reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach. It should eventually be removed.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "codegenprepare"

STATISTIC(NumBlocksElim, "Number of blocks eliminated");
STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
                      "sunken Cmps");
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
                       "of sunken Casts");
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
                          "computations were sunk");
STATISTIC(NumMemoryInstsPhiCreated,
          "Number of phis created when address "
          "computations were sunk to memory instructions");
STATISTIC(NumMemoryInstsSelectCreated,
          "Number of select created when address "
          "computations were sunk to memory instructions");
STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
STATISTIC(NumAndsAdded,
          "Number of and mask instructions added to form ext loads");
STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");

static cl::opt<bool> DisableBranchOpts(
  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
  cl::desc("Disable branch optimizations in CodeGenPrepare"));

static cl::opt<bool>
    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
                  cl::desc("Disable GC optimizations in CodeGenPrepare"));

static cl::opt<bool> DisableSelectToBranch(
  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
  cl::desc("Disable select to branch conversion."));

static cl::opt<bool> AddrSinkUsingGEPs(
  "addr-sink-using-gep", cl::Hidden, cl::init(true),
  cl::desc("Address sinking in CGP using GEPs."));

static cl::opt<bool> EnableAndCmpSinking(
   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
   cl::desc("Enable sinkinig and/cmp into branches."));

static cl::opt<bool> DisableStoreExtract(
    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));

static cl::opt<bool> StressStoreExtract(
    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));

static cl::opt<bool> DisableExtLdPromotion(
    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
             "CodeGenPrepare"));

static cl::opt<bool> StressExtLdPromotion(
    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
             "optimization in CodeGenPrepare"));

static cl::opt<bool> DisablePreheaderProtect(
    "disable-preheader-prot", cl::Hidden, cl::init(false),
    cl::desc("Disable protection against removing loop preheaders"));

static cl::opt<bool> ProfileGuidedSectionPrefix(
    "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
    cl::desc("Use profile info to add section prefix for hot/cold functions"));

static cl::opt<unsigned> FreqRatioToSkipMerge(
    "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
    cl::desc("Skip merging empty blocks if (frequency of empty block) / "
             "(frequency of destination block) is greater than this ratio"));

static cl::opt<bool> ForceSplitStore(
    "force-split-store", cl::Hidden, cl::init(false),
    cl::desc("Force store splitting no matter what the target query says."));

static cl::opt<bool>
EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
    cl::desc("Enable merging of redundant sexts when one is dominating"
    " the other."), cl::init(true));

static cl::opt<bool> DisableComplexAddrModes(
    "disable-complex-addr-modes", cl::Hidden, cl::init(false),
    cl::desc("Disables combining addressing modes with different parts "
             "in optimizeMemoryInst."));

static cl::opt<bool>
AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
                cl::desc("Allow creation of Phis in Address sinking."));

static cl::opt<bool>
AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
                   cl::desc("Allow creation of selects in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseReg(
    "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseReg field in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseGV(
    "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseGV field in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseOffs(
    "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseOffs field in Address sinking."));

static cl::opt<bool> AddrSinkCombineScaledReg(
    "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of ScaledReg field in Address sinking."));

static cl::opt<bool>
    EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
                         cl::init(true),
                         cl::desc("Enable splitting large offset of GEP."));

namespace {

enum ExtType {
  ZeroExtension,   // Zero extension has been seen.
  SignExtension,   // Sign extension has been seen.
  BothExtension    // This extension type is used if we saw sext after
                   // ZeroExtension had been set, or if we saw zext after
                   // SignExtension had been set. It makes the type
                   // information of a promoted instruction invalid.
};

using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
using SExts = SmallVector<Instruction *, 16>;
using ValueToSExts = DenseMap<Value *, SExts>;

class TypePromotionTransaction;

  class CodeGenPrepare : public FunctionPass {
    const TargetMachine *TM = nullptr;
    const TargetSubtargetInfo *SubtargetInfo;
    const TargetLowering *TLI = nullptr;
    const TargetRegisterInfo *TRI;
    const TargetTransformInfo *TTI = nullptr;
    const TargetLibraryInfo *TLInfo;
    const LoopInfo *LI;
    std::unique_ptr<BlockFrequencyInfo> BFI;
    std::unique_ptr<BranchProbabilityInfo> BPI;

    /// As we scan instructions optimizing them, this is the next instruction
    /// to optimize. Transforms that can invalidate this should update it.
    BasicBlock::iterator CurInstIterator;

    /// Keeps track of non-local addresses that have been sunk into a block.
    /// This allows us to avoid inserting duplicate code for blocks with
    /// multiple load/stores of the same address. The usage of WeakTrackingVH
    /// enables SunkAddrs to be treated as a cache whose entries can be
    /// invalidated if a sunken address computation has been erased.
    ValueMap<Value*, WeakTrackingVH> SunkAddrs;

    /// Keeps track of all instructions inserted for the current function.
    SetOfInstrs InsertedInsts;

    /// Keeps track of the type of the related instruction before their
    /// promotion for the current function.
    InstrToOrigTy PromotedInsts;

    /// Keep track of instructions removed during promotion.
    SetOfInstrs RemovedInsts;

    /// Keep track of sext chains based on their initial value.
    DenseMap<Value *, Instruction *> SeenChainsForSExt;

