i32 4)
// %ptr' = relocate(%tok, i32 4, i32 5)
// %val = load %ptr'
//
// into this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = gc.relocate(%tok, i32 4, i32 4)
// %ptr' = gep %base' + 15
// %val = load %ptr'
bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
bool MadeChange = false;
SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
for (auto *U : I.users())
if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
// Collect all the relocate calls associated with a statepoint
AllRelocateCalls.push_back(Relocate);
// We need atleast one base pointer relocation + one derived pointer
// relocation to mangle
if (AllRelocateCalls.size() < 2)
return false;
// RelocateInstMap is a mapping from the base relocate instruction to the
// corresponding derived relocate instructions
DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
if (RelocateInstMap.empty())
return false;
for (auto &Item : RelocateInstMap)
// Item.first is the RelocatedBase to offset against
// Item.second is the vector of Targets to replace
MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
return MadeChange;
}
/// Sink the specified cast instruction into its user blocks.
static bool SinkCast(CastInst *CI) {
BasicBlock *DefBB = CI->getParent();
/// InsertedCasts - Only insert a cast in each block once.
DenseMap<BasicBlock*, CastInst*> InsertedCasts;
bool MadeChange = false;
for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this cast is used in. For PHI's this is the
// appropriate predecessor block.
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User)) {
UserBB = PN->getIncomingBlock(TheUse);
}
// Preincrement use iterator so we don't invalidate it.
++UI;
// The first insertion point of a block containing an EH pad is after the
// pad. If the pad is the user, we cannot sink the cast past the pad.
if (User->isEHPad())
continue;
// If the block selected to receive the cast is an EH pad that does not
// allow non-PHI instructions before the terminator, we can't sink the
// cast.
if (UserBB->getTerminator()->isEHPad())
continue;
// If this user is in the same block as the cast, don't change the cast.
if (UserBB == DefBB) continue;
// If we have already inserted a cast into this block, use it.
CastInst *&InsertedCast = InsertedCasts[UserBB];
if (!InsertedCast) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
CI->getType(), "", &*InsertPt);
InsertedCast->setDebugLoc(CI->getDebugLoc());
}
// Replace a use of the cast with a use of the new cast.
TheUse = InsertedCast;
MadeChange = true;
++NumCastUses;
}
// If we removed all uses, nuke the cast.
if (CI->use_empty()) {
salvageDebugInfo(*CI);
CI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
/// If the specified cast instruction is a noop copy (e.g. it's casting from
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
/// reduce the number of virtual registers that must be created and coalesced.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
const DataLayout &DL) {
// Sink only "cheap" (or nop) address-space casts. This is a weaker condition
// than sinking only nop casts, but is helpful on some platforms.
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
ASC->getDestAddressSpace()))
return false;
}
// If this is a noop copy,
EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(DL, CI->getType());
// This is an fp<->int conversion?
if (SrcVT.isInteger() != DstVT.isInteger())
return false;
// If this is an extension, it will be a zero or sign extension, which
// isn't a noop.
if (SrcVT.bitsLT(DstVT)) return false;
// If these values will be promoted, find out what they will be promoted
// to. This helps us consider truncates on PPC as noop copies when they
// are.
if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
TargetLowering::TypePromoteInteger)
SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
if (TLI.getTypeAction(CI->getContext(), DstVT) ==
TargetLowering::TypePromoteInteger)
DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
// If, after promotion, these are the same types, this is a noop copy.
if (SrcVT != DstVT)
return false;
return SinkCast(CI);
}
bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
CmpInst *Cmp,
Intrinsic::ID IID) {
if (BO->getParent() != Cmp->getParent()) {
// We used to use a dominator tree here to allow multi-block optimization.
// But that was problematic because:
// 1. It could cause a perf regression by hoisting the math op into the
// critical path.
// 2. It could cause a perf regression by creating a value that was live
// across multiple blocks and increasing register pressure.
// 3. Use of a dominator tree could cause large compile-time regression.
// This is because we recompute the DT on every change in the main CGP
// run-loop. The recomputing is probably unnecessary in many cases, so if
// that was fixed, using a DT here would be ok.
return false;
}
// We allow matching the canonical IR (add X, C) back to (usubo X, -C).
Value *Arg0 = BO->getOperand(0);
Value *Arg1 = BO->getOperand(1);
if (BO->getOpcode() == Instruction::Add &&
IID == Intrinsic::usub_with_overflow) {
assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
}
// Insert at the first instruction of the pair.
Instruction *InsertPt = nullptr;
for (Instruction &Iter : *Cmp->getParent()) {
if (&Iter == BO || &Iter == Cmp) {
InsertPt = &Iter;
break;
}
}
assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
IRBuilder<> Builder(InsertPt);
Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
BO->replaceAllUsesWith(Math);
Cmp->replaceAllUsesWith(OV);
BO->eraseFromParent();
Cmp->eraseFromParent();
return true;
}
/// Match special-case patterns that check for unsigned add overflow.
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
BinaryOperator *&Add) {
// Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
// Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
// We are not expecting non-canonical/degenerate code. Just bail out.
if (isa<Constant>(A))
return false;
ICmpInst::Predicate Pred = Cmp->getPredicate();
if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
B = ConstantInt::get(B->getType(), 1);
else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
B = ConstantInt::get(B->getType(), -1);
else
return false;
// Check the users of the variable operand of the compare looking for an add
// with the adjusted constant.
for (User *U : A->users()) {
if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
Add = cast<BinaryOperator>(U);
return true;
}
}
return false;
}
/// Try to combine the compare into a call to the llvm.uadd.with.overflow
/// intrinsic. Return true if any changes were made.
bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
bool &ModifiedDT) {
Value *A, *B;
BinaryOperator *Add;
if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
return false;
if (!TLI->shouldFormOverflowOp(ISD::UADDO,
TLI->getValueType(*DL, Add->getType())))
return false;
// We don't want to move around uses of condition values this late, so we
// check if it is legal to create the call to the intrinsic in the basic
// block containing the icmp.
if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
return false;
if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
return false;
// Reset callers - do not crash by iterating over a dead instruction.
ModifiedDT = true;
return true;
}
bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
bool &ModifiedDT) {
// We are not expecting non-canonical/degenerate code. Just bail out.
Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
if (isa<Constant>(A) && isa<Constant>(B))
return false;
// Convert (A u> B) to (A u< B) to simplify pattern matching.
ICmpInst::Predicate Pred = Cmp->getPredicate();
if (Pred == ICmpInst::ICMP_UGT) {
std::swap(A, B);
Pred = ICmpInst::ICMP_ULT;
}
// Convert special-case: (A == 0) is the same as (A u< 1).
if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
B = ConstantInt::get(B->getType(), 1);
Pred = ICmpInst::ICMP_ULT;
}
// Convert special-case: (A != 0) is the same as (0 u< A).
if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
std::swap(A, B);
Pred = ICmpInst::ICMP_ULT;
}
if (Pred != ICmpInst::ICMP_ULT)
return false;
// Walk the users of a variable operand of a compare looking for a subtract or
// add with that same operand. Also match the 2nd operand of the compare to
// the add/sub, but that may be a negated constant operand of an add.
Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
BinaryOperator *Sub = nullptr;
for (User *U : CmpVariableOperand->users()) {
// A - B, A u< B --> usubo(A, B)
if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
Sub = cast<BinaryOperator>(U);
break;
}
// A + (-C), A u< C (canonicalized form of (sub A, C))
const APInt *CmpC, *AddC;
if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
Sub = cast<BinaryOperator>(U);
break;
}
}
if (!Sub)
return false;
if (!TLI->shouldFormOverflowOp(ISD::USUBO,
TLI->getValueType(*DL, Sub->getType())))
return false;
if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
return false;
// Reset callers - do not crash by iterating over a dead instruction.
ModifiedDT = true;
return true;
}
/// Sink the given CmpInst into user blocks to reduce the number of virtual
/// registers that must be created and coalesced. This is a clear win except on
/// targets with multiple condition code registers (PowerPC), where it might
/// lose; some adjustment may be wanted there.
///
/// Return true if any changes are made.
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
if (TLI.hasMultipleConditionRegisters())
return false;
// Avoid sinking soft-FP comparisons, since this can move them into a loop.
if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
return false;
// Only insert a cmp in each block once.
DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
bool MadeChange = false;
for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
// Don't bother for PHI nodes.
if (isa<PHINode>(User))
continue;
// Figure out which BB this cmp is used in.
BasicBlock *UserBB = User->getParent();
BasicBlock *DefBB = Cmp->getParent();
// If this user is in the same block as the cmp, don't change the cmp.
if (UserBB == DefBB) continue;
// If we have already inserted a cmp into this block, use it.
CmpInst *&InsertedCmp = InsertedCmps[UserBB];
if (!InsertedCmp) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedCmp =
CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
Cmp->getOperand(0), Cmp->getOperand(1), "",
&*InsertPt);
// Propagate the debug info.
InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
}
// Replace a use of the cmp with a use of the new cmp.
TheUse = InsertedCmp;
MadeChange = true;
++NumCmpUses;
}
// If we removed all uses, nuke the cmp.
if (Cmp->use_empty()) {
Cmp->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
if (sinkCmpExpression(Cmp, *TLI))
return true;
if (combineToUAddWithOverflow(Cmp, ModifiedDT))
return true;
if (combineToUSubWithOverflow(Cmp, ModifiedDT))
return true;
return false;
}
/// Duplicate and sink the given 'and' instruction into user blocks where it is
/// used in a compare to allow isel to generate better code for targets where
/// this operation can be combined.
///
/// Return true if any changes are made.
static bool sinkAndCmp0Expression(Instruction *AndI,
const TargetLowering &TLI,
SetOfInstrs &InsertedInsts) {
// Double-check that we're not trying to optimize an instruction that was
// already optimized by some other part of this pass.
assert(!InsertedInsts.count(AndI) &&
"Attempting to optimize already optimized and instruction");
(void) InsertedInsts;
// Nothing to do for single use in same basic block.
if (AndI->hasOneUse() &&
AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
return false;
// Try to avoid cases where sinking/duplicating is likely to increase register
// pressure.
if (!isa<ConstantInt>(AndI->getOperand(0)) &&
!isa<ConstantInt>(AndI->getOperand(1)) &&
AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
return false;
for (auto *U : AndI->users()) {
Instruction *User = cast<Instruction>(U);
// Only sink 'and' feeding icmp with 0.
if (!isa<ICmpInst>(User))
return false;
auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
if (!CmpC || !CmpC->isZero())
return false;
}
if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
return false;
LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
LLVM_DEBUG(AndI->getParent()->dump());
// Push the 'and' into the same block as the icmp 0. There should only be
// one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
// others, so we don't need to keep track of which BBs we insert into.
for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
// Keep the 'and' in the same place if the use is already in the same block.
Instruction *InsertPt =
User->getParent() == AndI->getParent() ? AndI : User;
Instruction *InsertedAnd =
BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
AndI->getOperand(1), "", InsertPt);
// Propagate the debug info.
InsertedAnd->setDebugLoc(AndI->getDebugLoc());
// Replace a use of the 'and' with a use of the new 'and'.
TheUse = InsertedAnd;
++NumAndUses;
LLVM_DEBUG(User->getParent()->dump());
}
// We removed all uses, nuke the and.
AndI->eraseFromParent();
return true;
}
/// Check if the candidates could be combined with a shift instruction, which
/// includes:
/// 1. Truncate instruction
/// 2. And instruction and the imm is a mask of the low bits:
/// imm & (imm+1) == 0
static bool isExtractBitsCandidateUse(Instruction *User) {
if (!isa<TruncInst>(User)) {
if (User->getOpcode() != Instruction::And ||
!isa<ConstantInt>(User->getOperand(1)))
return false;
const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
if ((Cimm & (Cimm + 1)).getBoolValue())
return false;
}
return true;
}
/// Sink both shift and truncate instruction to the use of truncate's BB.
static bool
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
const TargetLowering &TLI, const DataLayout &DL) {
BasicBlock *UserBB = User->getParent();
DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
auto *TruncI = cast<TruncInst>(User);
bool MadeChange = false;
for (Value::user_iterator TruncUI = TruncI->user_begin(),
TruncE = TruncI->user_end();
TruncUI != TruncE;) {
Use &TruncTheUse = TruncUI.getUse();
Instruction *TruncUser = cast<Instruction>(*TruncUI);
// Preincrement use iterator so we don't invalidate it.
++TruncUI;
int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
if (!ISDOpcode)
continue;
// If the use is actually a legal node, there will not be an
// implicit truncate.
// FIXME: always querying the result type is just an
// approximation; some nodes' legality is determined by the
// operand or other means. There's no good way to find out though.
if (TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
continue;
// Don't bother for PHI nodes.
if (isa<PHINode>(TruncUser))
continue;
BasicBlock *TruncUserBB = TruncUser->getParent();
if (UserBB == TruncUserBB)
continue;
BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
if (!InsertedShift && !InsertedTrunc) {
BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
assert(InsertPt != TruncUserBB->end());
// Sink the shift
if (ShiftI->getOpcode() == Instruction::AShr)
InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
else
InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
// Sink the trunc
BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
TruncInsertPt++;
assert(TruncInsertPt != TruncUserBB->end());
InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
TruncI->getType(), "", &*TruncInsertPt);
InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
MadeChange = true;
TruncTheUse = InsertedTrunc;
}
}
return MadeChange;
}
/// Sink the shift *right* instruction into user blocks if the uses could
/// potentially be combined with this shift instruction and generate BitExtract
/// instruction. It will only be applied if the architecture supports BitExtract
/// instruction. Here is an example:
/// BB1:
/// %x.extract.shift = lshr i64 %arg1, 32
/// BB2:
/// %x.extract.trunc = trunc i64 %x.extract.shift to i16
/// ==>
///
/// BB2:
/// %x.extract.shift.1 = lshr i64 %arg1, 32
/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
///
/// CodeGen will recognize the pattern in BB2 and generate BitExtract
/// instruction.
/// Return true if any changes are made.
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
const TargetLowering &TLI,
const DataLayout &DL) {
BasicBlock *DefBB = ShiftI->getParent();
/// Only insert instructions in each block once.
DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
bool MadeChange = false;
for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
UI != E;) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
// Don't bother for PHI nodes.
if (isa<PHINode>(User))
continue;
if (!isExtractBitsCandidateUse(User))
continue;
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) {
// If the shift and truncate instruction are in the same BB. The use of
// the truncate(TruncUse) may still introduce another truncate if not
// legal. In this case, we would like to sink both shift and truncate
// instruction to the BB of TruncUse.
// for example:
// BB1:
// i64 shift.result = lshr i64 opnd, imm
// trunc.result = trunc shift.result to i16
//
// BB2:
// ----> We will have an implicit truncate here if the architecture does
// not have i16 compare.
// cmp i16 trunc.result, opnd2
//
if (isa<TruncInst>(User) && shiftIsLegal
// If the type of the truncate is legal, no truncate will be
// introduced in other basic blocks.
&&
(!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
MadeChange =
SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
continue;
}
// If we have already inserted a shift into this block, use it.
BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
if (!InsertedShift) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
if (ShiftI->getOpcode() == Instruction::AShr)
InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
else
InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
MadeChange = true;
}
// Replace a use of the shift with a use of the new shift.
TheUse = InsertedShift;
}
// If we removed all uses, or there are none, nuke the shift.
if (ShiftI->use_empty()) {
salvageDebugInfo(*ShiftI);
ShiftI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
/// If counting leading or trailing zeros is an expensive operation and a zero
/// input is defined, add a check for zero to avoid calling the intrinsic.
///
/// We want to transform:
/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
///
/// into:
/// entry:
/// %cmpz = icmp eq i64 %A, 0
/// br i1 %cmpz, label %cond.end, label %cond.false
/// cond.false:
/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
/// br label %cond.end
/// cond.end:
/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
///
/// If the transform is performed, return true and set ModifiedDT to true.
static bool despeculateCountZeros(IntrinsicInst *CountZeros,
const TargetLowering *TLI,
const DataLayout *DL,
bool &ModifiedDT) {
if (!TLI || !DL)
return false;
// If a zero input is undefined, it doesn't make sense to despeculate that.
if (match(CountZeros->getOperand(1), m_One()))
return false;
// If it's cheap to speculate, there's nothing to do.
auto IntrinsicID = CountZeros->getIntrinsicID();
if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
(IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
return false;
// Only handle legal scalar cases. Anything else requires too much work.
Type *Ty = CountZeros->getType();
unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
return false;
// The intrinsic will be sunk behind a compare against zero and branch.
BasicBlock *StartBlock = CountZeros->getParent();
BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
// Create another block after the count zero intrinsic. A PHI will be added
// in this block to select the result of the intrinsic or the bit-width
// constant if the input to the intrinsic is zero.
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
// Set up a builder to create a compare, conditional branch, and PHI.
IRBuilder<> Builder(CountZeros->getContext());
Builder.SetInsertPoint(StartBlock->getTerminator());
Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
// Replace the unconditional branch that was created by the first split with
// a compare against zero and a conditional branch.
Value *Zero = Constant::getNullValue(Ty);
Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
StartBlock->getTerminator()->eraseFromParent();
// Create a PHI in the end block to select either the output of the intrinsic
// or the bit width of the operand.
Builder.SetInsertPoint(&EndBlock->front());
PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
CountZeros->replaceAllUsesWith(PN);
Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
PN->addIncoming(BitWidth, StartBlock);
PN->addIncoming(CountZeros, CallBlock);
// We are explicitly handling the zero case, so we can set the intrinsic's
// undefined zero argument to 'true'. This will also prevent reprocessing the
// intrinsic; we only despeculate when a zero input is defined.
CountZeros->setArgOperand(1, Builder.getTrue());
ModifiedDT = true;
return true;
}
bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
BasicBlock *BB = CI->getParent();
// Lower inline assembly if we can.
// If we found an inline asm expession, and if the target knows how to
// lower it to normal LLVM code, do so now.
if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
if (TLI->ExpandInlineAsm(CI)) {
// Avoid invalidating the iterator.
CurInstIterator = BB->begin();
// Avoid processing instructions out of order, which could cause
// reuse before a value is defined.
SunkAddrs.clear();
return true;
}
// Sink address computing for memory operands into the block.
if (optimizeInlineAsmInst(CI))
return true;
}
// Align the pointer arguments to this call if the target thinks it's a good
// idea
unsigned MinSize, PrefAlign;
if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
for (auto &Arg : CI->arg_operands()) {
// We want to align both objects whose address is used directly and
// objects whose address is used in casts and GEPs, though it only makes
// sense for GEPs if the offset is a multiple of the desired alignment and
// if size - offset meets the size threshold.
if (!Arg->getType()->isPointerTy())
continue;
APInt Offset(DL->getIndexSizeInBits(
cast<PointerType>(Arg->getType())->getAddressSpace()),
0);
Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
uint64_t Offset2 = Offset.getLimitedValue();
if ((Offset2 & (PrefAlign-1)) != 0)
continue;
AllocaInst *AI;
if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
AI->setAlignment(MaybeAlign(PrefAlign));
// Global variables can only be aligned if they are defined in this
// object (i.e. they are uniquely initialized in this object), and
// over-aligning global variables that have an explicit section is
// forbidden.
GlobalVariable *GV;
if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
GV->getPointerAlignment(*DL) < PrefAlign &&
DL->getTypeAllocSize(GV->getValueType()) >=
MinSize + Offset2)
GV->setAlignment(MaybeAlign(PrefAlign));
}
// If this is a memcpy (or similar) then we may be able to improve the
// alignment
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
if (DestAlign > MI->getDestAlignment())
MI->setDestAlignment(DestAlign);
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
if (SrcAlign > MTI->getSourceAlignment())
MTI->setSourceAlignment(SrcAlign);
}
}
}
// If we have a cold call site, try to sink addressing computation into the
// cold block. This interacts with our handling for loads and stores to
// ensure that we can fold all uses of a potential addressing computation
// into their uses. TODO: generalize this to work over profiling data
if (!OptSize && CI->hasFnAttr(Attribute::Cold))
for (auto &Arg : CI->arg_operands()) {
if (!Arg->getType()->isPointerTy())
continue;
unsigned AS = Arg->getType()->getPointerAddressSpace();
return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (II) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::experimental_widenable_condition: {
// Give up on future widening oppurtunties so that we can fold away dead
// paths and merge blocks before going into block-local instruction
// selection.
if (II->use_empty()) {
II->eraseFromParent();
return true;
}
Constant *RetVal = ConstantInt::getTrue(II->getContext());
resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
});
return true;
}
case Intrinsic::objectsize:
llvm_unreachable("llvm.objectsize.* should have been lowered already");
case Intrinsic::is_constant:
llvm_unreachable("llvm.is.constant.* should have been lowered already");
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr: {
ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
if (!ExtVal || !ExtVal->hasOneUse() ||
ExtVal->getParent() == CI->getParent())
return false;
// Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
ExtVal->moveBefore(CI);
// Mark this instruction as "inserted by CGP", so that other
// optimizations don't touch it.