    /// Keep track of GEPs accessing the same data structures such as structs or
    /// arrays that are candidates to be split later because of their large
    /// size.
    MapVector<
        AssertingVH<Value>,
        SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
        LargeOffsetGEPMap;

    /// Keep track of new GEP base after splitting the GEPs having large offset.
    SmallSet<AssertingVH<Value>, 2> NewGEPBases;

    /// Map serial numbers to Large offset GEPs.
    DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;

    /// Keep track of SExt promoted.
    ValueToSExts ValToSExtendedUses;

    /// True if optimizing for size.
    bool OptSize;

    /// DataLayout for the Function being processed.
    const DataLayout *DL = nullptr;

    /// Building the dominator tree can be expensive, so we only build it
    /// lazily and update it when required.
    std::unique_ptr<DominatorTree> DT;

  public:
    static char ID; // Pass identification, replacement for typeid

    CodeGenPrepare() : FunctionPass(ID) {
      initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    StringRef getPassName() const override { return "CodeGen Prepare"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      // FIXME: When we can selectively preserve passes, preserve the domtree.
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      AU.addRequired<LoopInfoWrapperPass>();
    }

  private:
    template <typename F>
    void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
      // Substituting can cause recursive simplifications, which can invalidate
      // our iterator.  Use a WeakTrackingVH to hold onto it in case this
      // happens.
      Value *CurValue = &*CurInstIterator;
      WeakTrackingVH IterHandle(CurValue);

      f();

      // If the iterator instruction was recursively deleted, start over at the
      // start of the block.
      if (IterHandle != CurValue) {
        CurInstIterator = BB->begin();
        SunkAddrs.clear();
      }
    }

    // Get the DominatorTree, building if necessary.
    DominatorTree &getDT(Function &F) {
      if (!DT)
        DT = std::make_unique<DominatorTree>(F);
      return *DT;
    }

    bool eliminateFallThrough(Function &F);
    bool eliminateMostlyEmptyBlocks(Function &F);
    BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
    bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    void eliminateMostlyEmptyBlock(BasicBlock *BB);
    bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
                                       bool isPreheader);
    bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
    bool optimizeInst(Instruction *I, bool &ModifiedDT);
    bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
                            Type *AccessTy, unsigned AddrSpace);
    bool optimizeInlineAsmInst(CallInst *CS);
    bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
    bool optimizeExt(Instruction *&I);
    bool optimizeExtUses(Instruction *I);
    bool optimizeLoadExt(LoadInst *Load);
    bool optimizeShiftInst(BinaryOperator *BO);
    bool optimizeSelectInst(SelectInst *SI);
    bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
    bool optimizeSwitchInst(SwitchInst *SI);
    bool optimizeExtractElementInst(Instruction *Inst);
    bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
    bool placeDbgValues(Function &F);
    bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
                      LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
    bool tryToPromoteExts(TypePromotionTransaction &TPT,
                          const SmallVectorImpl<Instruction *> &Exts,
                          SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
                          unsigned CreatedInstsCost = 0);
    bool mergeSExts(Function &F);
    bool splitLargeGEPOffsets();
    bool performAddressTypePromotion(
        Instruction *&Inst,
        bool AllowPromotionWithoutCommonHeader,
        bool HasPromoted, TypePromotionTransaction &TPT,
        SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
    bool splitBranchCondition(Function &F, bool &ModifiedDT);
    bool simplifyOffsetableRelocate(Instruction &I);

    bool tryToSinkFreeOperands(Instruction *I);
    bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
                                     Intrinsic::ID IID);
    bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
    bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
    bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
  };

} // end anonymous namespace

char CodeGenPrepare::ID = 0;

INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
                      "Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
                    "Optimize for code generation", false, false)

FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }

bool CodeGenPrepare::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DL = &F.getParent()->getDataLayout();

  bool EverMadeChange = false;
  // Clear per function information.
  InsertedInsts.clear();
  PromotedInsts.clear();

  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
    TM = &TPC->getTM<TargetMachine>();
    SubtargetInfo = TM->getSubtargetImpl(F);
    TLI = SubtargetInfo->getTargetLowering();
    TRI = SubtargetInfo->getRegisterInfo();
  }
  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  BPI.reset(new BranchProbabilityInfo(F, *LI));
  BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
  OptSize = F.hasOptSize();

  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  if (ProfileGuidedSectionPrefix) {
    if (PSI->isFunctionHotInCallGraph(&F, *BFI))
      F.setSectionPrefix(".hot");
    else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
      F.setSectionPrefix(".unlikely");
  }

  /// This optimization identifies DIV instructions that can be
  /// profitably bypassed and carried out with a shorter, faster divide.
  if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
      TLI->isSlowDivBypassed()) {
    const DenseMap<unsigned int, unsigned int> &BypassWidths =
       TLI->getBypassSlowDivWidths();
    BasicBlock* BB = &*F.begin();
    while (BB != nullptr) {
      // bypassSlowDivision may create new BBs, but we don't want to reapply the
      // optimization to those blocks.
      BasicBlock* Next = BB->getNextNode();
      EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
      BB = Next;
    }
  }

  // Eliminate blocks that contain only PHI nodes and an
  // unconditional branch.
  EverMadeChange |= eliminateMostlyEmptyBlocks(F);

  bool ModifiedDT = false;
  if (!DisableBranchOpts)
    EverMadeChange |= splitBranchCondition(F, ModifiedDT);