InsertedInsts.insert(ExtVal);
return true;
}
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group: {
Value *ArgVal = II->getArgOperand(0);
auto it = LargeOffsetGEPMap.find(II);
if (it != LargeOffsetGEPMap.end()) {
// Merge entries in LargeOffsetGEPMap to reflect the RAUW.
// Make sure not to have to deal with iterator invalidation
// after possibly adding ArgVal to LargeOffsetGEPMap.
auto GEPs = std::move(it->second);
LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
LargeOffsetGEPMap.erase(II);
}
II->replaceAllUsesWith(ArgVal);
II->eraseFromParent();
return true;
}
case Intrinsic::cttz:
case Intrinsic::ctlz:
// If counting zeros is expensive, try to avoid it.
return despeculateCountZeros(II, TLI, DL, ModifiedDT);
}
if (TLI) {
SmallVector<Value*, 2> PtrOps;
Type *AccessTy;
if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
while (!PtrOps.empty()) {
Value *PtrVal = PtrOps.pop_back_val();
unsigned AS = PtrVal->getType()->getPointerAddressSpace();
if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
return true;
}
}
}
// From here on out we're working with named functions.
if (!CI->getCalledFunction()) return false;
// Lower all default uses of _chk calls. This is very similar
// to what InstCombineCalls does, but here we are only lowering calls
// to fortified library functions (e.g. __memcpy_chk) that have the default
// "don't know" as the objectsize. Anything else should be left alone.
FortifiedLibCallSimplifier Simplifier(TLInfo, true);
if (Value *V = Simplifier.optimizeCall(CI)) {
CI->replaceAllUsesWith(V);
CI->eraseFromParent();
return true;
}
return false;
}
/// Look for opportunities to duplicate return instructions to the predecessor
/// to enable tail call optimizations. The case it is currently looking for is:
/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// br label %return
/// bb1:
/// %tmp1 = tail call i32 @f1()
/// br label %return
/// bb2:
/// %tmp2 = tail call i32 @f2()
/// br label %return
/// return:
/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
/// ret i32 %retval
/// @endcode
///
/// =>
///
/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// ret i32 %tmp0
/// bb1:
/// %tmp1 = tail call i32 @f1()
/// ret i32 %tmp1
/// bb2:
/// %tmp2 = tail call i32 @f2()
/// ret i32 %tmp2
/// @endcode
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
if (!TLI)
return false;
ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
if (!RetI)
return false;
PHINode *PN = nullptr;
BitCastInst *BCI = nullptr;
Value *V = RetI->getReturnValue();
if (V) {
BCI = dyn_cast<BitCastInst>(V);
if (BCI)
V = BCI->getOperand(0);
PN = dyn_cast<PHINode>(V);
if (!PN)
return false;
}
if (PN && PN->getParent() != BB)
return false;
// Make sure there are no instructions between the PHI and return, or that the
// return is the first instruction in the block.
if (PN) {
BasicBlock::iterator BI = BB->begin();
// Skip over debug and the bitcast.
do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
if (&*BI != RetI)
return false;
} else {
BasicBlock::iterator BI = BB->begin();
while (isa<DbgInfoIntrinsic>(BI)) ++BI;
if (&*BI != RetI)
return false;
}
/// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
/// call.
const Function *F = BB->getParent();
SmallVector<BasicBlock*, 4> TailCallBBs;
if (PN) {
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
// Look through bitcasts.
Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
CallInst *CI = dyn_cast<CallInst>(IncomingVal);
BasicBlock *PredBB = PN->getIncomingBlock(I);
// Make sure the phi value is indeed produced by the tail call.
if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
TLI->mayBeEmittedAsTailCall(CI) &&
attributesPermitTailCall(F, CI, RetI, *TLI))
TailCallBBs.push_back(PredBB);
}
} else {
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
if (!VisitedBBs.insert(*PI).second)
continue;
BasicBlock::InstListType &InstList = (*PI)->getInstList();
BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
if (RI == RE)
continue;
CallInst *CI = dyn_cast<CallInst>(&*RI);
if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
attributesPermitTailCall(F, CI, RetI, *TLI))
TailCallBBs.push_back(*PI);
}
}
bool Changed = false;
for (auto const &TailCallBB : TailCallBBs) {
// Make sure the call instruction is followed by an unconditional branch to
// the return block.
BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
continue;
// Duplicate the return into TailCallBB.
(void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
ModifiedDT = Changed = true;
++NumRetsDup;
}
// If we eliminated all predecessors of the block, delete the block now.
if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
BB->eraseFromParent();
return Changed;
}
//===----------------------------------------------------------------------===//
// Memory Optimization
//===----------------------------------------------------------------------===//
namespace {
/// This is an extended version of TargetLowering::AddrMode
/// which holds actual Value*'s for register values.
struct ExtAddrMode : public TargetLowering::AddrMode {
Value *BaseReg = nullptr;
Value *ScaledReg = nullptr;
Value *OriginalValue = nullptr;
bool InBounds = true;
enum FieldName {
NoField = 0x00,
BaseRegField = 0x01,
BaseGVField = 0x02,
BaseOffsField = 0x04,
ScaledRegField = 0x08,
ScaleField = 0x10,
MultipleFields = 0xff
};
ExtAddrMode() = default;
void print(raw_ostream &OS) const;
void dump() const;
FieldName compare(const ExtAddrMode &other) {
// First check that the types are the same on each field, as differing types
// is something we can't cope with later on.
if (BaseReg && other.BaseReg &&
BaseReg->getType() != other.BaseReg->getType())
return MultipleFields;
if (BaseGV && other.BaseGV &&
BaseGV->getType() != other.BaseGV->getType())
return MultipleFields;
if (ScaledReg && other.ScaledReg &&
ScaledReg->getType() != other.ScaledReg->getType())
return MultipleFields;
// Conservatively reject 'inbounds' mismatches.
if (InBounds != other.InBounds)
return MultipleFields;
// Check each field to see if it differs.
unsigned Result = NoField;
if (BaseReg != other.BaseReg)
Result |= BaseRegField;
if (BaseGV != other.BaseGV)
Result |= BaseGVField;
if (BaseOffs != other.BaseOffs)
Result |= BaseOffsField;
if (ScaledReg != other.ScaledReg)
Result |= ScaledRegField;
// Don't count 0 as being a different scale, because that actually means
// unscaled (which will already be counted by having no ScaledReg).
if (Scale && other.Scale && Scale != other.Scale)
Result |= ScaleField;
if (countPopulation(Result) > 1)
return MultipleFields;
else
return static_cast<FieldName>(Result);
}
// An AddrMode is trivial if it involves no calculation i.e. it is just a base
// with no offset.
bool isTrivial() {
// An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
// trivial if at most one of these terms is nonzero, except that BaseGV and
// BaseReg both being zero actually means a null pointer value, which we
// consider to be 'non-zero' here.
return !BaseOffs && !Scale && !(BaseGV && BaseReg);
}
Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
switch (Field) {
default:
return nullptr;
case BaseRegField:
return BaseReg;
case BaseGVField:
return BaseGV;
case ScaledRegField:
return ScaledReg;
case BaseOffsField:
return ConstantInt::get(IntPtrTy, BaseOffs);
}
}
void SetCombinedField(FieldName Field, Value *V,
const SmallVectorImpl<ExtAddrMode> &AddrModes) {
switch (Field) {
default:
llvm_unreachable("Unhandled fields are expected to be rejected earlier");
break;
case ExtAddrMode::BaseRegField:
BaseReg = V;
break;
case ExtAddrMode::BaseGVField:
// A combined BaseGV is an Instruction, not a GlobalValue, so it goes
// in the BaseReg field.
assert(BaseReg == nullptr);
BaseReg = V;
BaseGV = nullptr;
break;
case ExtAddrMode::ScaledRegField:
ScaledReg = V;
// If we have a mix of scaled and unscaled addrmodes then we want scale
// to be the scale and not zero.
if (!Scale)
for (const ExtAddrMode &AM : AddrModes)
if (AM.Scale) {
Scale = AM.Scale;
break;
}
break;
case ExtAddrMode::BaseOffsField:
// The offset is no longer a constant, so it goes in ScaledReg with a
// scale of 1.
assert(ScaledReg == nullptr);
ScaledReg = V;
Scale = 1;
BaseOffs = 0;
break;
}
}
};
} // end anonymous namespace
#ifndef NDEBUG
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
AM.print(OS);
return OS;
}
#endif
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ExtAddrMode::print(raw_ostream &OS) const {
bool NeedPlus = false;
OS << "[";
if (InBounds)
OS << "inbounds ";
if (BaseGV) {
OS << (NeedPlus ? " + " : "")
<< "GV:";
BaseGV->printAsOperand(OS, /*PrintType=*/false);
NeedPlus = true;
}
if (BaseOffs) {
OS << (NeedPlus ? " + " : "")
<< BaseOffs;
NeedPlus = true;
}
if (BaseReg) {
OS << (NeedPlus ? " + " : "")
<< "Base:";
BaseReg->printAsOperand(OS, /*PrintType=*/false);
NeedPlus = true;
}
if (Scale) {
OS << (NeedPlus ? " + " : "")
<< Scale << "*";
ScaledReg->printAsOperand(OS, /*PrintType=*/false);
}
OS << ']';
}
LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
namespace {
/// This class provides transaction based operation on the IR.
/// Every change made through this class is recorded in the internal state and
/// can be undone (rollback) until commit is called.
class TypePromotionTransaction {
/// This represents the common interface of the individual transaction.
/// Each class implements the logic for doing one specific modification on
/// the IR via the TypePromotionTransaction.
class TypePromotionAction {
protected:
/// The Instruction modified.
Instruction *Inst;
public:
/// Constructor of the action.
/// The constructor performs the related action on the IR.
TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
virtual ~TypePromotionAction() = default;
/// Undo the modification done by this action.
/// When this method is called, the IR must be in the same state as it was
/// before this action was applied.
/// \pre Undoing the action works if and only if the IR is in the exact same
/// state as it was directly after this action was applied.
virtual void undo() = 0;
/// Advocate every change made by this action.
/// When the results on the IR of the action are to be kept, it is important
/// to call this function, otherwise hidden information may be kept forever.
virtual void commit() {
// Nothing to be done, this action is not doing anything.
}
};
/// Utility to remember the position of an instruction.
class InsertionHandler {
/// Position of an instruction.
/// Either an instruction:
/// - Is the first in a basic block: BB is used.
/// - Has a previous instruction: PrevInst is used.
union {
Instruction *PrevInst;
BasicBlock *BB;
} Point;
/// Remember whether or not the instruction had a previous instruction.
bool HasPrevInstruction;
public:
/// Record the position of \p Inst.
InsertionHandler(Instruction *Inst) {
BasicBlock::iterator It = Inst->getIterator();
HasPrevInstruction = (It != (Inst->getParent()->begin()));
if (HasPrevInstruction)
Point.PrevInst = &*--It;
else
Point.BB = Inst->getParent();
}
/// Insert \p Inst at the recorded position.
void insert(Instruction *Inst) {
if (HasPrevInstruction) {
if (Inst->getParent())
Inst->removeFromParent();
Inst->insertAfter(Point.PrevInst);
} else {
Instruction *Position = &*Point.BB->getFirstInsertionPt();
if (Inst->getParent())
Inst->moveBefore(Position);
else
Inst->insertBefore(Position);
}
}
};
/// Move an instruction before another.
class InstructionMoveBefore : public TypePromotionAction {
/// Original position of the instruction.
InsertionHandler Position;
public:
/// Move \p Inst before \p Before.
InstructionMoveBefore(Instruction *Inst, Instruction *Before)
: TypePromotionAction(Inst), Position(Inst) {
LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
<< "\n");
Inst->moveBefore(Before);
}
/// Move the instruction back to its original position.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
Position.insert(Inst);
}
};
/// Set the operand of an instruction with a new value.
class OperandSetter : public TypePromotionAction {
/// Original operand of the instruction.
Value *Origin;
/// Index of the modified instruction.
unsigned Idx;
public:
/// Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
: TypePromotionAction(Inst), Idx(Idx) {
LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
<< "for:" << *Inst << "\n"
<< "with:" << *NewVal << "\n");
Origin = Inst->getOperand(Idx);
Inst->setOperand(Idx, NewVal);
}
/// Restore the original value of the instruction.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
<< "for: " << *Inst << "\n"
<< "with: " << *Origin << "\n");
Inst->setOperand(Idx, Origin);
}
};
/// Hide the operands of an instruction.
/// Do as if this instruction was not using any of its operands.
class OperandsHider : public TypePromotionAction {
/// The list of original operands.
SmallVector<Value *, 4> OriginalValues;
public:
/// Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
unsigned NumOpnds = Inst->getNumOperands();
OriginalValues.reserve(NumOpnds);
for (unsigned It = 0; It < NumOpnds; ++It) {
// Save the current operand.
Value *Val = Inst->getOperand(It);
OriginalValues.push_back(Val);
// Set a dummy one.
// We could use OperandSetter here, but that would imply an overhead
// that we are not willing to pay.
Inst->setOperand(It, UndefValue::get(Val->getType()));
}
}
/// Restore the original list of uses.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
Inst->setOperand(It, OriginalValues[It]);
}
};
/// Build a truncate instruction.
class TruncBuilder : public TypePromotionAction {
Value *Val;
public:
/// Build a truncate instruction of \p Opnd producing a \p Ty
/// result.
/// trunc Opnd to Ty.
TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
IRBuilder<> Builder(Opnd);
Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
}
/// Get the built value.
Value *getBuiltValue() { return Val; }
/// Remove the built instruction.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// Build a sign extension instruction.
class SExtBuilder : public TypePromotionAction {
Value *Val;
public:
/// Build a sign extension instruction of \p Opnd producing a \p Ty
/// result.
/// sext Opnd to Ty.
SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
: TypePromotionAction(InsertPt) {
IRBuilder<> Builder(InsertPt);
Val = Builder.CreateSExt(Opnd, Ty, "promoted");
LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
}
/// Get the built value.
Value *getBuiltValue() { return Val; }
/// Remove the built instruction.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// Build a zero extension instruction.
class ZExtBuilder : public TypePromotionAction {
Value *Val;
public:
/// Build a zero extension instruction of \p Opnd producing a \p Ty
/// result.
/// zext Opnd to Ty.
ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
: TypePromotionAction(InsertPt) {
IRBuilder<> Builder(InsertPt);
Val = Builder.CreateZExt(Opnd, Ty, "promoted");
LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
}
/// Get the built value.
Value *getBuiltValue() { return Val; }
/// Remove the built instruction.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// Mutate an instruction to another type.
class TypeMutator : public TypePromotionAction {
/// Record the original type.
Type *OrigTy;
public:
/// Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction *Inst, Type *NewTy)
: TypePromotionAction(Inst), OrigTy(Inst->getType()) {
LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
<< "\n");
Inst->mutateType(NewTy);
}
/// Mutate the instruction back to its original type.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
<< "\n");
Inst->mutateType(OrigTy);
}
};
/// Replace the uses of an instruction by another instruction.
class UsesReplacer : public TypePromotionAction {
/// Helper structure to keep track of the replaced uses.
struct InstructionAndIdx {
/// The instruction using the instruction.
Instruction *Inst;
/// The index where this instruction is used for Inst.
unsigned Idx;
InstructionAndIdx(Instruction *Inst, unsigned Idx)
: Inst(Inst), Idx(Idx) {}
};
/// Keep track of the original uses (pair Instruction, Index).
SmallVector<InstructionAndIdx, 4> OriginalUses;
/// Keep track of the debug users.
SmallVector<DbgValueInst *, 1> DbgValues;
using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
public:
/// Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
<< "\n");
// Record the original uses.
for (Use &U : Inst->uses()) {
Instruction *UserI = cast<Instruction>(U.getUser());
OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
}
// Record the debug uses separately. They are not in the instruction's
// use list, but they are replaced by RAUW.
findDbgValues(DbgValues, Inst);
// Now, we can replace the uses.
Inst->replaceAllUsesWith(New);
}
/// Reassign the original uses of Inst to Inst.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
for (use_iterator UseIt = OriginalUses.begin(),
EndIt = OriginalUses.end();
UseIt != EndIt; ++UseIt) {
UseIt->Inst->setOperand(UseIt->Idx, Inst);
}
// RAUW has replaced all original uses with references to the new value,
// including the debug uses. Since we are undoing the replacements,
// the original debug uses must also be reinstated to maintain the
// correctness and utility of debug value instructions.
for (auto *DVI: DbgValues) {
LLVMContext &Ctx = Inst->getType()->getContext();
auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
DVI->setOperand(0, MV);
}
}
};
/// Remove an instruction from the IR.
class InstructionRemover : public TypePromotionAction {
/// Original position of the instruction.
InsertionHandler Inserter;
/// Helper structure to hide all the link to the instruction. In other
/// words, this helps to do as if the instruction was removed.
OperandsHider Hider;
/// Keep track of the uses replaced, if any.
UsesReplacer *Replacer = nullptr;
/// Keep track of instructions removed.
SetOfInstrs &RemovedInsts;
public:
/// Remove all reference of \p Inst and optionally replace all its
/// uses with New.
/// \p RemovedInsts Keep track of the instructions removed by this Action.
/// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
Value *New = nullptr)
: TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
RemovedInsts(RemovedInsts) {
if (New)
Replacer = new UsesReplacer(Inst, New);
LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
RemovedInsts.insert(Inst);
/// The instructions removed here will be freed after completing
/// optimizeBlock() for all blocks as we need to keep track of the
/// removed instructions during promotion.
Inst->removeFromParent();
}
~InstructionRemover() override { delete Replacer; }
/// Resurrect the instruction and reassign it to the proper uses if
/// new value was provided when build this action.
void undo() override {
LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
Inserter.insert(Inst);
if (Replacer)
Replacer->undo();
Hider.undo();
RemovedInsts.erase(Inst);
}
};
public:
/// Restoration point.
/// The restoration point is a pointer to an action instead of an iterator
/// because the iterator may be invalidated but not the pointer.
using ConstRestorationPt = const TypePromotionAction *;
TypePromotionTransaction(SetOfInstrs &RemovedInsts)
: RemovedInsts(RemovedInsts) {}
/// Advocate every changes made in that transaction.
void commit();
/// Undo all the changes made after the given point.
void rollback(ConstRestorationPt Point);
/// Get the current restoration point.
ConstRestorationPt getRestorationPoint() const;
/// \name API for IR modification with state keeping to support rollback.
/// @{
/// Same as Instruction::setOperand.
void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
/// Same as Instruction::eraseFromParent.
void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
/// Same as Value::replaceAllUsesWith.
void replaceAllUsesWith(Instruction *Inst, Value *New);
/// Same as Value::mutateType.
void mutateType(Instruction *Inst, Type *NewTy);
/// Same as IRBuilder::createTrunc.
Value *createTrunc(Instruction *Opnd, Type *Ty);
/// Same as IRBuilder::createSExt.
Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
/// Same as IRBuilder::createZExt.
Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
/// Same as Instruction::moveBefore.
void moveBefore(Instruction *Inst, Instruction *Before);
/// @}
private:
/// The ordered list of actions made so far.
SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
SetOfInstrs &RemovedInsts;
};
} // end anonymous namespace
void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
Value *NewVal) {
Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
Inst, Idx, NewVal));
}
void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
Value *NewVal) {
Actions.push_back(
std::make_unique<TypePromotionTransaction::InstructionRemover>(
Inst, RemovedInsts, NewVal));
}
void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
Value *New) {
Actions.push_back(
std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
}
void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
Actions.push_back(
std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
}
Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
Type *Ty) {
std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
Value *TypePromotionTransaction::createSExt(Instruction *Inst,
Value *Opnd, Type *Ty) {
std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
Value *TypePromotionTransaction::createZExt(Instruction *Inst,
Value *Opnd, Type *Ty) {
std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
void TypePromotionTransaction::moveBefore(Instruction *Inst,
Instruction *Before) {
Actions.push_back(
std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
Inst, Before));
}
TypePromotionTransaction::ConstRestorationPt
TypePromotionTransaction::getRestorationPoint() const {
return !Actions.empty() ? Actions.back().get() : nullptr;
}
void TypePromotionTransaction::commit() {
for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
++It)
(*It)->commit();
Actions.clear();
}
void TypePromotionTransaction::rollback(
TypePromotionTransaction::ConstRestorationPt Point) {
while (!Actions.empty() && Point != Actions.back().get()) {
std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
Curr->undo();
}
}
namespace {
/// A helper class for matching addressing modes.
///
/// This encapsulates the logic for matching the target-legal addressing modes.
class AddressingModeMatcher {
SmallVectorImpl<Instruction*> &AddrModeInsts;
const TargetLowering &TLI;
const TargetRegisterInfo &TRI;
const DataLayout &DL;
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
/// the memory instruction that we're computing this address for.
Type *AccessTy;
unsigned AddrSpace;
Instruction *MemoryInst;
/// This is the addressing mode that we're building up. This is
/// part of the return value of this addressing mode matching stuff.
ExtAddrMode &AddrMode;
/// The instructions inserted by other CodeGenPrepare optimizations.
const SetOfInstrs &InsertedInsts;
/// A map from the instructions to their type before promotion.
InstrToOrigTy &PromotedInsts;
/// The ongoing transaction where every action should be registered.
TypePromotionTransaction &TPT;
// A GEP which has too large offset to be folded into the addressing mode.
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
/// This is set to true when we should not do profitability checks.
/// When true, IsProfitableToFoldIntoAddressingMode always returns true.
bool IgnoreProfitability;
AddressingModeMatcher(
SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
: AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
IgnoreProfitability = false;
}
public:
/// Find the maximal addressing mode that a load/store of V can fold,
/// give an access type of AccessTy. This returns a list of involved
/// instructions in AddrModeInsts.
/// \p InsertedInsts The instructions inserted by other CodeGenPrepare
/// optimizations.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p The ongoing transaction where every action should be registered.
static ExtAddrMode
Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
SmallVectorImpl<Instruction *> &AddrModeInsts,
const TargetLowering &TLI, const TargetRegisterInfo &TRI,
const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
TypePromotionTransaction &TPT,
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
ExtAddrMode Result;
bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
MemoryInst, Result, InsertedInsts,
PromotedInsts, TPT, LargeOffsetGEP)
.matchAddr(V, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
return Result;
}
private:
bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
bool matchAddr(Value *Addr, unsigned Depth);
bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
bool *MovedAway = nullptr);
bool isProfitableToFoldIntoAddressingMode(Instruction *I,
ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter);
bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
Value *PromotedOperand) const;
};
class PhiNodeSet;
/// An iterator for PhiNodeSet.
class PhiNodeSetIterator {
PhiNodeSet * const Set;
size_t CurrentIndex = 0;
public:
/// The constructor. Start should point to either a valid element, or be equal
/// to the size of the underlying SmallVector of the PhiNodeSet.
PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
PHINode * operator*() const;
PhiNodeSetIterator& operator++();
bool operator==(const PhiNodeSetIterator &RHS) const;
bool operator!=(const PhiNodeSetIterator &RHS) const;
};
/// Keeps a set of PHINodes.
///
/// This is a minimal set implementation for a specific use case:
/// It is very fast when there are very few elements, but also provides good
/// performance when there are many. It is similar to SmallPtrSet, but also
/// provides iteration by insertion order, which is deterministic and stable
/// across runs. It is also similar to SmallSetVector, but provides removing
/// elements in O(1) time. This is achieved by not actually removing the element
/// from the underlying vector, so comes at the cost of using more memory, but
/// that is fine, since PhiNodeSets are used as short lived objects.
class PhiNodeSet {
friend class PhiNodeSetIterator;
using MapType = SmallDenseMap<PHINode *, size_t, 32>;
using iterator = PhiNodeSetIterator;
/// Keeps the elements in the order of their insertion in the underlying
/// vector. To achieve constant time removal, it never deletes any element.
SmallVector<PHINode *, 32> NodeList;
/// Keeps the elements in the underlying set implementation. This (and not the
/// NodeList defined above) is the source of truth on whether an element
/// is actually in the collection.
MapType NodeMap;
/// Points to the first valid (not deleted) element when the set is not empty
/// and the value is not zero. Equals to the size of the underlying vector
/// when the set is empty. When the value is 0, as in the beginning, the
/// first element may or may not be valid.
size_t FirstValidElement = 0;
public:
/// Inserts a new element to the collection.
/// \returns true if the element is actually added, i.e. was not in the
/// collection before the operation.
bool insert(PHINode *Ptr) {
if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
NodeList.push_back(Ptr);
return true;
}
return false;
}
/// Removes the element from the collection.
/// \returns whether the element is actually removed, i.e. was in the
/// collection before the operation.
bool erase(PHINode *Ptr) {
auto it = NodeMap.find(Ptr);
if (it != NodeMap.end()) {
NodeMap.erase(Ptr);
SkipRemovedElements(FirstValidElement);
return true;
}
return false;
}
/// Removes all elements and clears the collection.
void clear() {
NodeMap.clear();
NodeList.clear();
FirstValidElement = 0;
}
/// \returns an iterator that will iterate the elements in the order of
/// insertion.
iterator begin() {
if (FirstValidElement == 0)
SkipRemovedElements(FirstValidElement);
return PhiNodeSetIterator(this, FirstValidElement);
}
/// \returns an iterator that points to the end of the collection.
iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
/// Returns the number of elements in the collection.
size_t size() const {
return NodeMap.size();
}
/// \returns 1 if the given element is in the collection, and 0 if otherwise.
size_t count(PHINode *Ptr) const {
return NodeMap.count(Ptr);
}
private:
/// Updates the CurrentIndex so that it will point to a valid element.
///
/// If the element of NodeList at CurrentIndex is valid, it does not
/// change it. If there are no more valid elements, it updates CurrentIndex
/// to point to the end of the NodeList.
void SkipRemovedElements(size_t &CurrentIndex) {
while (CurrentIndex < NodeList.size()) {
auto it = NodeMap.find(NodeList[CurrentIndex]);
// If the element has been deleted and added again later, NodeMap will
// point to a different index, so CurrentIndex will still be invalid.
if (it != NodeMap.end() && it->second == CurrentIndex)
break;
++CurrentIndex;
}
}
};
PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
: Set(Set), CurrentIndex(Start) {}
PHINode * PhiNodeSetIterator::operator*() const {
assert(CurrentIndex < Set->NodeList.size() &&
"PhiNodeSet access out of range");
return Set->NodeList[CurrentIndex];
}
PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
assert(CurrentIndex < Set->NodeList.size() &&
"PhiNodeSet access out of range");
++CurrentIndex;
Set->SkipRemovedElements(CurrentIndex);
return *this;
}
bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
return CurrentIndex == RHS.CurrentIndex;
}
bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
return !((*this) == RHS);
}
/// Keep track of simplification of Phi nodes.
/// Accept the set of all phi nodes and erase phi node from this set
/// if it is simplified.
class SimplificationTracker {
DenseMap<Value *, Value *> Storage;
const SimplifyQuery &SQ;
// Tracks newly created Phi nodes. The elements are iterated by insertion
// order.
PhiNodeSet AllPhiNodes;
// Tracks newly created Select nodes.
SmallPtrSet<SelectInst *, 32> AllSelectNodes;
public:
SimplificationTracker(const SimplifyQuery &sq)
: SQ(sq) {}
Value *Get(Value *V) {
do {
auto SV = Storage.find(V);
if (SV == Storage.end())
return V;
V = SV->second;
} while (true);
}
Value *Simplify(Value *Val) {
SmallVector<Value *, 32> WorkList;
SmallPtrSet<Value *, 32> Visited;
WorkList.push_back(Val);
while (!WorkList.empty()) {
auto P = WorkList.pop_back_val();
if (!Visited.insert(P).second)
continue;
if (auto *PI = dyn_cast<Instruction>(P))
if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
for (auto *U : PI->users())
WorkList.push_back(cast<Value>(U));
Put(PI, V);
PI->replaceAllUsesWith(V);
if (auto *PHI = dyn_cast<PHINode>(PI))
AllPhiNodes.erase(PHI);
if (auto *Select = dyn_cast<SelectInst>(PI))
AllSelectNodes.erase(Select);
PI->eraseFromParent();
}
}
return Get(Val);
}
void Put(Value *From, Value *To) {
Storage.insert({ From, To });
}
void ReplacePhi(PHINode *From, PHINode *To) {
Value* OldReplacement = Get(From);
while (OldReplacement != From) {
From = To;
To = dyn_cast<PHINode>(OldReplacement);
OldReplacement = Get(From);
}
assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
Put(From, To);
From->replaceAllUsesWith(To);
AllPhiNodes.erase(From);
From->eraseFromParent();
}
PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
void destroyNewNodes(Type *CommonType) {
// For safe erasing, replace the uses with dummy value first.
auto Dummy = UndefValue::get(CommonType);
for (auto I : AllPhiNodes) {
I->replaceAllUsesWith(Dummy);
I->eraseFromParent();
}
AllPhiNodes.clear();
for (auto I : AllSelectNodes) {
I->replaceAllUsesWith(Dummy);
I->eraseFromParent();
}
AllSelectNodes.clear();
}
};
/// A helper class for combining addressing modes.
class AddressingModeCombiner {
typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
typedef std::pair<PHINode *, PHINode *> PHIPair;
private:
/// The addressing modes we've collected.
SmallVector<ExtAddrMode, 16> AddrModes;
/// The field in which the AddrModes differ, when we have more than one.
ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
/// Are the AddrModes that we have all just equal to their original values?
bool AllAddrModesTrivial = true;
/// Common Type for all different fields in addressing modes.
Type *CommonType;
/// SimplifyQuery for simplifyInstruction utility.
const SimplifyQuery &SQ;
/// Original Address.
Value *Original;
public:
AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
: CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
/// Get the combined AddrMode
const ExtAddrMode &getAddrMode() const {
return AddrModes[0];
}
/// Add a new AddrMode if it's compatible with the AddrModes we already
/// have.
/// \return True iff we succeeded in doing so.
bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
// Take note of if we have any non-trivial AddrModes, as we need to detect
// when all AddrModes are trivial as then we would introduce a phi or select
// which just duplicates what's already there.
AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
// If this is the first addrmode then everything is fine.
if (AddrModes.empty()) {
AddrModes.emplace_back(NewAddrMode);
return true;
}
// Figure out how different this is from the other address modes, which we
// can do just by comparing against the first one given that we only care
// about the cumulative difference.
ExtAddrMode::FieldName ThisDifferentField =
AddrModes[0].compare(NewAddrMode);
if (DifferentField == ExtAddrMode::NoField)
DifferentField = ThisDifferentField;
else if (DifferentField != ThisDifferentField)
DifferentField = ExtAddrMode::MultipleFields;
// If NewAddrMode differs in more than one dimension we cannot handle it.
bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
// If Scale Field is different then we reject.
CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
// We also must reject the case when base offset is different and
// scale reg is not null, we cannot handle this case due to merge of
// different offsets will be used as ScaleReg.
CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
!NewAddrMode.ScaledReg);
// We also must reject the case when GV is different and BaseReg installed
// due to we want to use base reg as a merge of GV values.
CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
!NewAddrMode.HasBaseReg);
// Even if NewAddMode is the same we still need to collect it due to
// original value is different. And later we will need all original values
// as anchors during finding the common Phi node.
if (CanHandle)
AddrModes.emplace_back(NewAddrMode);
else
AddrModes.clear();
return CanHandle;
}
/// Combine the addressing modes we've collected into a single
/// addressing mode.
/// \return True iff we successfully combined them or we only had one so
/// didn't need to combine them anyway.
bool combineAddrModes() {
// If we have no AddrModes then they can't be combined.
if (AddrModes.size() == 0)
return false;
// A single AddrMode can trivially be combined.
if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
return true;
// If the AddrModes we collected are all just equal to the value they are
// derived from then combining them wouldn't do anything useful.
if (AllAddrModesTrivial)
return false;
if (!addrModeCombiningAllowed())
return false;
// Build a map between <original value, basic block where we saw it> to
// value of base register.
// Bail out if there is no common type.
FoldAddrToValueMapping Map;
if (!initializeMap(Map))
return false;
Value *CommonValue = findCommon(Map);
if (CommonValue)
AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
return CommonValue != nullptr;
}
private:
/// Initialize Map with anchor values. For address seen
/// we set the value of different field saw in this address.
/// At the same time we find a common type for different field we will
/// use to create new Phi/Select nodes. Keep it in CommonType field.
/// Return false if there is no common type found.
bool initializeMap(FoldAddrToValueMapping &Map) {
// Keep track of keys where the value is null. We will need to replace it
// with constant null when we know the common type.
SmallVector<Value *, 2> NullValue;
Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
for (auto &AM : AddrModes) {
Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
if (DV) {
auto *Type = DV->getType();
if (CommonType && CommonType != Type)
return false;
CommonType = Type;
Map[AM.OriginalValue] = DV;
} else {
NullValue.push_back(AM.OriginalValue);
}
}
assert(CommonType && "At least one non-null value must be!");
for (auto *V : NullValue)
Map[V] = Constant::getNullValue(CommonType);
return true;
}
/// We have mapping between value A and other value B where B was a field in
/// addressing mode represented by A. Also we have an original value C
/// representing an address we start with. Traversing from C through phi and
/// selects we ended up with A's in a map. This utility function tries to find
/// a value V which is a field in addressing mode C and traversing through phi
/// nodes and selects we will end up in corresponded values B in a map.
/// The utility will create a new Phi/Selects if needed.
// The simple example looks as follows:
// BB1:
// p1 = b1 + 40
// br cond BB2, BB3
// BB2:
// p2 = b2 + 40
// br BB3
// BB3:
// p = phi [p1, BB1], [p2, BB2]
// v = load p
// Map is
// p1 -> b1
// p2 -> b2
// Request is
// p -> ?
// The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
Value *findCommon(FoldAddrToValueMapping &Map) {
// Tracks the simplification of newly created phi nodes. The reason we use
// this mapping is because we will add new created Phi nodes in AddrToBase.
// Simplification of Phi nodes is recursive, so some Phi node may
// be simplified after we added it to AddrToBase. In reality this
// simplification is possible only if original phi/selects were not
// simplified yet.
// Using this mapping we can find the current value in AddrToBase.
SimplificationTracker ST(SQ);
// First step, DFS to create PHI nodes for all intermediate blocks.
// Also fill traverse order for the second step.
SmallVector<Value *, 32> TraverseOrder;
InsertPlaceholders(Map, TraverseOrder, ST);
// Second Step, fill new nodes by merged values and simplify if possible.
FillPlaceholders(Map, TraverseOrder, ST);
if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
ST.destroyNewNodes(CommonType);
return nullptr;
}
// Now we'd like to match New Phi nodes to existed ones.
unsigned PhiNotMatchedCount = 0;
if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
ST.destroyNewNodes(CommonType);
return nullptr;
}
auto *Result = ST.Get(Map.find(Original)->second);
if (Result) {
NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
}
return Result;
}
/// Try to match PHI node to Candidate.
/// Matcher tracks the matched Phi nodes.
bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
SmallSetVector<PHIPair, 8> &Matcher,
PhiNodeSet &PhiNodesToMatch) {
SmallVector<PHIPair, 8> WorkList;
Matcher.insert({ PHI, Candidate });
SmallSet<PHINode *, 8> MatchedPHIs;
MatchedPHIs.insert(PHI);
WorkList.push_back({ PHI, Candidate });
SmallSet<PHIPair, 8> Visited;
while (!WorkList.empty()) {
auto Item = WorkList.pop_back_val();
if (!Visited.insert(Item).second)
continue;
// We iterate over all incoming values to Phi to compare them.
// If values are different and both of them Phi and the first one is a
// Phi we added (subject to match) and both of them is in the same basic
// block then we can match our pair if values match. So we state that
// these values match and add it to work list to verify that.
for (auto B : Item.first->blocks()) {
Value *FirstValue = Item.first->getIncomingValueForBlock(B);
Value *SecondValue = Item.second->getIncomingValueForBlock(B);
if (FirstValue == SecondValue)
continue;
PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
// One of them is not Phi or
// The first one is not Phi node from the set we'd like to match or
// Phi nodes from different basic blocks then
// we will not be able to match.
if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
FirstPhi->getParent() != SecondPhi->getParent())
return false;
// If we already matched them then continue.
if (Matcher.count({ FirstPhi, SecondPhi }))
continue;
// So the values are different and does not match. So we need them to
// match. (But we register no more than one match per PHI node, so that
// we won't later try to replace them twice.)
if (MatchedPHIs.insert(FirstPhi).second)
Matcher.insert({ FirstPhi, SecondPhi });
// But me must check it.
WorkList.push_back({ FirstPhi, SecondPhi });
}
}
return true;
}
/// For the given set of PHI nodes (in the SimplificationTracker) try
/// to find their equivalents.
/// Returns false if this matching fails and creation of new Phi is disabled.
bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
unsigned &PhiNotMatchedCount) {
// Matched and PhiNodesToMatch iterate their elements in a deterministic
// order, so the replacements (ReplacePhi) are also done in a deterministic
// order.
SmallSetVector<PHIPair, 8> Matched;
SmallPtrSet<PHINode *, 8> WillNotMatch;
PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
while (PhiNodesToMatch.size()) {
PHINode *PHI = *PhiNodesToMatch.begin();
// Add us, if no Phi nodes in the basic block we do not match.
WillNotMatch.clear();
WillNotMatch.insert(PHI);
// Traverse all Phis until we found equivalent or fail to do that.
bool IsMatched = false;
for (auto &P : PHI->getParent()->phis()) {
if (&P == PHI)
continue;
if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
break;
// If it does not match, collect all Phi nodes from matcher.
// if we end up with no match, them all these Phi nodes will not match
// later.
for (auto M : Matched)
WillNotMatch.insert(M.first);
Matched.clear();
}
if (IsMatched) {
// Replace all matched values and erase them.
for (auto MV : Matched)
ST.ReplacePhi(MV.first, MV.second);
Matched.clear();
continue;
}
// If we are not allowed to create new nodes then bail out.
if (!AllowNewPhiNodes)
return false;
// Just remove all seen values in matcher. They will not match anything.
PhiNotMatchedCount += WillNotMatch.size();
for (auto *P : WillNotMatch)
PhiNodesToMatch.erase(P);
}
return true;
}
/// Fill the placeholders with values from predecessors and simplify them.
void FillPlaceholders(FoldAddrToValueMapping &Map,
SmallVectorImpl<Value *> &TraverseOrder,
SimplificationTracker &ST) {
while (!TraverseOrder.empty()) {
Value *Current = TraverseOrder.pop_back_val();
assert(Map.find(Current) != Map.end() && "No node to fill!!!");
Value *V = Map[Current];
if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
// CurrentValue also must be Select.
auto *CurrentSelect = cast<SelectInst>(Current);
auto *TrueValue = CurrentSelect->getTrueValue();
assert(Map.find(TrueValue) != Map.end() && "No True Value!");
Select->setTrueValue(ST.Get(Map[TrueValue]));
auto *FalseValue = CurrentSelect->getFalseValue();
assert(Map.find(FalseValue) != Map.end() && "No False Value!");
Select->setFalseValue(ST.Get(Map[FalseValue]));
} else {
// Must be a Phi node then.
auto *PHI = cast<PHINode>(V);
// Fill the Phi node with values from predecessors.
for (auto B : predecessors(PHI->getParent())) {
Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
assert(Map.find(PV) != Map.end() && "No predecessor Value!");
PHI->addIncoming(ST.Get(Map[PV]), B);
}
}
Map[Current] = ST.Simplify(V);
}
}
/// Starting from original value recursively iterates over def-use chain up to
/// known ending values represented in a map. For each traversed phi/select
/// inserts a placeholder Phi or Select.
/// Reports all new created Phi/Select nodes by adding them to set.