  // Split some critical edges where one of the sources is an indirect branch,
  // to help generate sane code for PHIs involving such edges.
  EverMadeChange |= SplitIndirectBrCriticalEdges(F);

  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    DT.reset();
    for (Function::iterator I = F.begin(); I != F.end(); ) {
      BasicBlock *BB = &*I++;
      bool ModifiedDTOnIteration = false;
      MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);

      // Restart BB iteration if the dominator tree of the Function was changed
      if (ModifiedDTOnIteration)
        break;
    }
    if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
      MadeChange |= mergeSExts(F);
    if (!LargeOffsetGEPMap.empty())
      MadeChange |= splitLargeGEPOffsets();

    // Really free removed instructions during promotion.
    for (Instruction *I : RemovedInsts)
      I->deleteValue();

    EverMadeChange |= MadeChange;
    SeenChainsForSExt.clear();
    ValToSExtendedUses.clear();
    RemovedInsts.clear();
    LargeOffsetGEPMap.clear();
    LargeOffsetGEPID.clear();
  }

  SunkAddrs.clear();

  if (!DisableBranchOpts) {
    MadeChange = false;
    // Use a set vector to get deterministic iteration order. The order the
    // blocks are removed may affect whether or not PHI nodes in successors
    // are removed.
    SmallSetVector<BasicBlock*, 8> WorkList;
    for (BasicBlock &BB : F) {
      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
      MadeChange |= ConstantFoldTerminator(&BB, true);
      if (!MadeChange) continue;

      for (SmallVectorImpl<BasicBlock*>::iterator
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
        if (pred_begin(*II) == pred_end(*II))
          WorkList.insert(*II);
    }

    // Delete the dead blocks and any of their dead successors.
    MadeChange |= !WorkList.empty();
    while (!WorkList.empty()) {
      BasicBlock *BB = WorkList.pop_back_val();
      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));

      DeleteDeadBlock(BB);

      for (SmallVectorImpl<BasicBlock*>::iterator
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
        if (pred_begin(*II) == pred_end(*II))
          WorkList.insert(*II);
    }

    // Merge pairs of basic blocks with unconditional branches, connected by
    // a single edge.
    if (EverMadeChange || MadeChange)
      MadeChange |= eliminateFallThrough(F);

    EverMadeChange |= MadeChange;
  }

  if (!DisableGCOpts) {
    SmallVector<Instruction *, 2> Statepoints;
    for (BasicBlock &BB : F)
      for (Instruction &I : BB)
        if (isStatepoint(I))
          Statepoints.push_back(&I);
    for (auto &I : Statepoints)
      EverMadeChange |= simplifyOffsetableRelocate(*I);
  }

  // Do this last to clean up use-before-def scenarios introduced by other
  // preparatory transforms.
  EverMadeChange |= placeDbgValues(F);

  return EverMadeChange;
}

/// Merge basic blocks which are connected by a single edge, where one of the
/// basic blocks has a single successor pointing to the other basic block,
/// which has a single predecessor.
bool CodeGenPrepare::eliminateFallThrough(Function &F) {
  bool Changed = false;
  // Scan all of the blocks in the function, except for the entry block.
  // Use a temporary array to avoid iterator being invalidated when
  // deleting blocks.
  SmallVector<WeakTrackingVH, 16> Blocks;
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
    Blocks.push_back(&Block);

  for (auto &Block : Blocks) {
    auto *BB = cast_or_null<BasicBlock>(Block);
    if (!BB)
      continue;
    // If the destination block has a single pred, then this is a trivial
    // edge, just collapse it.
    BasicBlock *SinglePred = BB->getSinglePredecessor();

    // Don't merge if BB's address is taken.
    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;

    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    if (Term && !Term->isConditional()) {
      Changed = true;
      LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");

      // Merge BB into SinglePred and delete it.
      MergeBlockIntoPredecessor(BB);
    }
  }
  return Changed;
}

/// Find a destination block from BB if BB is mergeable empty block.
BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
  // If this block doesn't end with an uncond branch, ignore it.
  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isUnconditional())
    return nullptr;

  // If the instruction before the branch (skipping debug info) isn't a phi
  // node, then other stuff is happening here.
  BasicBlock::iterator BBI = BI->getIterator();
  if (BBI != BB->begin()) {
    --BBI;
    while (isa<DbgInfoIntrinsic>(BBI)) {
      if (BBI == BB->begin())
        break;
      --BBI;
    }
    if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
      return nullptr;
  }