/// Also reports and order in what values have been traversed.
void InsertPlaceholders(FoldAddrToValueMapping &Map,
SmallVectorImpl<Value *> &TraverseOrder,
SimplificationTracker &ST) {
SmallVector<Value *, 32> Worklist;
assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
"Address must be a Phi or Select node");
auto *Dummy = UndefValue::get(CommonType);
Worklist.push_back(Original);
while (!Worklist.empty()) {
Value *Current = Worklist.pop_back_val();
// if it is already visited or it is an ending value then skip it.
if (Map.find(Current) != Map.end())
continue;
TraverseOrder.push_back(Current);
// CurrentValue must be a Phi node or select. All others must be covered
// by anchors.
if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
// Is it OK to get metadata from OrigSelect?!
// Create a Select placeholder with dummy value.
SelectInst *Select = SelectInst::Create(
CurrentSelect->getCondition(), Dummy, Dummy,
CurrentSelect->getName(), CurrentSelect, CurrentSelect);
Map[Current] = Select;
ST.insertNewSelect(Select);
// We are interested in True and False values.
Worklist.push_back(CurrentSelect->getTrueValue());
Worklist.push_back(CurrentSelect->getFalseValue());
} else {
// It must be a Phi node then.
PHINode *CurrentPhi = cast<PHINode>(Current);
unsigned PredCount = CurrentPhi->getNumIncomingValues();
PHINode *PHI =
PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
Map[Current] = PHI;
ST.insertNewPhi(PHI);
for (Value *P : CurrentPhi->incoming_values())
Worklist.push_back(P);
}
}
}
bool addrModeCombiningAllowed() {
if (DisableComplexAddrModes)
return false;
switch (DifferentField) {
default:
return false;
case ExtAddrMode::BaseRegField:
return AddrSinkCombineBaseReg;
case ExtAddrMode::BaseGVField:
return AddrSinkCombineBaseGV;
case ExtAddrMode::BaseOffsField:
return AddrSinkCombineBaseOffs;
case ExtAddrMode::ScaledRegField:
return AddrSinkCombineScaledReg;
}
}
};
} // end anonymous namespace
/// Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
unsigned Depth) {
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
// mode. Just process that directly.
if (Scale == 1)
return matchAddr(ScaleReg, Depth);
// If the scale is 0, it takes nothing to add this.
if (Scale == 0)
return true;
// If we already have a scale of this value, we can add to it, otherwise, we
// need an available scale field.
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
return false;
ExtAddrMode TestAddrMode = AddrMode;
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
// [A+B + A*7] -> [B+A*8].
TestAddrMode.Scale += Scale;
TestAddrMode.ScaledReg = ScaleReg;
// If the new address isn't legal, bail out.
if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
return false;
// It was legal, so commit it.
AddrMode = TestAddrMode;
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
// X*Scale + C*Scale to addr mode.
ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
if (isa<Instruction>(ScaleReg) && // not a constant expr.
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
TestAddrMode.InBounds = false;
TestAddrMode.ScaledReg = AddLHS;
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
// If this addressing mode is legal, commit it and remember that we folded
// this instruction.
if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
AddrMode = TestAddrMode;
return true;
}
}
// Otherwise, not (x+c)*scale, just return what we have.
return true;
}
/// This is a little filter, which returns true if an addressing computation
/// involving I might be folded into a load/store accessing it.
/// This doesn't need to be perfect, but needs to accept at least
/// the set of instructions that MatchOperationAddr can.
static bool MightBeFoldableInst(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
// Don't touch identity bitcasts.
if (I->getType() == I->getOperand(0)->getType())
return false;
return I->getType()->isIntOrPtrTy();
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return true;
case Instruction::IntToPtr:
// We know the input is intptr_t, so this is foldable.
return true;
case Instruction::Add:
return true;
case Instruction::Mul:
case Instruction::Shl:
// Can only handle X*C and X << C.
return isa<ConstantInt>(I->getOperand(1));
case Instruction::GetElementPtr:
return true;
default:
return false;
}
}
/// Check whether or not \p Val is a legal instruction for \p TLI.
/// \note \p Val is assumed to be the product of some type promotion.
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
/// to be legal, as the non-promoted value would have had the same state.
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
const DataLayout &DL, Value *Val) {
Instruction *PromotedInst = dyn_cast<Instruction>(Val);
if (!PromotedInst)
return false;
int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
// If the ISDOpcode is undefined, it was undefined before the promotion.
if (!ISDOpcode)
return true;
// Otherwise, check if the promoted instruction is legal or not.
return TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
}
namespace {
/// Hepler class to perform type promotion.
class TypePromotionHelper {
/// Utility function to add a promoted instruction \p ExtOpnd to
/// \p PromotedInsts and record the type of extension we have seen.
static void addPromotedInst(InstrToOrigTy &PromotedInsts,
Instruction *ExtOpnd,
bool IsSExt) {
ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
if (It != PromotedInsts.end()) {
// If the new extension is same as original, the information in
// PromotedInsts[ExtOpnd] is still correct.
if (It->second.getInt() == ExtTy)
return;
// Now the new extension is different from old extension, we make
// the type information invalid by setting extension type to
// BothExtension.
ExtTy = BothExtension;
}
PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
}
/// Utility function to query the original type of instruction \p Opnd
/// with a matched extension type. If the extension doesn't match, we
/// cannot use the information we had on the original type.
/// BothExtension doesn't match any extension type.
static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
Instruction *Opnd,
bool IsSExt) {
ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
return It->second.getPointer();
return nullptr;
}
/// Utility function to check whether or not a sign or zero extension
/// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
/// either using the operands of \p Inst or promoting \p Inst.
/// The type of the extension is defined by \p IsSExt.
/// In other words, check if:
/// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
/// #1 Promotion applies:
/// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
/// #2 Operand reuses:
/// ext opnd1 to ConsideredExtType.
/// \p PromotedInsts maps the instructions to their type before promotion.
static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
const InstrToOrigTy &PromotedInsts, bool IsSExt);
/// Utility function to determine if \p OpIdx should be promoted when
/// promoting \p Inst.
static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
return !(isa<SelectInst>(Inst) && OpIdx == 0);
}
/// Utility function to promote the operand of \p Ext when this
/// operand is a promotable trunc or sext or zext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInstsCost[out] contains the cost of all instructions
/// created to promote the operand of Ext.
/// Newly added extensions are inserted in \p Exts.
/// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
/// \return The promoted value which is used instead of Ext.
static Value *promoteOperandForTruncAndAnyExt(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
/// Utility function to promote the operand of \p Ext when this
/// operand is promotable and is not a supported trunc or sext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInstsCost[out] contains the cost of all the instructions
/// created to promote the operand of Ext.
/// Newly added extensions are inserted in \p Exts.
/// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
/// \return The promoted value which is used instead of Ext.
static Value *promoteOperandForOther(Instruction *Ext,
TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts,
unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs,
const TargetLowering &TLI, bool IsSExt);
/// \see promoteOperandForOther.
static Value *signExtendOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
Exts, Truncs, TLI, true);
}
/// \see promoteOperandForOther.
static Value *zeroExtendOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
Exts, Truncs, TLI, false);
}
public:
/// Type for the utility function that promotes the operand of Ext.
using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts,
unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs,
const TargetLowering &TLI);
/// Given a sign/zero extend instruction \p Ext, return the appropriate
/// action to promote the operand of \p Ext instead of using Ext.
/// \return NULL if no promotable action is possible with the current
/// sign extension.
/// \p InsertedInsts keeps track of all the instructions inserted by the
/// other CodeGenPrepare optimizations. This information is important
/// because we do not want to promote these instructions as CodeGenPrepare
/// will reinsert them later. Thus creating an infinite loop: create/remove.
/// \p PromotedInsts maps the instructions to their type before promotion.
static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
const TargetLowering &TLI,
const InstrToOrigTy &PromotedInsts);
};
} // end anonymous namespace
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
Type *ConsideredExtType,
const InstrToOrigTy &PromotedInsts,
bool IsSExt) {
// The promotion helper does not know how to deal with vector types yet.
// To be able to fix that, we would need to fix the places where we
// statically extend, e.g., constants and such.
if (Inst->getType()->isVectorTy())
return false;
// We can always get through zext.
if (isa<ZExtInst>(Inst))
return true;
// sext(sext) is ok too.
if (IsSExt && isa<SExtInst>(Inst))
return true;
// We can get through binary operator, if it is legal. In other words, the
// binary operator must have a nuw or nsw flag.
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
(IsSExt && BinOp->hasNoSignedWrap())))
return true;
// ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
if ((Inst->getOpcode() == Instruction::And ||
Inst->getOpcode() == Instruction::Or))
return true;
// ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
if (Inst->getOpcode() == Instruction::Xor) {
const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
// Make sure it is not a NOT.
if (Cst && !Cst->getValue().isAllOnesValue())
return true;
}
// zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
// It may change a poisoned value into a regular value, like
// zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
// poisoned value regular value
// It should be OK since undef covers valid value.
if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
return true;
// and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
// It may change a poisoned value into a regular value, like
// zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
// poisoned value regular value
// It should be OK since undef covers valid value.
if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
if (ExtInst->hasOneUse()) {
const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
if (AndInst && AndInst->getOpcode() == Instruction::And) {
const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
if (Cst &&
Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
return true;
}
}
}
// Check if we can do the following simplification.
// ext(trunc(opnd)) --> ext(opnd)
if (!isa<TruncInst>(Inst))
return false;
Value *OpndVal = Inst->getOperand(0);
// Check if we can use this operand in the extension.
// If the type is larger than the result type of the extension, we cannot.
if (!OpndVal->getType()->isIntegerTy() ||
OpndVal->getType()->getIntegerBitWidth() >
ConsideredExtType->getIntegerBitWidth())
return false;
// If the operand of the truncate is not an instruction, we will not have
// any information on the dropped bits.
// (Actually we could for constant but it is not worth the extra logic).
Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
if (!Opnd)
return false;
// Check if the source of the type is narrow enough.
// I.e., check that trunc just drops extended bits of the same kind of
// the extension.
// #1 get the type of the operand and check the kind of the extended bits.
const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
if (OpndType)
;
else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
OpndType = Opnd->getOperand(0)->getType();
else
return false;
// #2 check that the truncate just drops extended bits.
return Inst->getType()->getIntegerBitWidth() >=
OpndType->getIntegerBitWidth();
}
TypePromotionHelper::Action TypePromotionHelper::getAction(
Instruction *Ext, const SetOfInstrs &InsertedInsts,
const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
"Unexpected instruction type");
Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
Type *ExtTy = Ext->getType();
bool IsSExt = isa<SExtInst>(Ext);
// If the operand of the extension is not an instruction, we cannot
// get through.
// If it, check we can get through.
if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
return nullptr;
// Do not promote if the operand has been added by codegenprepare.
// Otherwise, it means we are undoing an optimization that is likely to be
// redone, thus causing potential infinite loop.
if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
return nullptr;
// SExt or Trunc instructions.
// Return the related handler.
if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
isa<ZExtInst>(ExtOpnd))
return promoteOperandForTruncAndAnyExt;
// Regular instruction.
// Abort early if we will have to insert non-free instructions.
if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
return nullptr;
return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
}
Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
Instruction *SExt, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
// By construction, the operand of SExt is an instruction. Otherwise we cannot
// get through it and this method should not be called.
Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
Value *ExtVal = SExt;
bool HasMergedNonFreeExt = false;
if (isa<ZExtInst>(SExtOpnd)) {
// Replace s|zext(zext(opnd))
// => zext(opnd).
HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
Value *ZExt =
TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
TPT.replaceAllUsesWith(SExt, ZExt);
TPT.eraseInstruction(SExt);
ExtVal = ZExt;
} else {
// Replace z|sext(trunc(opnd)) or sext(sext(opnd))
// => z|sext(opnd).
TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
}
CreatedInstsCost = 0;
// Remove dead code.
if (SExtOpnd->use_empty())
TPT.eraseInstruction(SExtOpnd);
// Check if the extension is still needed.
Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
if (ExtInst) {
if (Exts)
Exts->push_back(ExtInst);
CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
}
return ExtVal;
}
// At this point we have: ext ty opnd to ty.
// Reassign the uses of ExtInst to the opnd and remove ExtInst.
Value *NextVal = ExtInst->getOperand(0);
TPT.eraseInstruction(ExtInst, NextVal);
return NextVal;
}
Value *TypePromotionHelper::promoteOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
bool IsSExt) {
// By construction, the operand of Ext is an instruction. Otherwise we cannot
// get through it and this method should not be called.
Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
CreatedInstsCost = 0;
if (!ExtOpnd->hasOneUse()) {
// ExtOpnd will be promoted.
// All its uses, but Ext, will need to use a truncated value of the
// promoted version.
// Create the truncate now.
Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
// Insert it just after the definition.
ITrunc->moveAfter(ExtOpnd);
if (Truncs)
Truncs->push_back(ITrunc);
}
TPT.replaceAllUsesWith(ExtOpnd, Trunc);
// Restore the operand of Ext (which has been replaced by the previous call
// to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
TPT.setOperand(Ext, 0, ExtOpnd);
}
// Get through the Instruction:
// 1. Update its type.
// 2. Replace the uses of Ext by Inst.
// 3. Extend each operand that needs to be extended.
// Remember the original type of the instruction before promotion.
// This is useful to know that the high bits are sign extended bits.
addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
// Step #1.
TPT.mutateType(ExtOpnd, Ext->getType());
// Step #2.
TPT.replaceAllUsesWith(Ext, ExtOpnd);
// Step #3.
Instruction *ExtForOpnd = Ext;
LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
++OpIdx) {
LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
!shouldExtOperand(ExtOpnd, OpIdx)) {
LLVM_DEBUG(dbgs() << "No need to propagate\n");
continue;
}
// Check if we can statically extend the operand.
Value *Opnd = ExtOpnd->getOperand(OpIdx);
if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
LLVM_DEBUG(dbgs() << "Statically extend\n");
unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
: Cst->getValue().zext(BitWidth);
TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
continue;
}
// UndefValue are typed, so we have to statically sign extend them.
if (isa<UndefValue>(Opnd)) {
LLVM_DEBUG(dbgs() << "Statically extend\n");
TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
continue;
}
// Otherwise we have to explicitly sign extend the operand.
// Check if Ext was reused to extend an operand.
if (!ExtForOpnd) {
// If yes, create a new one.
LLVM_DEBUG(dbgs() << "More operands to ext\n");
Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
: TPT.createZExt(Ext, Opnd, Ext->getType());
if (!isa<Instruction>(ValForExtOpnd)) {
TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
continue;
}
ExtForOpnd = cast<Instruction>(ValForExtOpnd);
}
if (Exts)
Exts->push_back(ExtForOpnd);
TPT.setOperand(ExtForOpnd, 0, Opnd);
// Move the sign extension before the insertion point.
TPT.moveBefore(ExtForOpnd, ExtOpnd);
TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
// If more sext are required, new instructions will have to be created.
ExtForOpnd = nullptr;
}
if (ExtForOpnd == Ext) {
LLVM_DEBUG(dbgs() << "Extension is useless now\n");
TPT.eraseInstruction(Ext);
}
return ExtOpnd;
}
/// Check whether or not promoting an instruction to a wider type is profitable.
/// \p NewCost gives the cost of extension instructions created by the
/// promotion.
/// \p OldCost gives the cost of extension instructions before the promotion
/// plus the number of instructions that have been
/// matched in the addressing mode the promotion.
/// \p PromotedOperand is the value that has been promoted.
/// \return True if the promotion is profitable, false otherwise.
bool AddressingModeMatcher::isPromotionProfitable(
unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
<< '\n');
// The cost of the new extensions is greater than the cost of the
// old extension plus what we folded.
// This is not profitable.
if (NewCost > OldCost)
return false;
if (NewCost < OldCost)
return true;
// The promotion is neutral but it may help folding the sign extension in
// loads for instance.
// Check that we did not create an illegal instruction.
return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
}
/// Given an instruction or constant expr, see if we can fold the operation
/// into the addressing mode. If so, update the addressing mode and return
/// true, otherwise return false without modifying AddrMode.
/// If \p MovedAway is not NULL, it contains the information of whether or
/// not AddrInst has to be folded into the addressing mode on success.
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
/// because it has been moved away.
/// Thus AddrInst must not be added in the matched instructions.
/// This state can happen when AddrInst is a sext, since it may be moved away.
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
/// not be referenced anymore.
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
unsigned Depth,
bool *MovedAway) {
// Avoid exponential behavior on extremely deep expression trees.
if (Depth >= 5) return false;
// By default, all matched instructions stay in place.
if (MovedAway)
*MovedAway = false;
switch (Opcode) {
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return matchAddr(AddrInst->getOperand(0), Depth);
case Instruction::IntToPtr: {
auto AS = AddrInst->getType()->getPointerAddressSpace();
auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
// This inttoptr is a no-op if the integer type is pointer sized.
if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::BitCast:
// BitCast is always a noop, and we can handle it as long as it is
// int->int or pointer->pointer (we don't want int<->fp or something).
if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
// Don't touch identity bitcasts. These were probably put here by LSR,
// and we don't want to mess around with them. Assume it knows what it
// is doing.
AddrInst->getOperand(0)->getType() != AddrInst->getType())
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
case Instruction::AddrSpaceCast: {
unsigned SrcAS
= AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::Add: {
// Check to see if we can merge in the RHS then the LHS. If so, we win.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// Start a transaction at this point.
// The LHS may match but not the RHS.
// Therefore, we need a higher level restoration point to undo partially
// matched operation.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
AddrMode.InBounds = false;
if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
matchAddr(AddrInst->getOperand(0), Depth+1))
return true;
// Restore the old addr mode info.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
matchAddr(AddrInst->getOperand(1), Depth+1))
return true;
// Otherwise we definitely can't merge the ADD in.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
break;
}
//case Instruction::Or:
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
//break;
case Instruction::Mul:
case Instruction::Shl: {
// Can only handle X*C and X << C.
AddrMode.InBounds = false;
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
if (!RHS || RHS->getBitWidth() > 64)
return false;
int64_t Scale = RHS->getSExtValue();
if (Opcode == Instruction::Shl)
Scale = 1LL << Scale;
return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
}
case Instruction::GetElementPtr: {
// Scan the GEP. We check it if it contains constant offsets and at most
// one variable offset.
int VariableOperand = -1;
unsigned VariableScale = 0;
int64_t ConstantOffset = 0;
gep_type_iterator GTI = gep_type_begin(AddrInst);
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
if (StructType *STy = GTI.getStructTypeOrNull()) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx =
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
ConstantOffset += SL->getElementOffset(Idx);
} else {
uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
const APInt &CVal = CI->getValue();
if (CVal.getMinSignedBits() <= 64) {
ConstantOffset += CVal.getSExtValue() * TypeSize;
continue;
}
}
if (TypeSize) { // Scales of zero don't do anything.
// We only allow one variable index at the moment.
if (VariableOperand != -1)
return false;
// Remember the variable index.
VariableOperand = i;
VariableScale = TypeSize;
}
}
}
// A common case is for the GEP to only do a constant offset. In this case,
// just add it to the disp field and check validity.
if (VariableOperand == -1) {
AddrMode.BaseOffs += ConstantOffset;
if (ConstantOffset == 0 ||
TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
// Check to see if we can fold the base pointer in too.
if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
if (!cast<GEPOperator>(AddrInst)->isInBounds())
AddrMode.InBounds = false;
return true;
}
} else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
ConstantOffset > 0) {
// Record GEPs with non-zero offsets as candidates for splitting in the
// event that the offset cannot fit into the r+i addressing mode.
// Simple and common case that only one GEP is used in calculating the
// address for the memory access.
Value *Base = AddrInst->getOperand(0);
auto *BaseI = dyn_cast<Instruction>(Base);
auto *GEP = cast<GetElementPtrInst>(AddrInst);
if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
(BaseI && !isa<CastInst>(BaseI) &&
!isa<GetElementPtrInst>(BaseI))) {
// Make sure the parent block allows inserting non-PHI instructions
// before the terminator.
BasicBlock *Parent =
BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
if (!Parent->getTerminator()->isEHPad())
LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
}
}
AddrMode.BaseOffs -= ConstantOffset;
return false;
}
// Save the valid addressing mode in case we can't match.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// See if the scale and offset amount is valid for this target.
AddrMode.BaseOffs += ConstantOffset;
if (!cast<GEPOperator>(AddrInst)->isInBounds())
AddrMode.InBounds = false;
// Match the base operand of the GEP.
if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
// If it couldn't be matched, just stuff the value in a register.
if (AddrMode.HasBaseReg) {
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
}
// Match the remaining variable portion of the GEP.
if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
Depth)) {
// If it couldn't be matched, try stuffing the base into a register
// instead of matching it, and retrying the match of the scale.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
if (AddrMode.HasBaseReg)
return false;
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
AddrMode.BaseOffs += ConstantOffset;
if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
VariableScale, Depth)) {
// If even that didn't work, bail.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
}
return true;
}
case Instruction::SExt:
case Instruction::ZExt: {
Instruction *Ext = dyn_cast<Instruction>(AddrInst);
if (!Ext)
return false;
// Try to move this ext out of the way of the addressing mode.