  // Do not break infinite loops.
  BasicBlock *DestBB = BI->getSuccessor(0);
  if (DestBB == BB)
    return nullptr;

  if (!canMergeBlocks(BB, DestBB))
    DestBB = nullptr;

  return DestBB;
}

/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
/// blocks so we can split them the way we want them.
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
  SmallPtrSet<BasicBlock *, 16> Preheaders;
  SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
  while (!LoopList.empty()) {
    Loop *L = LoopList.pop_back_val();
    LoopList.insert(LoopList.end(), L->begin(), L->end());
    if (BasicBlock *Preheader = L->getLoopPreheader())
      Preheaders.insert(Preheader);
  }

  bool MadeChange = false;
  // Copy blocks into a temporary array to avoid iterator invalidation issues
  // as we remove them.
  // Note that this intentionally skips the entry block.
  SmallVector<WeakTrackingVH, 16> Blocks;
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
    Blocks.push_back(&Block);

  for (auto &Block : Blocks) {
    BasicBlock *BB = cast_or_null<BasicBlock>(Block);
    if (!BB)
      continue;
    BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
    if (!DestBB ||
        !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
      continue;

    eliminateMostlyEmptyBlock(BB);
    MadeChange = true;
  }
  return MadeChange;
}

bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
                                                   BasicBlock *DestBB,
                                                   bool isPreheader) {
  // Do not delete loop preheaders if doing so would create a critical edge.
  // Loop preheaders can be good locations to spill registers. If the
  // preheader is deleted and we create a critical edge, registers may be
  // spilled in the loop body instead.
  if (!DisablePreheaderProtect && isPreheader &&
      !(BB->getSinglePredecessor() &&
        BB->getSinglePredecessor()->getSingleSuccessor()))
    return false;

  // Skip merging if the block's successor is also a successor to any callbr
  // that leads to this block.
  // FIXME: Is this really needed? Is this a correctness issue?
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
      for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
        if (DestBB == CBI->getSuccessor(i))
          return false;
  }

  // Try to skip merging if the unique predecessor of BB is terminated by a
  // switch or indirect branch instruction, and BB is used as an incoming block
  // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
  // add COPY instructions in the predecessor of BB instead of BB (if it is not
  // merged). Note that the critical edge created by merging such blocks wont be
  // split in MachineSink because the jump table is not analyzable. By keeping
  // such empty block (BB), ISel will place COPY instructions in BB, not in the
  // predecessor of BB.
  BasicBlock *Pred = BB->getUniquePredecessor();
  if (!Pred ||
      !(isa<SwitchInst>(Pred->getTerminator()) ||
        isa<IndirectBrInst>(Pred->getTerminator())))
    return true;

  if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
    return true;

  // We use a simple cost heuristic which determine skipping merging is
  // profitable if the cost of skipping merging is less than the cost of
  // merging : Cost(skipping merging) < Cost(merging BB), where the
  // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
  // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
  // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
  //   Freq(Pred) / Freq(BB) > 2.
  // Note that if there are multiple empty blocks sharing the same incoming
  // value for the PHIs in the DestBB, we consider them together. In such
  // case, Cost(merging BB) will be the sum of their frequencies.

  if (!isa<PHINode>(DestBB->begin()))
    return true;

  SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;

  // Find all other incoming blocks from which incoming values of all PHIs in
  // DestBB are the same as the ones from BB.
  for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
       ++PI) {
    BasicBlock *DestBBPred = *PI;
    if (DestBBPred == BB)
      continue;

    if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
          return DestPN.getIncomingValueForBlock(BB) ==
                 DestPN.getIncomingValueForBlock(DestBBPred);
        }))
      SameIncomingValueBBs.insert(DestBBPred);
  }

  // See if all BB's incoming values are same as the value from Pred. In this
  // case, no reason to skip merging because COPYs are expected to be place in
  // Pred already.
  if (SameIncomingValueBBs.count(Pred))
    return true;

  BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
  BlockFrequency BBFreq = BFI->getBlockFreq(BB);

  for (auto SameValueBB : SameIncomingValueBBs)
    if (SameValueBB->getUniquePredecessor() == Pred &&
        DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
      BBFreq += BFI->getBlockFreq(SameValueBB);

  return PredFreq.getFrequency() <=
         BBFreq.getFrequency() * FreqRatioToSkipMerge;
}

/// Return true if we can merge BB into DestBB if there is a single
/// unconditional branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
                                    const BasicBlock *DestBB) const {
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
  // the successor.  If there are more complex condition (e.g. preheaders),
  // don't mess around with them.
  for (const PHINode &PN : BB->phis()) {
    for (const User *U : PN.users()) {
      const Instruction *UI = cast<Instruction>(U);
      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
        return false;
      // If User is inside DestBB block and it is a PHINode then check
      // incoming value. If incoming value is not from BB then this is
      // a complex condition (e.g. preheaders) we want to avoid here.
      if (UI->getParent() == DestBB) {
        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
            if (Insn && Insn->getParent() == BB &&
                Insn->getParent() != UPN->getIncomingBlock(I))
              return false;
          }
      }
    }
  }

  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
  // and DestBB may have conflicting incoming values for the block.  If so, we
  // can't merge the block.
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
  if (!DestBBPN) return true;  // no conflict.