// Ask for a method for doing so.
TypePromotionHelper::Action TPH =
TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
if (!TPH)
return false;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
unsigned CreatedInstsCost = 0;
unsigned ExtCost = !TLI.isExtFree(Ext);
Value *PromotedOperand =
TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
// SExt has been moved away.
// Thus either it will be rematched later in the recursive calls or it is
// gone. Anyway, we must not fold it into the addressing mode at this point.
// E.g.,
// op = add opnd, 1
// idx = ext op
// addr = gep base, idx
// is now:
// promotedOpnd = ext opnd <- no match here
// op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
// addr = gep base, op <- match
if (MovedAway)
*MovedAway = true;
assert(PromotedOperand &&
"TypePromotionHelper should have filtered out those cases");
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
if (!matchAddr(PromotedOperand, Depth) ||
// The total of the new cost is equal to the cost of the created
// instructions.
// The total of the old cost is equal to the cost of the extension plus
// what we have saved in the addressing mode.
!isPromotionProfitable(CreatedInstsCost,
ExtCost + (AddrModeInsts.size() - OldSize),
PromotedOperand)) {
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
TPT.rollback(LastKnownGood);
return false;
}
return true;
}
}
return false;
}
/// If we can, try to add the value of 'Addr' into the current addressing mode.
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
/// for the target.
///
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
// Start a transaction at this point that we will rollback if the matching
// fails.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
// Fold in immediates if legal for the target.
AddrMode.BaseOffs += CI->getSExtValue();
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.BaseOffs -= CI->getSExtValue();
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
// If this is a global variable, try to fold it into the addressing mode.
if (!AddrMode.BaseGV) {
AddrMode.BaseGV = GV;
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.BaseGV = nullptr;
}
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// Check to see if it is possible to fold this operation.
bool MovedAway = false;
if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
// This instruction may have been moved away. If so, there is nothing
// to check here.
if (MovedAway)
return true;
// Okay, it's possible to fold this. Check to see if it is actually
// *profitable* to do so. We use a simple cost model to avoid increasing
// register pressure too much.
if (I->hasOneUse() ||
isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
AddrModeInsts.push_back(I);
return true;
}
// It isn't profitable to do this, roll back.
//cerr << "NOT FOLDING: " << *I;
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
if (matchOperationAddr(CE, CE->getOpcode(), Depth))
return true;
TPT.rollback(LastKnownGood);
} else if (isa<ConstantPointerNull>(Addr)) {
// Null pointer gets folded without affecting the addressing mode.
return true;
}
// Worse case, the target should support [reg] addressing modes. :)
if (!AddrMode.HasBaseReg) {
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = Addr;
// Still check for legality in case the target supports [imm] but not [i+r].
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.HasBaseReg = false;
AddrMode.BaseReg = nullptr;
}
// If the base register is already taken, see if we can do [r+r].
if (AddrMode.Scale == 0) {
AddrMode.Scale = 1;
AddrMode.ScaledReg = Addr;
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.Scale = 0;
AddrMode.ScaledReg = nullptr;
}
// Couldn't match.
TPT.rollback(LastKnownGood);
return false;
}
/// Check to see if all uses of OpVal by the specified inline asm call are due
/// to memory operands. If so, return true, otherwise return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
const TargetLowering &TLI,
const TargetRegisterInfo &TRI) {
const Function *F = CI->getFunction();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
ImmutableCallSite(CI));
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, SDValue());
// If this asm operand is our Value*, and if it isn't an indirect memory
// operand, we can't fold it!
if (OpInfo.CallOperandVal == OpVal &&
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
!OpInfo.isIndirect))
return false;
}
return true;
}
// Max number of memory uses to look at before aborting the search to conserve
// compile time.
static constexpr int MaxMemoryUsesToScan = 20;
/// Recursively walk all the uses of I until we find a memory use.
/// If we find an obviously non-foldable instruction, return true.
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(
Instruction *I,
SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
const TargetRegisterInfo &TRI, int SeenInsts = 0) {
// If we already considered this instruction, we're done.
if (!ConsideredInsts.insert(I).second)
return false;
// If this is an obviously unfoldable instruction, bail out.
if (!MightBeFoldableInst(I))
return true;
const bool OptSize = I->getFunction()->hasOptSize();
// Loop over all the uses, recursively processing them.
for (Use &U : I->uses()) {
// Conservatively return true if we're seeing a large number or a deep chain
// of users. This avoids excessive compilation times in pathological cases.
if (SeenInsts++ >= MaxMemoryUsesToScan)
return true;
Instruction *UserI = cast<Instruction>(U.getUser());
if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
unsigned opNo = U.getOperandNo();
if (opNo != StoreInst::getPointerOperandIndex())
return true; // Storing addr, not into addr.
MemoryUses.push_back(std::make_pair(SI, opNo));
continue;
}
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
unsigned opNo = U.getOperandNo();
if (opNo != AtomicRMWInst::getPointerOperandIndex())
return true; // Storing addr, not into addr.
MemoryUses.push_back(std::make_pair(RMW, opNo));
continue;
}
if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
unsigned opNo = U.getOperandNo();
if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
return true; // Storing addr, not into addr.
MemoryUses.push_back(std::make_pair(CmpX, opNo));
continue;
}
if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
// If this is a cold call, we can sink the addressing calculation into
// the cold path. See optimizeCallInst
if (!OptSize && CI->hasFnAttr(Attribute::Cold))
continue;
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
if (!IA) return true;
// If this is a memory operand, we're cool, otherwise bail out.
if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
return true;
continue;
}
if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
SeenInsts))
return true;
}
return false;
}
/// Return true if Val is already known to be live at the use site that we're
/// folding it into. If so, there is no cost to include it in the addressing
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
/// instruction already.
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
Value *KnownLive2) {
// If Val is either of the known-live values, we know it is live!
if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
return true;
// All values other than instructions and arguments (e.g. constants) are live.
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
// If Val is a constant sized alloca in the entry block, it is live, this is
// true because it is just a reference to the stack/frame pointer, which is
// live for the whole function.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
if (AI->isStaticAlloca())
return true;
// Check to see if this value is already used in the memory instruction's
// block. If so, it's already live into the block at the very least, so we
// can reasonably fold it.
return Val->isUsedInBasicBlock(MemoryInst->getParent());
}
/// It is possible for the addressing mode of the machine to fold the specified
/// instruction into a load or store that ultimately uses it.
/// However, the specified instruction has multiple uses.
/// Given this, it may actually increase register pressure to fold it
/// into the load. For example, consider this code:
///
/// X = ...
/// Y = X+1
/// use(Y) -> nonload/store
/// Z = Y+1
/// load Z
///
/// In this case, Y has multiple uses, and can be folded into the load of Z
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
/// number of computations either.
///
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case. This would make Y die earlier.
bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter) {
if (IgnoreProfitability) return true;
// AMBefore is the addressing mode before this instruction was folded into it,
// and AMAfter is the addressing mode after the instruction was folded. Get
// the set of registers referenced by AMAfter and subtract out those
// referenced by AMBefore: this is the set of values which folding in this
// address extends the lifetime of.
//
// Note that there are only two potential values being referenced here,
// BaseReg and ScaleReg (global addresses are always available, as are any
// folded immediates).
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
// lifetime wasn't extended by adding this instruction.
if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
BaseReg = nullptr;
if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
ScaledReg = nullptr;
// If folding this instruction (and it's subexprs) didn't extend any live
// ranges, we're ok with it.
if (!BaseReg && !ScaledReg)
return true;
// If all uses of this instruction can have the address mode sunk into them,
// we can remove the addressing mode and effectively trade one live register
// for another (at worst.) In this context, folding an addressing mode into
// the use is just a particularly nice way of sinking it.
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
SmallPtrSet<Instruction*, 16> ConsideredInsts;
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
return false; // Has a non-memory, non-foldable use!
// Now that we know that all uses of this instruction are part of a chain of
// computation involving only operations that could theoretically be folded
// into a memory use, loop over each of these memory operation uses and see
// if they could *actually* fold the instruction. The assumption is that
// addressing modes are cheap and that duplicating the computation involved
// many times is worthwhile, even on a fastpath. For sinking candidates
// (i.e. cold call sites), this serves as a way to prevent excessive code
// growth since most architectures have some reasonable small and fast way to
// compute an effective address. (i.e LEA on x86)
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
Instruction *User = MemoryUses[i].first;
unsigned OpNo = MemoryUses[i].second;
// Get the access type of this use. If the use isn't a pointer, we don't
// know what it accesses.
Value *Address = User->getOperand(OpNo);
PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
if (!AddrTy)
return false;
Type *AddressAccessTy = AddrTy->getElementType();
unsigned AS = AddrTy->getAddressSpace();
// Do a match against the root of this address, ignoring profitability. This
// will tell us if the addressing mode for the memory operation will
// *actually* cover the shared instruction.
ExtAddrMode Result;
std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
0);
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
AddressingModeMatcher Matcher(
MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
Matcher.IgnoreProfitability = true;
bool Success = Matcher.matchAddr(Address, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
// The match was to check the profitability, the changes made are not
// part of the original matcher. Therefore, they should be dropped
// otherwise the original matcher will not present the right state.
TPT.rollback(LastKnownGood);
// If the match didn't cover I, then it won't be shared by it.
if (!is_contained(MatchedAddrModeInsts, I))
return false;
MatchedAddrModeInsts.clear();
}
return true;
}
/// Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
if (Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() != BB;
return false;
}
/// Sink addressing mode computation immediate before MemoryInst if doing so
/// can be done without increasing register pressure. The need for the
/// register pressure constraint means this can end up being an all or nothing
/// decision for all uses of the same addressing computation.
///
/// Load and Store Instructions often have addressing modes that can do
/// significant amounts of computation. As such, instruction selection will try
/// to get the load or store to do as much computation as possible for the
/// program. The problem is that isel can only see within a single block. As
/// such, we sink as much legal addressing mode work into the block as possible.
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands. It's also used to sink addressing computations feeding into cold
/// call sites into their (cold) basic block.
///
/// The motivation for handling sinking into cold blocks is that doing so can
/// both enable other address mode sinking (by satisfying the register pressure
/// constraint above), and reduce register pressure globally (by removing the
/// addressing mode computation from the fast path entirely.).
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
Type *AccessTy, unsigned AddrSpace) {
Value *Repl = Addr;
// Try to collapse single-value PHI nodes. This is necessary to undo
// unprofitable PRE transformations.
SmallVector<Value*, 8> worklist;
SmallPtrSet<Value*, 16> Visited;
worklist.push_back(Addr);
// Use a worklist to iteratively look through PHI and select nodes, and
// ensure that the addressing mode obtained from the non-PHI/select roots of
// the graph are compatible.
bool PhiOrSelectSeen = false;
SmallVector<Instruction*, 16> AddrModeInsts;
const SimplifyQuery SQ(*DL, TLInfo);
AddressingModeCombiner AddrModes(SQ, Addr);
TypePromotionTransaction TPT(RemovedInsts);
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
while (!worklist.empty()) {
Value *V = worklist.back();
worklist.pop_back();
// We allow traversing cyclic Phi nodes.
// In case of success after this loop we ensure that traversing through
// Phi nodes ends up with all cases to compute address of the form
// BaseGV + Base + Scale * Index + Offset
// where Scale and Offset are constans and BaseGV, Base and Index
// are exactly the same Values in all cases.
// It means that BaseGV, Scale and Offset dominate our memory instruction
// and have the same value as they had in address computation represented
// as Phi. So we can safely sink address computation to memory instruction.
if (!Visited.insert(V).second)
continue;
// For a PHI node, push all of its incoming values.
if (PHINode *P = dyn_cast<PHINode>(V)) {
for (Value *IncValue : P->incoming_values())
worklist.push_back(IncValue);
PhiOrSelectSeen = true;
continue;
}
// Similar for select.
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
worklist.push_back(SI->getFalseValue());
worklist.push_back(SI->getTrueValue());
PhiOrSelectSeen = true;
continue;
}
// For non-PHIs, determine the addressing mode being computed. Note that
// the result may differ depending on what other uses our candidate
// addressing instructions might have.
AddrModeInsts.clear();
std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
0);
ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
GetElementPtrInst *GEP = LargeOffsetGEP.first;
if (GEP && !NewGEPBases.count(GEP)) {
// If splitting the underlying data structure can reduce the offset of a
// GEP, collect the GEP. Skip the GEPs that are the new bases of
// previously split data structures.
LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
}
NewAddrMode.OriginalValue = V;
if (!AddrModes.addNewAddrMode(NewAddrMode))
break;
}
// Try to combine the AddrModes we've collected. If we couldn't collect any,
// or we have multiple but either couldn't combine them or combining them
// wouldn't do anything useful, bail out now.
if (!AddrModes.combineAddrModes()) {
TPT.rollback(LastKnownGood);
return false;
}
TPT.commit();
// Get the combined AddrMode (or the only AddrMode, if we only had one).
ExtAddrMode AddrMode = AddrModes.getAddrMode();
// If all the instructions matched are already in this BB, don't do anything.
// If we saw a Phi node then it is not local definitely, and if we saw a select
// then we want to push the address calculation past it even if it's already
// in this BB.
if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
return IsNonLocalValue(V, MemoryInst->getParent());
})) {
LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
<< "\n");
return false;
}
// Insert this computation right after this user. Since our caller is
// scanning from the top of the BB to the bottom, reuse of the expr are
// guaranteed to happen later.
IRBuilder<> Builder(MemoryInst);
// Now that we determined the addressing expression we want to use and know
// that we have to sink it into this block. Check to see if we have already
// done this for some other load/store instr in this block. If so, reuse
// the computation. Before attempting reuse, check if the address is valid
// as it may have been erased.
WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
if (SunkAddr) {
LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
<< " for " << *MemoryInst << "\n");
if (SunkAddr->getType() != Addr->getType())
SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
} else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
TM && SubtargetInfo->addrSinkUsingGEPs())) {
// By default, we use the GEP-based method when AA is used later. This
// prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for " << *MemoryInst << "\n");
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
Value *ResultPtr = nullptr, *ResultIndex = nullptr;
// First, find the pointer.
if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
ResultPtr = AddrMode.BaseReg;
AddrMode.BaseReg = nullptr;
}
if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
// We can't add more than one pointer together, nor can we scale a
// pointer (both of which seem meaningless).
if (ResultPtr || AddrMode.Scale != 1)
return false;
ResultPtr = AddrMode.ScaledReg;
AddrMode.Scale = 0;
}
// It is only safe to sign extend the BaseReg if we know that the math
// required to create it did not overflow before we extend it. Since
// the original IR value was tossed in favor of a constant back when
// the AddrMode was created we need to bail out gracefully if widths
// do not match instead of extending it.
//
// (See below for code to add the scale.)
if (AddrMode.Scale) {
Type *ScaledRegTy = AddrMode.ScaledReg->getType();
if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
cast<IntegerType>(ScaledRegTy)->getBitWidth())
return false;
}
if (AddrMode.BaseGV) {
if (ResultPtr)
return false;
ResultPtr = AddrMode.BaseGV;
}
// If the real base value actually came from an inttoptr, then the matcher
// will look through it and provide only the integer value. In that case,
// use it here.
if (!DL->isNonIntegralPointerType(Addr->getType())) {
if (!ResultPtr && AddrMode.BaseReg) {
ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
"sunkaddr");
AddrMode.BaseReg = nullptr;
} else if (!ResultPtr && AddrMode.Scale == 1) {
ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
"sunkaddr");
AddrMode.Scale = 0;
}
}
if (!ResultPtr &&
!AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
SunkAddr = Constant::getNullValue(Addr->getType());
} else if (!ResultPtr) {
return false;
} else {
Type *I8PtrTy =
Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
Type *I8Ty = Builder.getInt8Ty();
// Start with the base register. Do this first so that subsequent address
// matching finds it last, which will prevent it from trying to match it
// as the scaled value in case it happens to be a mul. That would be
// problematic if we've sunk a different mul for the scale, because then
// we'd end up sinking both muls.
if (AddrMode.BaseReg) {
Value *V = AddrMode.BaseReg;
if (V->getType() != IntPtrTy)
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
ResultIndex = V;
}
// Add the scale value.
if (AddrMode.Scale) {
Value *V = AddrMode.ScaledReg;
if (V->getType() == IntPtrTy) {
// done.
} else {
assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
cast<IntegerType>(V->getType())->getBitWidth() &&
"We can't transform if ScaledReg is too narrow");
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
}
if (AddrMode.Scale != 1)
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
"sunkaddr");
if (ResultIndex)
ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
else
ResultIndex = V;
}
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (ResultIndex) {
// We need to add this separately from the scale above to help with
// SDAG consecutive load/store merging.
if (ResultPtr->getType() != I8PtrTy)
ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
ResultPtr =
AddrMode.InBounds
? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
"sunkaddr")
: Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
}
ResultIndex = V;
}
if (!ResultIndex) {
SunkAddr = ResultPtr;
} else {
if (ResultPtr->getType() != I8PtrTy)
ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
SunkAddr =
AddrMode.InBounds
? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
"sunkaddr")
: Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
}
if (SunkAddr->getType() != Addr->getType())
SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
}
} else {
// We'd require a ptrtoint/inttoptr down the line, which we can't do for
// non-integral pointers, so in that case bail out now.
Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
if (DL->isNonIntegralPointerType(Addr->getType()) ||
(BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
(ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
(AddrMode.BaseGV &&
DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
return false;
LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for " << *MemoryInst << "\n");
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
Value *Result = nullptr;
// Start with the base register. Do this first so that subsequent address
// matching finds it last, which will prevent it from trying to match it
// as the scaled value in case it happens to be a mul. That would be
// problematic if we've sunk a different mul for the scale, because then
// we'd end up sinking both muls.
if (AddrMode.BaseReg) {
Value *V = AddrMode.BaseReg;
if (V->getType()->isPointerTy())
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
if (V->getType() != IntPtrTy)
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
Result = V;
}
// Add the scale value.
if (AddrMode.Scale) {
Value *V = AddrMode.ScaledReg;
if (V->getType() == IntPtrTy) {
// done.
} else if (V->getType()->isPointerTy()) {
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
cast<IntegerType>(V->getType())->getBitWidth()) {
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
} else {
// It is only safe to sign extend the BaseReg if we know that the math
// required to create it did not overflow before we extend it. Since
// the original IR value was tossed in favor of a constant back when
// the AddrMode was created we need to bail out gracefully if widths
// do not match instead of extending it.
Instruction *I = dyn_cast_or_null<Instruction>(Result);
if (I && (Result != AddrMode.BaseReg))
I->eraseFromParent();
return false;
}
if (AddrMode.Scale != 1)
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
"sunkaddr");
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
// Add in the BaseGV if present.
if (AddrMode.BaseGV) {
Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
if (!Result)
SunkAddr = Constant::getNullValue(Addr->getType());
else
SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
}
MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
// Store the newly computed address into the cache. In the case we reused a
// value, this should be idempotent.
SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
// If we have no uses, recursively delete the value and all dead instructions
// using it.
if (Repl->use_empty()) {
// This can cause recursive deletion, which can invalidate our iterator.
// Use a WeakTrackingVH to hold onto it in case this happens.
Value *CurValue = &*CurInstIterator;
WeakTrackingVH IterHandle(CurValue);
BasicBlock *BB = CurInstIterator->getParent();
RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
if (IterHandle != CurValue) {
// If the iterator instruction was recursively deleted, start over at the
// start of the block.
CurInstIterator = BB->begin();
SunkAddrs.clear();
}
}
++NumMemoryInsts;
return true;
}
/// If there are any memory operands, use OptimizeMemoryInst to sink their
/// address computing into the block when possible / profitable.
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
bool MadeChange = false;
const TargetRegisterInfo *TRI =
TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(*DL, TRI, CS);
unsigned ArgNo = 0;
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI->ComputeConstraintToUse(OpInfo, SDValue());
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
OpInfo.isIndirect) {
Value *OpVal = CS->getArgOperand(ArgNo++);
MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
} else if (OpInfo.Type == InlineAsm::isInput)
ArgNo++;
}
return MadeChange;
}
/// Check if all the uses of \p Val are equivalent (or free) zero or
/// sign extensions.