  // Collect the preds of BB.
  SmallPtrSet<const BasicBlock*, 16> BBPreds;
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    // It is faster to get preds from a PHI than with pred_iterator.
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
      BBPreds.insert(BBPN->getIncomingBlock(i));
  } else {
    BBPreds.insert(pred_begin(BB), pred_end(BB));
  }

  // Walk the preds of DestBB.
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    if (BBPreds.count(Pred)) {   // Common predecessor?
      for (const PHINode &PN : DestBB->phis()) {
        const Value *V1 = PN.getIncomingValueForBlock(Pred);
        const Value *V2 = PN.getIncomingValueForBlock(BB);

        // If V2 is a phi node in BB, look up what the mapped value will be.
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
          if (V2PN->getParent() == BB)
            V2 = V2PN->getIncomingValueForBlock(Pred);

        // If there is a conflict, bail out.
        if (V1 != V2) return false;
      }
    }
  }

  return true;
}

/// Eliminate a basic block that has only phi's and an unconditional branch in
/// it.
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  BasicBlock *DestBB = BI->getSuccessor(0);

  LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
                    << *BB << *DestBB);

  // If the destination block has a single pred, then this is a trivial edge,
  // just collapse it.
  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    if (SinglePred != DestBB) {
      assert(SinglePred == BB &&
             "Single predecessor not the same as predecessor");
      // Merge DestBB into SinglePred/BB and delete it.
      MergeBlockIntoPredecessor(DestBB);
      // Note: BB(=SinglePred) will not be deleted on this path.
      // DestBB(=its single successor) is the one that was deleted.
      LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
      return;
    }
  }

  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
  // to handle the new incoming edges it is about to have.
  for (PHINode &PN : DestBB->phis()) {
    // Remove the incoming value for BB, and remember it.
    Value *InVal = PN.removeIncomingValue(BB, false);

    // Two options: either the InVal is a phi node defined in BB or it is some
    // value that dominates BB.
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    if (InValPhi && InValPhi->getParent() == BB) {
      // Add all of the input values of the input PHI as inputs of this phi.
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
        PN.addIncoming(InValPhi->getIncomingValue(i),
                       InValPhi->getIncomingBlock(i));
    } else {
      // Otherwise, add one instance of the dominating value for each edge that
      // we will be adding.
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
          PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
      } else {
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
          PN.addIncoming(InVal, *PI);
      }
    }
  }

  // The PHIs are now updated, change everything that refers to BB to use
  // DestBB and remove BB.
  BB->replaceAllUsesWith(DestBB);
  BB->eraseFromParent();
  ++NumBlocksElim;

  LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}

// Computes a map of base pointer relocation instructions to corresponding
// derived pointer relocation instructions given a vector of all relocate calls
static void computeBaseDerivedRelocateMap(
    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
    DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
        &RelocateInstMap) {
  // Collect information in two maps: one primarily for locating the base object
  // while filling the second map; the second map is the final structure holding
  // a mapping between Base and corresponding Derived relocate calls
  DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
  for (auto *ThisRelocate : AllRelocateCalls) {
    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
                            ThisRelocate->getDerivedPtrIndex());
    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
  }
  for (auto &Item : RelocateIdxMap) {
    std::pair<unsigned, unsigned> Key = Item.first;
    if (Key.first == Key.second)
      // Base relocation: nothing to insert
      continue;

    GCRelocateInst *I = Item.second;
    auto BaseKey = std::make_pair(Key.first, Key.first);

    // We're iterating over RelocateIdxMap so we cannot modify it.
    auto MaybeBase = RelocateIdxMap.find(BaseKey);
    if (MaybeBase == RelocateIdxMap.end())
      // TODO: We might want to insert a new base object relocate and gep off
      // that, if there are enough derived object relocates.
      continue;

    RelocateInstMap[MaybeBase->second].push_back(I);
  }
}

// Accepts a GEP and extracts the operands into a vector provided they're all
// small integer constants
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
                                          SmallVectorImpl<Value *> &OffsetV) {
  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
    // Only accept small constant integer operands
    auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (!Op || Op->getZExtValue() > 20)
      return false;
  }

  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
    OffsetV.push_back(GEP->getOperand(i));
  return true;
}

// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
// replace, computes a replacement, and affects it.
static bool
simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
                          const SmallVectorImpl<GCRelocateInst *> &Targets) {
  bool MadeChange = false;
  // We must ensure the relocation of derived pointer is defined after
  // relocation of base pointer. If we find a relocation corresponding to base
  // defined earlier than relocation of base then we move relocation of base
  // right before found relocation. We consider only relocation in the same
  // basic block as relocation of base. Relocations from other basic block will
  // be skipped by optimization and we do not care about them.
  for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
       &*R != RelocatedBase; ++R)
    if (auto RI = dyn_cast<GCRelocateInst>(R))
      if (RI->getStatepoint() == RelocatedBase->getStatepoint())
        if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
          RelocatedBase->moveBefore(RI);
          break;
        }

  for (GCRelocateInst *ToReplace : Targets) {
    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
           "Not relocating a derived object of the original base object");
    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
      // A duplicate relocate call. TODO: coalesce duplicates.
      continue;
    }

    if (RelocatedBase->getParent() != ToReplace->getParent()) {
      // Base and derived relocates are in different basic blocks.
      // In this case transform is only valid when base dominates derived
      // relocate. However it would be too expensive to check dominance
      // for each such relocate, so we skip the whole transformation.
      continue;
    }

    Value *Base = ToReplace->getBasePtr();
    auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
    if (!Derived || Derived->getPointerOperand() != Base)
      continue;

    SmallVector<Value *, 2> OffsetV;
    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
      continue;

    // Create a Builder and replace the target callsite with a gep
    assert(RelocatedBase->getNextNode() &&
           "Should always have one since it's not a terminator");

    // Insert after RelocatedBase
    IRBuilder<> Builder(RelocatedBase->getNextNode());
    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());