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
assert(!Val->use_empty() && "Input must have at least one use");
const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
bool IsSExt = isa<SExtInst>(FirstUser);
Type *ExtTy = FirstUser->getType();
for (const User *U : Val->users()) {
const Instruction *UI = cast<Instruction>(U);
if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
return false;
Type *CurTy = UI->getType();
// Same input and output types: Same instruction after CSE.
if (CurTy == ExtTy)
continue;
// If IsSExt is true, we are in this situation:
// a = Val
// b = sext ty1 a to ty2
// c = sext ty1 a to ty3
// Assuming ty2 is shorter than ty3, this could be turned into:
// a = Val
// b = sext ty1 a to ty2
// c = sext ty2 b to ty3
// However, the last sext is not free.
if (IsSExt)
return false;
// This is a ZExt, maybe this is free to extend from one type to another.
// In that case, we would not account for a different use.
Type *NarrowTy;
Type *LargeTy;
if (ExtTy->getScalarType()->getIntegerBitWidth() >
CurTy->getScalarType()->getIntegerBitWidth()) {
NarrowTy = CurTy;
LargeTy = ExtTy;
} else {
NarrowTy = ExtTy;
LargeTy = CurTy;
}
if (!TLI.isZExtFree(NarrowTy, LargeTy))
return false;
}
// All uses are the same or can be derived from one another for free.
return true;
}
/// Try to speculatively promote extensions in \p Exts and continue
/// promoting through newly promoted operands recursively as far as doing so is
/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
/// When some promotion happened, \p TPT contains the proper state to revert
/// them.
///
/// \return true if some promotion happened, false otherwise.
bool CodeGenPrepare::tryToPromoteExts(
TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
unsigned CreatedInstsCost) {
bool Promoted = false;
// Iterate over all the extensions to try to promote them.
for (auto I : Exts) {
// Early check if we directly have ext(load).
if (isa<LoadInst>(I->getOperand(0))) {
ProfitablyMovedExts.push_back(I);
continue;
}
// Check whether or not we want to do any promotion. The reason we have
// this check inside the for loop is to catch the case where an extension
// is directly fed by a load because in such case the extension can be moved
// up without any promotion on its operands.
if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
return false;
// Get the action to perform the promotion.
TypePromotionHelper::Action TPH =
TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
// Check if we can promote.
if (!TPH) {
// Save the current extension as we cannot move up through its operand.
ProfitablyMovedExts.push_back(I);
continue;
}
// Save the current state.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
SmallVector<Instruction *, 4> NewExts;
unsigned NewCreatedInstsCost = 0;
unsigned ExtCost = !TLI->isExtFree(I);
// Promote.
Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
&NewExts, nullptr, *TLI);
assert(PromotedVal &&
"TypePromotionHelper should have filtered out those cases");
// We would be able to merge only one extension in a load.
// Therefore, if we have more than 1 new extension we heuristically
// cut this search path, because it means we degrade the code quality.
// With exactly 2, the transformation is neutral, because we will merge
// one extension but leave one. However, we optimistically keep going,
// because the new extension may be removed too.
long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
// FIXME: It would be possible to propagate a negative value instead of
// conservatively ceiling it to 0.
TotalCreatedInstsCost =
std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
if (!StressExtLdPromotion &&
(TotalCreatedInstsCost > 1 ||
!isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
// This promotion is not profitable, rollback to the previous state, and
// save the current extension in ProfitablyMovedExts as the latest
// speculative promotion turned out to be unprofitable.
TPT.rollback(LastKnownGood);
ProfitablyMovedExts.push_back(I);
continue;
}
// Continue promoting NewExts as far as doing so is profitable.
SmallVector<Instruction *, 2> NewlyMovedExts;
(void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
bool NewPromoted = false;
for (auto ExtInst : NewlyMovedExts) {
Instruction *MovedExt = cast<Instruction>(ExtInst);
Value *ExtOperand = MovedExt->getOperand(0);
// If we have reached to a load, we need this extra profitability check
// as it could potentially be merged into an ext(load).
if (isa<LoadInst>(ExtOperand) &&
!(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
(ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
continue;
ProfitablyMovedExts.push_back(MovedExt);
NewPromoted = true;
}
// If none of speculative promotions for NewExts is profitable, rollback
// and save the current extension (I) as the last profitable extension.
if (!NewPromoted) {
TPT.rollback(LastKnownGood);
ProfitablyMovedExts.push_back(I);
continue;
}
// The promotion is profitable.
Promoted = true;
}
return Promoted;
}
/// Merging redundant sexts when one is dominating the other.
bool CodeGenPrepare::mergeSExts(Function &F) {
bool Changed = false;
for (auto &Entry : ValToSExtendedUses) {
SExts &Insts = Entry.second;
SExts CurPts;
for (Instruction *Inst : Insts) {
if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
Inst->getOperand(0) != Entry.first)
continue;
bool inserted = false;
for (auto &Pt : CurPts) {
if (getDT(F).dominates(Inst, Pt)) {
Pt->replaceAllUsesWith(Inst);
RemovedInsts.insert(Pt);
Pt->removeFromParent();
Pt = Inst;
inserted = true;
Changed = true;
break;
}
if (!getDT(F).dominates(Pt, Inst))
// Give up if we need to merge in a common dominator as the
// experiments show it is not profitable.
continue;
Inst->replaceAllUsesWith(Pt);
RemovedInsts.insert(Inst);
Inst->removeFromParent();
inserted = true;
Changed = true;
break;
}
if (!inserted)
CurPts.push_back(Inst);
}
}
return Changed;
}
// Spliting large data structures so that the GEPs accessing them can have
// smaller offsets so that they can be sunk to the same blocks as their users.
// For example, a large struct starting from %base is splitted into two parts
// where the second part starts from %new_base.
//
// Before:
// BB0:
// %base =
//
// BB1:
// %gep0 = gep %base, off0
// %gep1 = gep %base, off1
// %gep2 = gep %base, off2
//
// BB2:
// %load1 = load %gep0
// %load2 = load %gep1
// %load3 = load %gep2
//
// After:
// BB0:
// %base =
// %new_base = gep %base, off0
//
// BB1:
// %new_gep0 = %new_base
// %new_gep1 = gep %new_base, off1 - off0
// %new_gep2 = gep %new_base, off2 - off0
//
// BB2:
// %load1 = load i32, i32* %new_gep0
// %load2 = load i32, i32* %new_gep1
// %load3 = load i32, i32* %new_gep2
//
// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
// their offsets are smaller enough to fit into the addressing mode.
bool CodeGenPrepare::splitLargeGEPOffsets() {
bool Changed = false;
for (auto &Entry : LargeOffsetGEPMap) {
Value *OldBase = Entry.first;
SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
&LargeOffsetGEPs = Entry.second;
auto compareGEPOffset =
[&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
const std::pair<GetElementPtrInst *, int64_t> &RHS) {
if (LHS.first == RHS.first)
return false;
if (LHS.second != RHS.second)
return LHS.second < RHS.second;
return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
};
// Sorting all the GEPs of the same data structures based on the offsets.
llvm::sort(LargeOffsetGEPs, compareGEPOffset);
LargeOffsetGEPs.erase(
std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
LargeOffsetGEPs.end());
// Skip if all the GEPs have the same offsets.
if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
continue;
GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
Value *NewBaseGEP = nullptr;
auto LargeOffsetGEP = LargeOffsetGEPs.begin();
while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
GetElementPtrInst *GEP = LargeOffsetGEP->first;
int64_t Offset = LargeOffsetGEP->second;
if (Offset != BaseOffset) {
TargetLowering::AddrMode AddrMode;
AddrMode.BaseOffs = Offset - BaseOffset;
// The result type of the GEP might not be the type of the memory
// access.
if (!TLI->isLegalAddressingMode(*DL, AddrMode,
GEP->getResultElementType(),
GEP->getAddressSpace())) {
// We need to create a new base if the offset to the current base is
// too large to fit into the addressing mode. So, a very large struct
// may be splitted into several parts.
BaseGEP = GEP;
BaseOffset = Offset;
NewBaseGEP = nullptr;
}
}
// Generate a new GEP to replace the current one.
LLVMContext &Ctx = GEP->getContext();
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Type *I8PtrTy =
Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
Type *I8Ty = Type::getInt8Ty(Ctx);
if (!NewBaseGEP) {
// Create a new base if we don't have one yet. Find the insertion
// pointer for the new base first.
BasicBlock::iterator NewBaseInsertPt;
BasicBlock *NewBaseInsertBB;
if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
// If the base of the struct is an instruction, the new base will be
// inserted close to it.
NewBaseInsertBB = BaseI->getParent();
if (isa<PHINode>(BaseI))
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
NewBaseInsertBB =
SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
} else
NewBaseInsertPt = std::next(BaseI->getIterator());
} else {
// If the current base is an argument or global value, the new base
// will be inserted to the entry block.
NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
}
IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
// Create a new base.
Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
NewBaseGEP = OldBase;
if (NewBaseGEP->getType() != I8PtrTy)
NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
NewBaseGEP =
NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
NewGEPBases.insert(NewBaseGEP);
}
IRBuilder<> Builder(GEP);
Value *NewGEP = NewBaseGEP;
if (Offset == BaseOffset) {
if (GEP->getType() != I8PtrTy)
NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
} else {
// Calculate the new offset for the new GEP.
Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
if (GEP->getType() != I8PtrTy)
NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
}
GEP->replaceAllUsesWith(NewGEP);
LargeOffsetGEPID.erase(GEP);
LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
GEP->eraseFromParent();
Changed = true;
}
}
return Changed;
}
/// Return true, if an ext(load) can be formed from an extension in
/// \p MovedExts.
bool CodeGenPrepare::canFormExtLd(
const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
Instruction *&Inst, bool HasPromoted) {
for (auto *MovedExtInst : MovedExts) {
if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
LI = cast<LoadInst>(MovedExtInst->getOperand(0));
Inst = MovedExtInst;
break;
}
}
if (!LI)
return false;
// If they're already in the same block, there's nothing to do.
// Make the cheap checks first if we did not promote.
// If we promoted, we need to check if it is indeed profitable.
if (!HasPromoted && LI->getParent() == Inst->getParent())
return false;
return TLI->isExtLoad(LI, Inst, *DL);
}
/// Move a zext or sext fed by a load into the same basic block as the load,
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
/// extend into the load.
///
/// E.g.,
/// \code
/// %ld = load i32* %addr
/// %add = add nuw i32 %ld, 4
/// %zext = zext i32 %add to i64
// \endcode
/// =>
/// \code
/// %ld = load i32* %addr
/// %zext = zext i32 %ld to i64
/// %add = add nuw i64 %zext, 4
/// \encode
/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
/// allow us to match zext(load i32*) to i64.
///
/// Also, try to promote the computations used to obtain a sign extended
/// value used into memory accesses.
/// E.g.,
/// \code
/// a = add nsw i32 b, 3
/// d = sext i32 a to i64
/// e = getelementptr ..., i64 d
/// \endcode
/// =>
/// \code
/// f = sext i32 b to i64
/// a = add nsw i64 f, 3
/// e = getelementptr ..., i64 a
/// \endcode
///
/// \p Inst[in/out] the extension may be modified during the process if some
/// promotions apply.
bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
// ExtLoad formation and address type promotion infrastructure requires TLI to
// be effective.
if (!TLI)
return false;
bool AllowPromotionWithoutCommonHeader = false;
/// See if it is an interesting sext operations for the address type
/// promotion before trying to promote it, e.g., the ones with the right
/// type and used in memory accesses.
bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
*Inst, AllowPromotionWithoutCommonHeader);
TypePromotionTransaction TPT(RemovedInsts);
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
SmallVector<Instruction *, 1> Exts;
SmallVector<Instruction *, 2> SpeculativelyMovedExts;
Exts.push_back(Inst);
bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
// Look for a load being extended.
LoadInst *LI = nullptr;
Instruction *ExtFedByLoad;
// Try to promote a chain of computation if it allows to form an extended
// load.
if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
assert(LI && ExtFedByLoad && "Expect a valid load and extension");
TPT.commit();
// Move the extend into the same block as the load
ExtFedByLoad->moveAfter(LI);
// CGP does not check if the zext would be speculatively executed when moved
// to the same basic block as the load. Preserving its original location
// would pessimize the debugging experience, as well as negatively impact
// the quality of sample pgo. We don't want to use "line 0" as that has a
// size cost in the line-table section and logically the zext can be seen as
// part of the load. Therefore we conservatively reuse the same debug
// location for the load and the zext.
ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
++NumExtsMoved;
Inst = ExtFedByLoad;
return true;
}
// Continue promoting SExts if known as considerable depending on targets.
if (ATPConsiderable &&
performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
HasPromoted, TPT, SpeculativelyMovedExts))
return true;
TPT.rollback(LastKnownGood);
return false;
}
// Perform address type promotion if doing so is profitable.
// If AllowPromotionWithoutCommonHeader == false, we should find other sext
// instructions that sign extended the same initial value. However, if
// AllowPromotionWithoutCommonHeader == true, we expect promoting the
// extension is just profitable.
bool CodeGenPrepare::performAddressTypePromotion(
Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
bool HasPromoted, TypePromotionTransaction &TPT,
SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
bool Promoted = false;
SmallPtrSet<Instruction *, 1> UnhandledExts;
bool AllSeenFirst = true;
for (auto I : SpeculativelyMovedExts) {
Value *HeadOfChain = I->getOperand(0);
DenseMap<Value *, Instruction *>::iterator AlreadySeen =
SeenChainsForSExt.find(HeadOfChain);
// If there is an unhandled SExt which has the same header, try to promote
// it as well.
if (AlreadySeen != SeenChainsForSExt.end()) {
if (AlreadySeen->second != nullptr)
UnhandledExts.insert(AlreadySeen->second);
AllSeenFirst = false;
}
}
if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
SpeculativelyMovedExts.size() == 1)) {
TPT.commit();
if (HasPromoted)
Promoted = true;
for (auto I : SpeculativelyMovedExts) {
Value *HeadOfChain = I->getOperand(0);
SeenChainsForSExt[HeadOfChain] = nullptr;
ValToSExtendedUses[HeadOfChain].push_back(I);
}
// Update Inst as promotion happen.
Inst = SpeculativelyMovedExts.pop_back_val();
} else {
// This is the first chain visited from the header, keep the current chain
// as unhandled. Defer to promote this until we encounter another SExt
// chain derived from the same header.
for (auto I : SpeculativelyMovedExts) {
Value *HeadOfChain = I->getOperand(0);
SeenChainsForSExt[HeadOfChain] = Inst;
}
return false;
}
if (!AllSeenFirst && !UnhandledExts.empty())
for (auto VisitedSExt : UnhandledExts) {
if (RemovedInsts.count(VisitedSExt))
continue;
TypePromotionTransaction TPT(RemovedInsts);
SmallVector<Instruction *, 1> Exts;
SmallVector<Instruction *, 2> Chains;
Exts.push_back(VisitedSExt);
bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
TPT.commit();
if (HasPromoted)
Promoted = true;
for (auto I : Chains) {
Value *HeadOfChain = I->getOperand(0);
// Mark this as handled.
SeenChainsForSExt[HeadOfChain] = nullptr;
ValToSExtendedUses[HeadOfChain].push_back(I);
}
}
return Promoted;
}
bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
BasicBlock *DefBB = I->getParent();
// If the result of a {s|z}ext and its source are both live out, rewrite all
// other uses of the source with result of extension.
Value *Src = I->getOperand(0);
if (Src->hasOneUse())
return false;
// Only do this xform if truncating is free.
if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
return false;
// Only safe to perform the optimization if the source is also defined in
// this block.
if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
return false;
bool DefIsLiveOut = false;
for (User *U : I->users()) {
Instruction *UI = cast<Instruction>(U);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
DefIsLiveOut = true;
break;
}
if (!DefIsLiveOut)
return false;
// Make sure none of the uses are PHI nodes.
for (User *U : Src->users()) {
Instruction *UI = cast<Instruction>(U);
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
// Be conservative. We don't want this xform to end up introducing
// reloads just before load / store instructions.
if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
return false;
}
// InsertedTruncs - Only insert one trunc in each block once.
DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
bool MadeChange = false;
for (Use &U : Src->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
// Figure out which BB this ext is used in.
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) continue;
// Both src and def are live in this block. Rewrite the use.
Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
if (!InsertedTrunc) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
InsertedInsts.insert(InsertedTrunc);
}
// Replace a use of the {s|z}ext source with a use of the result.
U = InsertedTrunc;
++NumExtUses;
MadeChange = true;
}
return MadeChange;
}
// Find loads whose uses only use some of the loaded value's bits. Add an "and"
// just after the load if the target can fold this into one extload instruction,
// with the hope of eliminating some of the other later "and" instructions using
// the loaded value. "and"s that are made trivially redundant by the insertion
// of the new "and" are removed by this function, while others (e.g. those whose
// path from the load goes through a phi) are left for isel to potentially
// remove.
//
// For example:
//
// b0:
// x = load i32
// ...
// b1:
// y = and x, 0xff
// z = use y
//
// becomes:
//
// b0:
// x = load i32
// x' = and x, 0xff
// ...
// b1:
// z = use x'
//
// whereas:
//
// b0:
// x1 = load i32
// ...
// b1:
// x2 = load i32
// ...
// b2:
// x = phi x1, x2
// y = and x, 0xff
//
// becomes (after a call to optimizeLoadExt for each load):
//
// b0:
// x1 = load i32
// x1' = and x1, 0xff
// ...
// b1:
// x2 = load i32
// x2' = and x2, 0xff
// ...
// b2:
// x = phi x1', x2'
// y = and x, 0xff
bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
return false;
// Skip loads we've already transformed.
if (Load->hasOneUse() &&
InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
return false;
// Look at all uses of Load, looking through phis, to determine how many bits
// of the loaded value are needed.
SmallVector<Instruction *, 8> WorkList;
SmallPtrSet<Instruction *, 16> Visited;
SmallVector<Instruction *, 8> AndsToMaybeRemove;
for (auto *U : Load->users())
WorkList.push_back(cast<Instruction>(U));
EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
unsigned BitWidth = LoadResultVT.getSizeInBits();
APInt DemandBits(BitWidth, 0);
APInt WidestAndBits(BitWidth, 0);
while (!WorkList.empty()) {
Instruction *I = WorkList.back();
WorkList.pop_back();
// Break use-def graph loops.
if (!Visited.insert(I).second)
continue;
// For a PHI node, push all of its users.
if (auto *Phi = dyn_cast<PHINode>(I)) {
for (auto *U : Phi->users())
WorkList.push_back(cast<Instruction>(U));
continue;
}
switch (I->getOpcode()) {
case Instruction::And: {
auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
if (!AndC)
return false;
APInt AndBits = AndC->getValue();
DemandBits |= AndBits;
// Keep track of the widest and mask we see.
if (AndBits.ugt(WidestAndBits))
WidestAndBits = AndBits;
if (AndBits == WidestAndBits && I->getOperand(0) == Load)
AndsToMaybeRemove.push_back(I);
break;
}
case Instruction::Shl: {
auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
if (!ShlC)
return false;
uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
DemandBits.setLowBits(BitWidth - ShiftAmt);
break;
}
case Instruction::Trunc: {
EVT TruncVT = TLI->getValueType(*DL, I->getType());
unsigned TruncBitWidth = TruncVT.getSizeInBits();
DemandBits.setLowBits(TruncBitWidth);
break;
}
default:
return false;
}
}
uint32_t ActiveBits = DemandBits.getActiveBits();
// Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
// target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
// for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
// (and (load x) 1) is not matched as a single instruction, rather as a LDR
// followed by an AND.
// TODO: Look into removing this restriction by fixing backends to either
// return false for isLoadExtLegal for i1 or have them select this pattern to
// a single instruction.
//
// Also avoid hoisting if we didn't see any ands with the exact DemandBits
// mask, since these are the only ands that will be removed by isel.
if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
WidestAndBits != DemandBits)
return false;
LLVMContext &Ctx = Load->getType()->getContext();
Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
EVT TruncVT = TLI->getValueType(*DL, TruncTy);
// Reject cases that won't be matched as extloads.
if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
!TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
return false;
IRBuilder<> Builder(Load->getNextNode());
auto *NewAnd = cast<Instruction>(
Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
// Mark this instruction as "inserted by CGP", so that other
// optimizations don't touch it.
InsertedInsts.insert(NewAnd);
// Replace all uses of load with new and (except for the use of load in the
// new and itself).
Load->replaceAllUsesWith(NewAnd);
NewAnd->setOperand(0, Load);
// Remove any and instructions that are now redundant.
for (auto *And : AndsToMaybeRemove)
// Check that the and mask is the same as the one we decided to put on the
// new and.
if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
And->replaceAllUsesWith(NewAnd);
if (&*CurInstIterator == And)
CurInstIterator = std::next(And->getIterator());
And->eraseFromParent();
++NumAndUses;
}
++NumAndsAdded;
return true;
}
/// Check if V (an operand of a select instruction) is an expensive instruction
/// that is only used once.
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
auto *I = dyn_cast<Instruction>(V);
// If it's safe to speculatively execute, then it should not have side
// effects; therefore, it's safe to sink and possibly *not* execute.
return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
}
/// Returns true if a SelectInst should be turned into an explicit branch.
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
const TargetLowering *TLI,
SelectInst *SI) {
// If even a predictable select is cheap, then a branch can't be cheaper.
if (!TLI->isPredictableSelectExpensive())
return false;
// FIXME: This should use the same heuristics as IfConversion to determine
// whether a select is better represented as a branch.
// If metadata tells us that the select condition is obviously predictable,
// then we want to replace the select with a branch.
uint64_t TrueWeight, FalseWeight;
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t Max = std::max(TrueWeight, FalseWeight);
uint64_t Sum = TrueWeight + FalseWeight;
if (Sum != 0) {
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
if (Probability > TLI->getPredictableBranchThreshold())
return true;
}
}
CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
// If a branch is predictable, an out-of-order CPU can avoid blocking on its
// comparison condition. If the compare has more than one use, there's
// probably another cmov or setcc around, so it's not worth emitting a branch.
if (!Cmp || !Cmp->hasOneUse())
return false;
// If either operand of the select is expensive and only needed on one side
// of the select, we should form a branch.
if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
sinkSelectOperand(TTI, SI->getFalseValue()))
return true;
return false;
}
/// If \p isTrue is true, return the true value of \p SI, otherwise return
/// false value of \p SI. If the true/false value of \p SI is defined by any
/// select instructions in \p Selects, look through the defining select
/// instruction until the true/false value is not defined in \p Selects.
static Value *getTrueOrFalseValue(
SelectInst *SI, bool isTrue,
const SmallPtrSet<const Instruction *, 2> &Selects) {
Value *V = nullptr;
for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
DefSI = dyn_cast<SelectInst>(V)) {
assert(DefSI->getCondition() == SI->getCondition() &&
"The condition of DefSI does not match with SI");
V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
}
assert(V && "Failed to get select true/false value");
return V;
}
bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
assert(Shift->isShift() && "Expected a shift");
// If this is (1) a vector shift, (2) shifts by scalars are cheaper than
// general vector shifts, and (3) the shift amount is a select-of-splatted
// values, hoist the shifts before the select:
// shift Op0, (select Cond, TVal, FVal) -->
// select Cond, (shift Op0, TVal), (shift Op0, FVal)
//
// This is inverting a generic IR transform when we know that the cost of a
// general vector shift is more than the cost of 2 shift-by-scalars.
// We can't do this effectively in SDAG because we may not be able to
// determine if the select operands are splats from within a basic block.
Type *Ty = Shift->getType();
if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
return false;
Value *Cond, *TVal, *FVal;
if (!match(Shift->getOperand(1),
m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
return false;
if (!isSplatValue(TVal) || !isSplatValue(FVal))
return false;
IRBuilder<> Builder(Shift);
BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
Shift->replaceAllUsesWith(NewSel);
Shift->eraseFromParent();
return true;
}
/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
// If branch conversion isn't desirable, exit early.
if (DisableSelectToBranch || OptSize || !TLI)
return false;
// Find all consecutive select instructions that share the same condition.
SmallVector<SelectInst *, 2> ASI;
ASI.push_back(SI);
for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
It != SI->getParent()->end(); ++It) {
SelectInst *I = dyn_cast<SelectInst>(&*It);
if (I && SI->getCondition() == I->getCondition()) {
ASI.push_back(I);
} else {
break;
}
}
SelectInst *LastSI = ASI.back();
// Increment the current iterator to skip all the rest of select instructions
// because they will be either "not lowered" or "all lowered" to branch.
CurInstIterator = std::next(LastSI->getIterator());
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
// Can we convert the 'select' to CF ?
if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
return false;
TargetLowering::SelectSupportKind SelectKind;
if (VectorCond)
SelectKind = TargetLowering::VectorMaskSelect;
else if (SI->getType()->isVectorTy())
SelectKind = TargetLowering::ScalarCondVectorVal;
else
SelectKind = TargetLowering::ScalarValSelect;
if (TLI->isSelectSupported(SelectKind) &&
!isFormingBranchFromSelectProfitable(TTI, TLI, SI))
return false;
// The DominatorTree needs to be rebuilt by any consumers after this
// transformation. We simply reset here rather than setting the ModifiedDT
// flag to avoid restarting the function walk in runOnFunction for each
// select optimized.
DT.reset();
// Transform a sequence like this:
// start:
// %cmp = cmp uge i32 %a, %b
// %sel = select i1 %cmp, i32 %c, i32 %d
//
// Into:
// start:
// %cmp = cmp uge i32 %a, %b
// br i1 %cmp, label %select.true, label %select.false
// select.true:
// br label %select.end
// select.false:
// br label %select.end
// select.end:
// %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
//
// In addition, we may sink instructions that produce %c or %d from
// the entry block into the destination(s) of the new branch.
// If the true or false blocks do not contain a sunken instruction, that
// block and its branch may be optimized away. In that case, one side of the
// first branch will point directly to select.end, and the corresponding PHI
// predecessor block will be the start block.
// First, we split the block containing the select into 2 blocks.
BasicBlock *StartBlock = SI->getParent();
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
// Delete the unconditional branch that was just created by the split.
StartBlock->getTerminator()->eraseFromParent();
// These are the new basic blocks for the conditional branch.
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr;
BasicBlock *FalseBlock = nullptr;
BranchInst *TrueBranch = nullptr;
BranchInst *FalseBranch = nullptr;
// Sink expensive instructions into the conditional blocks to avoid executing
// them speculatively.
for (SelectInst *SI : ASI) {
if (sinkSelectOperand(TTI, SI->getTrueValue())) {
if (TrueBlock == nullptr) {
TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
EndBlock->getParent(), EndBlock);
TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
TrueBranch->setDebugLoc(SI->getDebugLoc());
}
auto *TrueInst = cast<Instruction>(SI->getTrueValue());
TrueInst->moveBefore(TrueBranch);
}
if (sinkSelectOperand(TTI, SI->getFalseValue())) {
if (FalseBlock == nullptr) {
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
EndBlock->getParent(), EndBlock);
FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(SI->getDebugLoc());
}
auto *FalseInst = cast<Instruction>(SI->getFalseValue());
FalseInst->moveBefore(FalseBranch);
}
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
// for a new input value to the PHI.
if (TrueBlock == FalseBlock) {
assert(TrueBlock == nullptr &&
"Unexpected basic block transform while optimizing select");
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
EndBlock->getParent(), EndBlock);
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(SI->getDebugLoc());
}
// Insert the real conditional branch based on the original condition.
// If we did not create a new block for one of the 'true' or 'false' paths
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
BasicBlock *TT, *FT;
if (TrueBlock == nullptr) {
TT = EndBlock;
FT = FalseBlock;
TrueBlock = StartBlock;
} else if (FalseBlock == nullptr) {
TT = TrueBlock;
FT = EndBlock;
FalseBlock = StartBlock;
} else {
TT = TrueBlock;
FT = FalseBlock;
}
IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
SmallPtrSet<const Instruction *, 2> INS;
INS.insert(ASI.begin(), ASI.end());
// Use reverse iterator because later select may use the value of the
// earlier select, and we need to propagate value through earlier select
// to get the PHI operand.
for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
SelectInst *SI = *It;
// The select itself is replaced with a PHI Node.
PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
PN->takeName(SI);
PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
PN->setDebugLoc(SI->getDebugLoc());
SI->replaceAllUsesWith(PN);
SI->eraseFromParent();
INS.erase(SI);
++NumSelectsExpanded;
}
// Instruct OptimizeBlock to skip to the next block.
CurInstIterator = StartBlock->end();
return true;
}
static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
SmallVector<int, 16> Mask(SVI->getShuffleMask());
int SplatElem = -1;
for (unsigned i = 0; i < Mask.size(); ++i) {
if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
return false;
SplatElem = Mask[i];
}
return true;
}
/// Some targets have expensive vector shifts if the lanes aren't all the same
/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
/// it's often worth sinking a shufflevector splat down to its use so that
/// codegen can spot all lanes are identical.
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
BasicBlock *DefBB = SVI->getParent();
// Only do this xform if variable vector shifts are particularly expensive.
if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
return false;
// We only expect better codegen by sinking a shuffle if we can recognise a
// constant splat.
if (!isBroadcastShuffle(SVI))
return false;
// InsertedShuffles - Only insert a shuffle in each block once.
DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
bool MadeChange = false;
for (User *U : SVI->users()) {
Instruction *UI = cast<Instruction>(U);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
// For now only apply this when the splat is used by a shift instruction.
if (!UI->isShift()) continue;
// Everything checks out, sink the shuffle if the user's block doesn't
// already have a copy.
Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
if (!InsertedShuffle) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedShuffle =
new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
SVI->getOperand(2), "", &*InsertPt);
InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
}
UI->replaceUsesOfWith(SVI, InsertedShuffle);
MadeChange = true;
}
// If we removed all uses, nuke the shuffle.
if (SVI->use_empty()) {
SVI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
// If the operands of I can be folded into a target instruction together with
// I, duplicate and sink them.
SmallVector<Use *, 4> OpsToSink;
if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
return false;
// OpsToSink can contain multiple uses in a use chain (e.g.
// (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
// uses must come first, so we process the ops in reverse order so as to not
// create invalid IR.
BasicBlock *TargetBB = I->getParent();
bool Changed = false;
SmallVector<Use *, 4> ToReplace;
for (Use *U : reverse(OpsToSink)) {
auto *UI = cast<Instruction>(U->get());
if (UI->getParent() == TargetBB || isa<PHINode>(UI))
continue;
ToReplace.push_back(U);
}
SetVector<Instruction *> MaybeDead;
DenseMap<Instruction *, Instruction *> NewInstructions;
Instruction *InsertPoint = I;
for (Use *U : ToReplace) {
auto *UI = cast<Instruction>(U->get());
Instruction *NI = UI->clone();
NewInstructions[UI] = NI;
MaybeDead.insert(UI);
LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
NI->insertBefore(InsertPoint);
InsertPoint = NI;
InsertedInsts.insert(NI);
// Update the use for the new instruction, making sure that we update the
// sunk instruction uses, if it is part of a chain that has already been
// sunk.
Instruction *OldI = cast<Instruction>(U->getUser());
if (NewInstructions.count(OldI))
NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
else
U->set(NI);
Changed = true;
}
// Remove instructions that are dead after sinking.
for (auto *I : MaybeDead) {
if (!I->hasNUsesOrMore(1)) {
LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
I->eraseFromParent();
}
}
return Changed;
}
bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
if (!TLI || !DL)
return false;
Value *Cond = SI->getCondition();
Type *OldType = Cond->getType();
LLVMContext &Context = Cond->getContext();
MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
unsigned RegWidth = RegType.getSizeInBits();
if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
return false;
// If the register width is greater than the type width, expand the condition
// of the switch instruction and each case constant to the width of the
// register. By widening the type of the switch condition, subsequent
// comparisons (for case comparisons) will not need to be extended to the
// preferred register width, so we will potentially eliminate N-1 extends,
// where N is the number of cases in the switch.
auto *NewType = Type::getIntNTy(Context, RegWidth);
// Zero-extend the switch condition and case constants unless the switch
// condition is a function argument that is already being sign-extended.
// In that case, we can avoid an unnecessary mask/extension by sign-extending
// everything instead.
Instruction::CastOps ExtType = Instruction::ZExt;
if (auto *Arg = dyn_cast<Argument>(Cond))
if (Arg->hasSExtAttr())
ExtType = Instruction::SExt;
auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
ExtInst->insertBefore(SI);
ExtInst->setDebugLoc(SI->getDebugLoc());
SI->setCondition(ExtInst);
for (auto Case : SI->cases()) {
APInt NarrowConst = Case.getCaseValue()->getValue();
APInt WideConst = (ExtType == Instruction::ZExt) ?
NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
Case.setValue(ConstantInt::get(Context, WideConst));
}
return true;
}
namespace {
/// Helper class to promote a scalar operation to a vector one.
/// This class is used to move downward extractelement transition.
/// E.g.,
/// a = vector_op <2 x i32>
/// b = extractelement <2 x i32> a, i32 0
/// c = scalar_op b
/// store c
///
/// =>
/// a = vector_op <2 x i32>
/// c = vector_op a (equivalent to scalar_op on the related lane)
/// * d = extractelement <2 x i32> c, i32 0
/// * store d
/// Assuming both extractelement and store can be combine, we get rid of the
/// transition.
class VectorPromoteHelper {
/// DataLayout associated with the current module.
const DataLayout &DL;
/// Used to perform some checks on the legality of vector operations.
const TargetLowering &TLI;
/// Used to estimated the cost of the promoted chain.
const TargetTransformInfo &TTI;
/// The transition being moved downwards.
Instruction *Transition;
/// The sequence of instructions to be promoted.
SmallVector<Instruction *, 4> InstsToBePromoted;
/// Cost of combining a store and an extract.
unsigned StoreExtractCombineCost;
/// Instruction that will be combined with the transition.
Instruction *CombineInst = nullptr;
/// The instruction that represents the current end of the transition.
/// Since we are faking the promotion until we reach the end of the chain
/// of computation, we need a way to get the current end of the transition.
Instruction *getEndOfTransition() const {
if (InstsToBePromoted.empty())
return Transition;
return InstsToBePromoted.back();
}
/// Return the index of the original value in the transition.
/// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
/// c, is at index 0.
unsigned getTransitionOriginalValueIdx() const {
assert(isa<ExtractElementInst>(Transition) &&
"Other kind of transitions are not supported yet");
return 0;
}
/// Return the index of the index in the transition.
/// E.g., for "extractelement <2 x i32> c, i32 0" the index
/// is at index 1.
unsigned getTransitionIdx() const {
assert(isa<ExtractElementInst>(Transition) &&
"Other kind of transitions are not supported yet");
return 1;
}
/// Get the type of the transition.
/// This is the type of the original value.
/// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
/// transition is <2 x i32>.
Type *getTransitionType() const {
return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
}
/// Promote \p ToBePromoted by moving \p Def downward through.
/// I.e., we have the following sequence:
/// Def = Transition <ty1> a to <ty2>
/// b = ToBePromoted <ty2> Def, ...
/// =>
/// b = ToBePromoted <ty1> a, ...
/// Def = Transition <ty1> ToBePromoted to <ty2>
void promoteImpl(Instruction *ToBePromoted);
/// Check whether or not it is profitable to promote all the
/// instructions enqueued to be promoted.
bool isProfitableToPromote() {
Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
unsigned Index = isa<ConstantInt>(ValIdx)
? cast<ConstantInt>(ValIdx)->getZExtValue()
: -1;
Type *PromotedType = getTransitionType();
StoreInst *ST = cast<StoreInst>(CombineInst);
unsigned AS = ST->getPointerAddressSpace();
unsigned Align = ST->getAlignment();
// Check if this store is supported.
if (!TLI.allowsMisalignedMemoryAccesses(
TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
Align)) {
// If this is not supported, there is no way we can combine
// the extract with the store.
return false;
}
// The scalar chain of computation has to pay for the transition
// scalar to vector.
// The vector chain has to account for the combining cost.
uint64_t ScalarCost =
TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
uint64_t VectorCost = StoreExtractCombineCost;
for (const auto &Inst : InstsToBePromoted) {
// Compute the cost.
// By construction, all instructions being promoted are arithmetic ones.
// Moreover, one argument is a constant that can be viewed as a splat
// constant.
Value *Arg0 = Inst->getOperand(0);
bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
isa<ConstantFP>(Arg0);
TargetTransformInfo::OperandValueKind Arg0OVK =
IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
: TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Arg1OVK =
!IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
: TargetTransformInfo::OK_AnyValue;
ScalarCost += TTI.getArithmeticInstrCost(
Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
Arg0OVK, Arg1OVK);
}
LLVM_DEBUG(
dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
<< ScalarCost << "\nVector: " << VectorCost << '\n');
return ScalarCost > VectorCost;
}
/// Generate a constant vector with \p Val with the same
/// number of elements as the transition.
/// \p UseSplat defines whether or not \p Val should be replicated
/// across the whole vector.
/// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
/// otherwise we generate a vector with as many undef as possible:
/// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
/// used at the index of the extract.
Value *getConstantVector(Constant *Val, bool UseSplat) const {
unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
if (!UseSplat) {
// If we cannot determine where the constant must be, we have to
// use a splat constant.
Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
ExtractIdx = CstVal->getSExtValue();
else
UseSplat = true;
}
unsigned End = getTransitionType()->getVectorNumElements();
if (UseSplat)
return ConstantVector::getSplat(End, Val);
SmallVector<Constant *, 4> ConstVec;
UndefValue *UndefVal = UndefValue::get(Val->getType());
for (unsigned Idx = 0; Idx != End; ++Idx) {
if (Idx == ExtractIdx)
ConstVec.push_back(Val);
else
ConstVec.push_back(UndefVal);
}
return ConstantVector::get(ConstVec);
}
/// Check if promoting to a vector type an operand at \p OperandIdx
/// in \p Use can trigger undefined behavior.
static bool canCauseUndefinedBehavior(const Instruction *Use,
unsigned OperandIdx) {
// This is not safe to introduce undef when the operand is on
// the right hand side of a division-like instruction.
if (OperandIdx != 1)
return false;
switch (Use->getOpcode()) {
default:
return false;
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
return true;
case Instruction::FDiv:
case Instruction::FRem:
return !Use->hasNoNaNs();
}
llvm_unreachable(nullptr);
}
public:
VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
const TargetTransformInfo &TTI, Instruction *Transition,
unsigned CombineCost)
: DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
StoreExtractCombineCost(CombineCost) {
assert(Transition && "Do not know how to promote null");
}
/// Check if we can promote \p ToBePromoted to \p Type.
bool canPromote(const Instruction *ToBePromoted) const {
// We could support CastInst too.
return isa<BinaryOperator>(ToBePromoted);
}
/// Check if it is profitable to promote \p ToBePromoted
/// by moving downward the transition through.
bool shouldPromote(const Instruction *ToBePromoted) const {
// Promote only if all the operands can be statically expanded.
// Indeed, we do not want to introduce any new kind of transitions.
for (const Use &U : ToBePromoted->operands()) {
const Value *Val = U.get();
if (Val == getEndOfTransition()) {
// If the use is a division and the transition is on the rhs,
// we cannot promote the operation, otherwise we may create a
// division by zero.
if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
return false;
continue;
}
if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
!isa<ConstantFP>(Val))
return false;
}
// Check that the resulting operation is legal.
int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
if (!ISDOpcode)
return false;
return StressStoreExtract ||
TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
}
/// Check whether or not \p Use can be combined
/// with the transition.
/// I.e., is it possible to do Use(Transition) => AnotherUse?
bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
/// Record \p ToBePromoted as part of the chain to be promoted.
void enqueueForPromotion(Instruction *ToBePromoted) {
InstsToBePromoted.push_back(ToBePromoted);
}
/// Set the instruction that will be combined with the transition.
void recordCombineInstruction(Instruction *ToBeCombined) {
assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
CombineInst = ToBeCombined;
}
/// Promote all the instructions enqueued for promotion if it is
/// is profitable.
/// \return True if the promotion happened, false otherwise.
bool promote() {
// Check if there is something to promote.
// Right now, if we do not have anything to combine with,
// we assume the promotion is not profitable.
if (InstsToBePromoted.empty() || !CombineInst)
return false;
// Check cost.
if (!StressStoreExtract && !isProfitableToPromote())
return false;
// Promote.
for (auto &ToBePromoted : InstsToBePromoted)
promoteImpl(ToBePromoted);
InstsToBePromoted.clear();
return true;
}
};
} // end anonymous namespace
void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
// At this point, we know that all the operands of ToBePromoted but Def
// can be statically promoted.