    // If gc_relocate does not match the actual type, cast it to the right type.
    // In theory, there must be a bitcast after gc_relocate if the type does not
    // match, and we should reuse it to get the derived pointer. But it could be
    // cases like this:
    // bb1:
    //  ...
    //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    //  br label %merge
    //
    // bb2:
    //  ...
    //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    //  br label %merge
    //
    // merge:
    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
    //
    // In this case, we can not find the bitcast any more. So we insert a new bitcast
    // no matter there is already one or not. In this way, we can handle all cases, and
    // the extra bitcast should be optimized away in later passes.
    Value *ActualRelocatedBase = RelocatedBase;
    if (RelocatedBase->getType() != Base->getType()) {
      ActualRelocatedBase =
          Builder.CreateBitCast(RelocatedBase, Base->getType());
    }
    Value *Replacement = Builder.CreateGEP(
        Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
    Replacement->takeName(ToReplace);
    // If the newly generated derived pointer's type does not match the original derived
    // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
    Value *ActualReplacement = Replacement;
    if (Replacement->getType() != ToReplace->getType()) {
      ActualReplacement =
          Builder.CreateBitCast(Replacement, ToReplace->getType());
    }
    ToReplace->replaceAllUsesWith(ActualReplacement);
    ToReplace->eraseFromParent();

    MadeChange = true;
  }
  return MadeChange;
}

// Turns this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = relocate(%tok, i32 4, i32 4)
// %ptr' = relocate(%tok, i32 4, i32 5)
// %val = load %ptr'
//
// into this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = gc.relocate(%tok, i32 4, i32 4)
// %ptr' = gep %base' + 15
// %val = load %ptr'
bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
  bool MadeChange = false;
  SmallVector<GCRelocateInst *, 2> AllRelocateCalls;

  for (auto *U : I.users())
    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
      // Collect all the relocate calls associated with a statepoint
      AllRelocateCalls.push_back(Relocate);

  // We need atleast one base pointer relocation + one derived pointer
  // relocation to mangle
  if (AllRelocateCalls.size() < 2)
    return false;

  // RelocateInstMap is a mapping from the base relocate instruction to the
  // corresponding derived relocate instructions
  DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
  if (RelocateInstMap.empty())
    return false;

  for (auto &Item : RelocateInstMap)
    // Item.first is the RelocatedBase to offset against
    // Item.second is the vector of Targets to replace
    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
  return MadeChange;
}

/// Sink the specified cast instruction into its user blocks.
static bool SinkCast(CastInst *CI) {
  BasicBlock *DefBB = CI->getParent();

  /// InsertedCasts - Only insert a cast in each block once.
  DenseMap<BasicBlock*, CastInst*> InsertedCasts;

  bool MadeChange = false;
  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Figure out which BB this cast is used in.  For PHI's this is the
    // appropriate predecessor block.
    BasicBlock *UserBB = User->getParent();
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
      UserBB = PN->getIncomingBlock(TheUse);
    }

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // The first insertion point of a block containing an EH pad is after the
    // pad.  If the pad is the user, we cannot sink the cast past the pad.
    if (User->isEHPad())
      continue;

    // If the block selected to receive the cast is an EH pad that does not
    // allow non-PHI instructions before the terminator, we can't sink the
    // cast.
    if (UserBB->getTerminator()->isEHPad())
      continue;

    // If this user is in the same block as the cast, don't change the cast.
    if (UserBB == DefBB) continue;

    // If we have already inserted a cast into this block, use it.
    CastInst *&InsertedCast = InsertedCasts[UserBB];

    if (!InsertedCast) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
                                      CI->getType(), "", &*InsertPt);
      InsertedCast->setDebugLoc(CI->getDebugLoc());
    }

    // Replace a use of the cast with a use of the new cast.
    TheUse = InsertedCast;
    MadeChange = true;
    ++NumCastUses;
  }

  // If we removed all uses, nuke the cast.
  if (CI->use_empty()) {
    salvageDebugInfo(*CI);
    CI->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

/// If the specified cast instruction is a noop copy (e.g. it's casting from
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
/// reduce the number of virtual registers that must be created and coalesced.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
                                       const DataLayout &DL) {
  // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
  // than sinking only nop casts, but is helpful on some platforms.
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
    if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
                                 ASC->getDestAddressSpace()))
      return false;
  }

  // If this is a noop copy,
  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(DL, CI->getType());

  // This is an fp<->int conversion?
  if (SrcVT.isInteger() != DstVT.isInteger())
    return false;

  // If this is an extension, it will be a zero or sign extension, which
  // isn't a noop.
  if (SrcVT.bitsLT(DstVT)) return false;

  // If these values will be promoted, find out what they will be promoted
  // to.  This helps us consider truncates on PPC as noop copies when they
  // are.
  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
      TargetLowering::TypePromoteInteger)
    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
      TargetLowering::TypePromoteInteger)
    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);

  // If, after promotion, these are the same types, this is a noop copy.
  if (SrcVT != DstVT)
    return false;

  return SinkCast(CI);
}

bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
                                                 CmpInst *Cmp,
                                                 Intrinsic::ID IID) {
  if (BO->getParent() != Cmp->getParent()) {
    // We used to use a dominator tree here to allow multi-block optimization.
    // But that was problematic because:
    // 1. It could cause a perf regression by hoisting the math op into the
    //    critical path.
    // 2. It could cause a perf regression by creating a value that was live
    //    across multiple blocks and increasing register pressure.
    // 3. Use of a dominator tree could cause large compile-time regression.
    //    This is because we recompute the DT on every change in the main CGP
    //    run-loop. The recomputing is probably unnecessary in many cases, so if
    //    that was fixed, using a DT here would be ok.
    return false;
  }

  // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
  Value *Arg0 = BO->getOperand(0);
  Value *Arg1 = BO->getOperand(1);
  if (BO->getOpcode() == Instruction::Add &&
      IID == Intrinsic::usub_with_overflow) {
    assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
    Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
  }

  // Insert at the first instruction of the pair.
  Instruction *InsertPt = nullptr;
  for (Instruction &Iter : *Cmp->getParent()) {
    if (&Iter == BO || &Iter == Cmp) {
      InsertPt = &Iter;
      break;
    }
  }
  assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");

  IRBuilder<> Builder(InsertPt);
  Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
  Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
  Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
  BO->replaceAllUsesWith(Math);
  Cmp->replaceAllUsesWith(OV);
  BO->eraseFromParent();
  Cmp->eraseFromParent();
  return true;
}

/// Match special-case patterns that check for unsigned add overflow.
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
                                                   BinaryOperator *&Add) {
  // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
  // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);

  // We are not expecting non-canonical/degenerate code. Just bail out.
  if (isa<Constant>(A))
    return false;

  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
    B = ConstantInt::get(B->getType(), 1);
  else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
    B = ConstantInt::get(B->getType(), -1);
  else
    return false;

  // Check the users of the variable operand of the compare looking for an add
  // with the adjusted constant.
  for (User *U : A->users()) {
    if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
      Add = cast<BinaryOperator>(U);
      return true;
    }
  }
  return false;
}

/// Try to combine the compare into a call to the llvm.uadd.with.overflow
/// intrinsic. Return true if any changes were made.
bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
                                               bool &ModifiedDT) {
  Value *A, *B;
  BinaryOperator *Add;
  if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
    if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
      return false;

  if (!TLI->shouldFormOverflowOp(ISD::UADDO,
                                 TLI->getValueType(*DL, Add->getType())))
    return false;

  // We don't want to move around uses of condition values this late, so we
  // check if it is legal to create the call to the intrinsic in the basic
  // block containing the icmp.
  if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
    return false;

  if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
    return false;

  // Reset callers - do not crash by iterating over a dead instruction.
  ModifiedDT = true;
  return true;
}

bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
                                               bool &ModifiedDT) {
  // We are not expecting non-canonical/degenerate code. Just bail out.
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
  if (isa<Constant>(A) && isa<Constant>(B))
    return false;

  // Convert (A u> B) to (A u< B) to simplify pattern matching.
  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (Pred == ICmpInst::ICMP_UGT) {
    std::swap(A, B);
    Pred = ICmpInst::ICMP_ULT;
  }
  // Convert special-case: (A == 0) is the same as (A u< 1).
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
    B = ConstantInt::get(B->getType(), 1);
    Pred = ICmpInst::ICMP_ULT;
  }
  // Convert special-case: (A != 0) is the same as (0 u< A).
  if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
    std::swap(A, B);
    Pred = ICmpInst::ICMP_ULT;
  }
  if (Pred != ICmpInst::ICMP_ULT)
    return false;

  // Walk the users of a variable operand of a compare looking for a subtract or
  // add with that same operand. Also match the 2nd operand of the compare to
  // the add/sub, but that may be a negated constant operand of an add.
  Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
  BinaryOperator *Sub = nullptr;
  for (User *U : CmpVariableOperand->users()) {
    // A - B, A u< B --> usubo(A, B)
    if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
      Sub = cast<BinaryOperator>(U);
      break;
    }

    // A + (-C), A u< C (canonicalized form of (sub A, C))
    const APInt *CmpC, *AddC;
    if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
        match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
      Sub = cast<BinaryOperator>(U);
      break;
    }
  }
  if (!Sub)
    return false;

  if (!TLI->shouldFormOverflowOp(ISD::USUBO,
                                 TLI->getValueType(*DL, Sub->getType())))
    return false;

  if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
    return false;

  // Reset callers - do not crash by iterating over a dead instruction.
  ModifiedDT = true;
  return true;
}

/// Sink the given CmpInst into user blocks to reduce the number of virtual
/// registers that must be created and coalesced. This is a clear win except on
/// targets with multiple condition code registers (PowerPC), where it might
/// lose; some adjustment may be wanted there.
///
/// Return true if any changes are made.
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
  if (TLI.hasMultipleConditionRegisters())
    return false;

  // Avoid sinking soft-FP comparisons, since this can move them into a loop.
  if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
    return false;

  // Only insert a cmp in each block once.
  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;

  bool MadeChange = false;
  for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(User))
      continue;

    // Figure out which BB this cmp is used in.
    BasicBlock *UserBB = User->getParent();
    BasicBlock *DefBB = Cmp->getParent();

    // If this user is in the same block as the cmp, don't change the cmp.
    if (UserBB == DefBB) continue;

    // If we have already inserted a cmp into this block, use it.
    CmpInst *&InsertedCmp = InsertedCmps[UserBB];

    if (!InsertedCmp) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedCmp =
          CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
                          Cmp->getOperand(0), Cmp->getOperand(1), "",
                          &*InsertPt);
      // Propagate the debug info.
      InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
    }