// For Def, we need to use its parameter in ToBePromoted:
// b = ToBePromoted ty1 a
// Def = Transition ty1 b to ty2
// Move the transition down.
// 1. Replace all uses of the promoted operation by the transition.
// = ... b => = ... Def.
assert(ToBePromoted->getType() == Transition->getType() &&
"The type of the result of the transition does not match "
"the final type");
ToBePromoted->replaceAllUsesWith(Transition);
// 2. Update the type of the uses.
// b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
Type *TransitionTy = getTransitionType();
ToBePromoted->mutateType(TransitionTy);
// 3. Update all the operands of the promoted operation with promoted
// operands.
// b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
for (Use &U : ToBePromoted->operands()) {
Value *Val = U.get();
Value *NewVal = nullptr;
if (Val == Transition)
NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
isa<ConstantFP>(Val)) {
// Use a splat constant if it is not safe to use undef.
NewVal = getConstantVector(
cast<Constant>(Val),
isa<UndefValue>(Val) ||
canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
} else
llvm_unreachable("Did you modified shouldPromote and forgot to update "
"this?");
ToBePromoted->setOperand(U.getOperandNo(), NewVal);
}
Transition->moveAfter(ToBePromoted);
Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
}
/// Some targets can do store(extractelement) with one instruction.
/// Try to push the extractelement towards the stores when the target
/// has this feature and this is profitable.
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
unsigned CombineCost = std::numeric_limits<unsigned>::max();
if (DisableStoreExtract || !TLI ||
(!StressStoreExtract &&
!TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
Inst->getOperand(1), CombineCost)))
return false;
// At this point we know that Inst is a vector to scalar transition.
// Try to move it down the def-use chain, until:
// - We can combine the transition with its single use
// => we got rid of the transition.
// - We escape the current basic block
// => we would need to check that we are moving it at a cheaper place and
// we do not do that for now.
BasicBlock *Parent = Inst->getParent();
LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
// If the transition has more than one use, assume this is not going to be
// beneficial.
while (Inst->hasOneUse()) {
Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
if (ToBePromoted->getParent() != Parent) {
LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
<< ToBePromoted->getParent()->getName()
<< ") than the transition (" << Parent->getName()
<< ").\n");
return false;
}
if (VPH.canCombine(ToBePromoted)) {
LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
<< "will be combined with: " << *ToBePromoted << '\n');
VPH.recordCombineInstruction(ToBePromoted);
bool Changed = VPH.promote();
NumStoreExtractExposed += Changed;
return Changed;
}
LLVM_DEBUG(dbgs() << "Try promoting.\n");
if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
return false;
LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
VPH.enqueueForPromotion(ToBePromoted);
Inst = ToBePromoted;
}
return false;
}
/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficient to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
/// (store (or (zext (bitcast F to i32) to i64),
/// (shl (zext I to i64), 32)), addr) -->
/// (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8}, i32 store --> two i16 stores.
/// For pair of {i8, i8}, i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
/// void goo(const std::pair<int, float> &);
/// hoo() {
/// ...
/// goo(std::make_pair(tmp, ftmp));
/// ...
/// }
///
/// Although we already have similar splitting in DAG Combine, we duplicate
/// it in CodeGenPrepare to catch the case in which pattern is across
/// multiple BBs. The logic in DAG Combine is kept to catch case generated
/// during code expansion.
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
const TargetLowering &TLI) {
// Handle simple but common cases only.
Type *StoreType = SI.getValueOperand()->getType();
if (!DL.typeSizeEqualsStoreSize(StoreType) ||
DL.getTypeSizeInBits(StoreType) == 0)
return false;
unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
return false;
// Don't split the store if it is volatile.
if (SI.isVolatile())
return false;
// Match the following patterns:
// (store (or (zext LValue to i64),
// (shl (zext HValue to i64), 32)), HalfValBitSize)
// or
// (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
// (zext LValue to i64),
// Expect both operands of OR and the first operand of SHL have only
// one use.
Value *LValue, *HValue;
if (!match(SI.getValueOperand(),
m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
m_SpecificInt(HalfValBitSize))))))
return false;
// Check LValue and HValue are int with size less or equal than 32.
if (!LValue->getType()->isIntegerTy() ||
DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
!HValue->getType()->isIntegerTy() ||
DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
return false;
// If LValue/HValue is a bitcast instruction, use the EVT before bitcast
// as the input of target query.
auto *LBC = dyn_cast<BitCastInst>(LValue);
auto *HBC = dyn_cast<BitCastInst>(HValue);
EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
: EVT::getEVT(LValue->getType());
EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
: EVT::getEVT(HValue->getType());
if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
return false;
// Start to split store.
IRBuilder<> Builder(SI.getContext());
Builder.SetInsertPoint(&SI);
// If LValue/HValue is a bitcast in another BB, create a new one in current
// BB so it may be merged with the splitted stores by dag combiner.
if (LBC && LBC->getParent() != SI.getParent())
LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
if (HBC && HBC->getParent() != SI.getParent())
HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
auto CreateSplitStore = [&](Value *V, bool Upper) {
V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
Value *Addr = Builder.CreateBitCast(
SI.getOperand(1),
SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
if ((IsLE && Upper) || (!IsLE && !Upper))
Addr = Builder.CreateGEP(
SplitStoreType, Addr,
ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
Builder.CreateAlignedStore(
V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
};
CreateSplitStore(LValue, false);
CreateSplitStore(HValue, true);
// Delete the old store.
SI.eraseFromParent();
return true;
}
// Return true if the GEP has two operands, the first operand is of a sequential
// type, and the second operand is a constant.
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
gep_type_iterator I = gep_type_begin(*GEP);
return GEP->getNumOperands() == 2 &&
I.isSequential() &&
isa<ConstantInt>(GEP->getOperand(1));
}
// Try unmerging GEPs to reduce liveness interference (register pressure) across
// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
// reducing liveness interference across those edges benefits global register
// allocation. Currently handles only certain cases.
//
// For example, unmerge %GEPI and %UGEPI as below.
//
// ---------- BEFORE ----------
// SrcBlock:
// ...
// %GEPIOp = ...
// ...
// %GEPI = gep %GEPIOp, Idx
// ...
// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
// (* %GEPI is alive on the indirectbr edges due to other uses ahead)
// (* %GEPIOp is alive on the indirectbr edges only because of it's used by
// %UGEPI)
//
// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
// ...
//
// DstBi:
// ...
// %UGEPI = gep %GEPIOp, UIdx
// ...
// ---------------------------
//
// ---------- AFTER ----------
// SrcBlock:
// ... (same as above)
// (* %GEPI is still alive on the indirectbr edges)
// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
// unmerging)
// ...
//
// DstBi:
// ...
// %UGEPI = gep %GEPI, (UIdx-Idx)
// ...
// ---------------------------
//
// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
// no longer alive on them.
//
// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
// not to disable further simplications and optimizations as a result of GEP
// merging.
//
// Note this unmerging may increase the length of the data flow critical path
// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
// between the register pressure and the length of data-flow critical
// path. Restricting this to the uncommon IndirectBr case would minimize the
// impact of potentially longer critical path, if any, and the impact on compile
// time.
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
const TargetTransformInfo *TTI) {
BasicBlock *SrcBlock = GEPI->getParent();
// Check that SrcBlock ends with an IndirectBr. If not, give up. The common
// (non-IndirectBr) cases exit early here.
if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
return false;
// Check that GEPI is a simple gep with a single constant index.
if (!GEPSequentialConstIndexed(GEPI))
return false;
ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
// Check that GEPI is a cheap one.
if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
> TargetTransformInfo::TCC_Basic)
return false;
Value *GEPIOp = GEPI->getOperand(0);
// Check that GEPIOp is an instruction that's also defined in SrcBlock.
if (!isa<Instruction>(GEPIOp))
return false;
auto *GEPIOpI = cast<Instruction>(GEPIOp);
if (GEPIOpI->getParent() != SrcBlock)
return false;
// Check that GEP is used outside the block, meaning it's alive on the
// IndirectBr edge(s).
if (find_if(GEPI->users(), [&](User *Usr) {
if (auto *I = dyn_cast<Instruction>(Usr)) {
if (I->getParent() != SrcBlock) {
return true;
}
}
return false;
}) == GEPI->users().end())
return false;
// The second elements of the GEP chains to be unmerged.
std::vector<GetElementPtrInst *> UGEPIs;
// Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
// on IndirectBr edges.
for (User *Usr : GEPIOp->users()) {
if (Usr == GEPI) continue;
// Check if Usr is an Instruction. If not, give up.
if (!isa<Instruction>(Usr))
return false;
auto *UI = cast<Instruction>(Usr);
// Check if Usr in the same block as GEPIOp, which is fine, skip.
if (UI->getParent() == SrcBlock)
continue;
// Check if Usr is a GEP. If not, give up.
if (!isa<GetElementPtrInst>(Usr))
return false;
auto *UGEPI = cast<GetElementPtrInst>(Usr);
// Check if UGEPI is a simple gep with a single constant index and GEPIOp is
// the pointer operand to it. If so, record it in the vector. If not, give
// up.
if (!GEPSequentialConstIndexed(UGEPI))
return false;
if (UGEPI->getOperand(0) != GEPIOp)
return false;
if (GEPIIdx->getType() !=
cast<ConstantInt>(UGEPI->getOperand(1))->getType())
return false;
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
> TargetTransformInfo::TCC_Basic)
return false;
UGEPIs.push_back(UGEPI);
}
if (UGEPIs.size() == 0)
return false;
// Check the materializing cost of (Uidx-Idx).
for (GetElementPtrInst *UGEPI : UGEPIs) {
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
if (ImmCost > TargetTransformInfo::TCC_Basic)
return false;
}
// Now unmerge between GEPI and UGEPIs.
for (GetElementPtrInst *UGEPI : UGEPIs) {
UGEPI->setOperand(0, GEPI);
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
Constant *NewUGEPIIdx =
ConstantInt::get(GEPIIdx->getType(),
UGEPIIdx->getValue() - GEPIIdx->getValue());
UGEPI->setOperand(1, NewUGEPIIdx);
// If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
// inbounds to avoid UB.
if (!GEPI->isInBounds()) {
UGEPI->setIsInBounds(false);
}
}
// After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
// alive on IndirectBr edges).
assert(find_if(GEPIOp->users(), [&](User *Usr) {
return cast<Instruction>(Usr)->getParent() != SrcBlock;
}) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
return true;
}
bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
// Bail out if we inserted the instruction to prevent optimizations from
// stepping on each other's toes.
if (InsertedInsts.count(I))
return false;
// TODO: Move into the switch on opcode below here.
if (PHINode *P = dyn_cast<PHINode>(I)) {
// It is possible for very late stage optimizations (such as SimplifyCFG)
// to introduce PHI nodes too late to be cleaned up. If we detect such a
// trivial PHI, go ahead and zap it here.
if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
LargeOffsetGEPMap.erase(P);
P->replaceAllUsesWith(V);
P->eraseFromParent();
++NumPHIsElim;
return true;
}
return false;
}
if (CastInst *CI = dyn_cast<CastInst>(I)) {
// If the source of the cast is a constant, then this should have
// already been constant folded. The only reason NOT to constant fold
// it is if something (e.g. LSR) was careful to place the constant
// evaluation in a block other than then one that uses it (e.g. to hoist
// the address of globals out of a loop). If this is the case, we don't
// want to forward-subst the cast.
if (isa<Constant>(CI->getOperand(0)))
return false;
if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
return true;
if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
/// Sink a zext or sext into its user blocks if the target type doesn't
/// fit in one register
if (TLI &&
TLI->getTypeAction(CI->getContext(),
TLI->getValueType(*DL, CI->getType())) ==
TargetLowering::TypeExpandInteger) {
return SinkCast(CI);
} else {
bool MadeChange = optimizeExt(I);
return MadeChange | optimizeExtUses(I);
}
}
return false;
}
if (auto *Cmp = dyn_cast<CmpInst>(I))
if (TLI && optimizeCmp(Cmp, ModifiedDT))
return true;
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
if (TLI) {
bool Modified = optimizeLoadExt(LI);
unsigned AS = LI->getPointerAddressSpace();
Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
return Modified;
}
return false;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (TLI && splitMergedValStore(*SI, *DL, *TLI))
return true;
SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
if (TLI) {
unsigned AS = SI->getPointerAddressSpace();
return optimizeMemoryInst(I, SI->getOperand(1),
SI->getOperand(0)->getType(), AS);
}
return false;
}
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
unsigned AS = RMW->getPointerAddressSpace();
return optimizeMemoryInst(I, RMW->getPointerOperand(),
RMW->getType(), AS);
}
if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
unsigned AS = CmpX->getPointerAddressSpace();
return optimizeMemoryInst(I, CmpX->getPointerOperand(),
CmpX->getCompareOperand()->getType(), AS);
}
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
EnableAndCmpSinking && TLI)
return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
// TODO: Move this into the switch on opcode - it handles shifts already.
if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
BinOp->getOpcode() == Instruction::LShr)) {
ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
if (TLI && CI && TLI->hasExtractBitsInsn())
if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
return true;
}
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
if (GEPI->hasAllZeroIndices()) {
/// The GEP operand must be a pointer, so must its result -> BitCast
Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
GEPI->getName(), GEPI);
NC->setDebugLoc(GEPI->getDebugLoc());
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
++NumGEPsElim;
optimizeInst(NC, ModifiedDT);
return true;
}
if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
return true;
}
return false;
}
if (tryToSinkFreeOperands(I))
return true;
switch (I->getOpcode()) {
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
return optimizeShiftInst(cast<BinaryOperator>(I));
case Instruction::Call:
return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
case Instruction::Select:
return optimizeSelectInst(cast<SelectInst>(I));
case Instruction::ShuffleVector:
return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
case Instruction::Switch:
return optimizeSwitchInst(cast<SwitchInst>(I));
case Instruction::ExtractElement:
return optimizeExtractElementInst(cast<ExtractElementInst>(I));
}
return false;
}
/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
static bool makeBitReverse(Instruction &I, const DataLayout &DL,
const TargetLowering &TLI) {
if (!I.getType()->isIntegerTy() ||
!TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
TLI.getValueType(DL, I.getType(), true)))
return false;
SmallVector<Instruction*, 4> Insts;
if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
return false;
Instruction *LastInst = Insts.back();
I.replaceAllUsesWith(LastInst);
RecursivelyDeleteTriviallyDeadInstructions(&I);
return true;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
SunkAddrs.clear();
bool MadeChange = false;
CurInstIterator = BB.begin();
while (CurInstIterator != BB.end()) {
MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
if (ModifiedDT)
return true;
}
bool MadeBitReverse = true;
while (TLI && MadeBitReverse) {
MadeBitReverse = false;
for (auto &I : reverse(BB)) {
if (makeBitReverse(I, *DL, *TLI)) {
MadeBitReverse = MadeChange = true;
break;
}
}
}
MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
return MadeChange;
}
// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
bool CodeGenPrepare::placeDbgValues(Function &F) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
Instruction *PrevNonDbgInst = nullptr;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
Instruction *Insn = &*BI++;
DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
// Leave dbg.values that refer to an alloca alone. These
// intrinsics describe the address of a variable (= the alloca)
// being taken. They should not be moved next to the alloca
// (and to the beginning of the scope), but rather stay close to
// where said address is used.
if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
PrevNonDbgInst = Insn;
continue;
}
Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
// If VI is a phi in a block with an EHPad terminator, we can't insert
// after it.
if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
continue;
LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
<< *DVI << ' ' << *VI);
DVI->removeFromParent();
if (isa<PHINode>(VI))
DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
else
DVI->insertAfter(VI);
MadeChange = true;
++NumDbgValueMoved;
}
}
}
return MadeChange;
}
/// Scale down both weights to fit into uint32_t.
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
NewTrue = NewTrue / Scale;
NewFalse = NewFalse / Scale;
}
/// Some targets prefer to split a conditional branch like:
/// \code
/// %0 = icmp ne i32 %a, 0
/// %1 = icmp ne i32 %b, 0
/// %or.cond = or i1 %0, %1
/// br i1 %or.cond, label %TrueBB, label %FalseBB
/// \endcode
/// into multiple branch instructions like:
/// \code
/// bb1:
/// %0 = icmp ne i32 %a, 0
/// br i1 %0, label %TrueBB, label %bb2
/// bb2:
/// %1 = icmp ne i32 %b, 0
/// br i1 %1, label %TrueBB, label %FalseBB
/// \endcode
/// This usually allows instruction selection to do even further optimizations
/// and combine the compare with the branch instruction. Currently this is
/// applied for targets which have "cheap" jump instructions.
///
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
///
bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
return false;
bool MadeChange = false;
for (auto &BB : F) {
// Does this BB end with the following?
// %cond1 = icmp|fcmp|binary instruction ...
// %cond2 = icmp|fcmp|binary instruction ...
// %cond.or = or|and i1 %cond1, cond2
// br i1 %cond.or label %dest1, label %dest2"
BinaryOperator *LogicOp;
BasicBlock *TBB, *FBB;
if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
continue;
auto *Br1 = cast<BranchInst>(BB.getTerminator());
if (Br1->getMetadata(LLVMContext::MD_unpredictable))
continue;
unsigned Opc;
Value *Cond1, *Cond2;
if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
m_OneUse(m_Value(Cond2)))))
Opc = Instruction::And;
else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
m_OneUse(m_Value(Cond2)))))
Opc = Instruction::Or;
else
continue;
if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
!match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
continue;
LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
// Create a new BB.
auto TmpBB =
BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
BB.getParent(), BB.getNextNode());
// Update original basic block by using the first condition directly by the
// branch instruction and removing the no longer needed and/or instruction.
Br1->setCondition(Cond1);
LogicOp->eraseFromParent();
// Depending on the condition we have to either replace the true or the
// false successor of the original branch instruction.
if (Opc == Instruction::And)
Br1->setSuccessor(0, TmpBB);
else
Br1->setSuccessor(1, TmpBB);
// Fill in the new basic block.
auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
if (auto *I = dyn_cast<Instruction>(Cond2)) {
I->removeFromParent();
I->insertBefore(Br2);
}
// Update PHI nodes in both successors. The original BB needs to be
// replaced in one successor's PHI nodes, because the branch comes now from
// the newly generated BB (NewBB). In the other successor we need to add one
// incoming edge to the PHI nodes, because both branch instructions target
// now the same successor. Depending on the original branch condition
// (and/or) we have to swap the successors (TrueDest, FalseDest), so that
// we perform the correct update for the PHI nodes.
// This doesn't change the successor order of the just created branch
// instruction (or any other instruction).
if (Opc == Instruction::Or)
std::swap(TBB, FBB);
// Replace the old BB with the new BB.
TBB->replacePhiUsesWith(&BB, TmpBB);
// Add another incoming edge form the new BB.
for (PHINode &PN : FBB->phis()) {
auto *Val = PN.getIncomingValueForBlock(&BB);
PN.addIncoming(Val, TmpBB);
}
// Update the branch weights (from SelectionDAGBuilder::
// FindMergedConditions).
if (Opc == Instruction::Or) {
// Codegen X | Y as:
// BB1:
// jmp_if_X TBB
// jmp TmpBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// We have flexibility in setting Prob for BB1 and Prob for NewBB.
// The requirement is that
// TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
// = TrueProb for original BB.
// Assuming the original weights are A and B, one choice is to set BB1's
// weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
// assumes that
// TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
// Another choice is to assume TrueProb for BB1 equals to TrueProb for
// TmpBB, but the math is more complicated.
uint64_t TrueWeight, FalseWeight;
if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t NewTrueWeight = TrueWeight;
uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
NewTrueWeight = TrueWeight;
NewFalseWeight = 2 * FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
}
} else {
// Codegen X & Y as:
// BB1:
// jmp_if_X TmpBB
// jmp FBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// This requires creation of TmpBB after CurBB.
// We have flexibility in setting Prob for BB1 and Prob for TmpBB.
// The requirement is that
// FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
// = FalseProb for original BB.
// Assuming the original weights are A and B, one choice is to set BB1's
// weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
// assumes that
// FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
uint64_t TrueWeight, FalseWeight;
if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
uint64_t NewFalseWeight = FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
NewTrueWeight = 2 * TrueWeight;
NewFalseWeight = FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
}
}
ModifiedDT = true;
MadeChange = true;
LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
TmpBB->dump());
}
return MadeChange;
}
|