    // Replace a use of the cmp with a use of the new cmp.
    TheUse = InsertedCmp;
    MadeChange = true;
    ++NumCmpUses;
  }

  // If we removed all uses, nuke the cmp.
  if (Cmp->use_empty()) {
    Cmp->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
  if (sinkCmpExpression(Cmp, *TLI))
    return true;

  if (combineToUAddWithOverflow(Cmp, ModifiedDT))
    return true;

  if (combineToUSubWithOverflow(Cmp, ModifiedDT))
    return true;

  return false;
}

/// Duplicate and sink the given 'and' instruction into user blocks where it is
/// used in a compare to allow isel to generate better code for targets where
/// this operation can be combined.
///
/// Return true if any changes are made.
static bool sinkAndCmp0Expression(Instruction *AndI,
                                  const TargetLowering &TLI,
                                  SetOfInstrs &InsertedInsts) {
  // Double-check that we're not trying to optimize an instruction that was
  // already optimized by some other part of this pass.
  assert(!InsertedInsts.count(AndI) &&
         "Attempting to optimize already optimized and instruction");
  (void) InsertedInsts;

  // Nothing to do for single use in same basic block.
  if (AndI->hasOneUse() &&
      AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
    return false;

  // Try to avoid cases where sinking/duplicating is likely to increase register
  // pressure.
  if (!isa<ConstantInt>(AndI->getOperand(0)) &&
      !isa<ConstantInt>(AndI->getOperand(1)) &&
      AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
    return false;

  for (auto *U : AndI->users()) {
    Instruction *User = cast<Instruction>(U);

    // Only sink 'and' feeding icmp with 0.
    if (!isa<ICmpInst>(User))
      return false;

    auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
    if (!CmpC || !CmpC->isZero())
      return false;
  }

  if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
    return false;

  LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
  LLVM_DEBUG(AndI->getParent()->dump());

  // Push the 'and' into the same block as the icmp 0.  There should only be
  // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
  // others, so we don't need to keep track of which BBs we insert into.
  for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");

    // Keep the 'and' in the same place if the use is already in the same block.
    Instruction *InsertPt =
        User->getParent() == AndI->getParent() ? AndI : User;
    Instruction *InsertedAnd =
        BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
                               AndI->getOperand(1), "", InsertPt);
    // Propagate the debug info.
    InsertedAnd->setDebugLoc(AndI->getDebugLoc());

    // Replace a use of the 'and' with a use of the new 'and'.
    TheUse = InsertedAnd;
    ++NumAndUses;
    LLVM_DEBUG(User->getParent()->dump());
  }

  // We removed all uses, nuke the and.
  AndI->eraseFromParent();
  return true;
}

/// Check if the candidates could be combined with a shift instruction, which
/// includes:
/// 1. Truncate instruction
/// 2. And instruction and the imm is a mask of the low bits:
/// imm & (imm+1) == 0
static bool isExtractBitsCandidateUse(Instruction *User) {
  if (!isa<TruncInst>(User)) {
    if (User->getOpcode() != Instruction::And ||
        !isa<ConstantInt>(User->getOperand(1)))
      return false;

    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();

    if ((Cimm & (Cimm + 1)).getBoolValue())
      return false;
  }
  return true;
}

/// Sink both shift and truncate instruction to the use of truncate's BB.
static bool
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
                     const TargetLowering &TLI, const DataLayout &DL) {
  BasicBlock *UserBB = User->getParent();
  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
  auto *TruncI = cast<TruncInst>(User);
  bool MadeChange = false;

  for (Value::user_iterator TruncUI = TruncI->user_begin(),
                            TruncE = TruncI->user_end();
       TruncUI != TruncE;) {

    Use &TruncTheUse = TruncUI.getUse();
    Instruction *TruncUser = cast<Instruction>(*TruncUI);
    // Preincrement use iterator so we don't invalidate it.

    ++TruncUI;

    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
    if (!ISDOpcode)
      continue;

    // If the use is actually a legal node, there will not be an
    // implicit truncate.
    // FIXME: always querying the result type is just an
    // approximation; some nodes' legality is determined by the
    // operand or other means. There's no good way to find out though.
    if (TLI.isOperationLegalOrCustom(
            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
      continue;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(TruncUser))
      continue;

    BasicBlock *TruncUserBB = TruncUser->getParent();

    if (UserBB == TruncUserBB)
      continue;

    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];

    if (!InsertedShift && !InsertedTrunc) {
      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
      assert(InsertPt != TruncUserBB->end());
      // Sink the shift
      if (ShiftI->getOpcode() == Instruction::AShr)
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      else
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());

      // Sink the trunc
      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
      TruncInsertPt++;
      assert(TruncInsertPt != TruncUserBB->end());

      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
                                       TruncI->getType(), "", &*TruncInsertPt);
      InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());

      MadeChange = true;

      TruncTheUse = InsertedTrunc;
    }
  }
  return MadeChange;
}

/// Sink the shift *right* instruction into user blocks if the uses could
/// potentially be combined with this shift instruction and generate BitExtract
/// instruction. It will only be applied if the architecture supports BitExtract
/// instruction. Here is an example:
/// BB1:
///   %x.extract.shift = lshr i64 %arg1, 32
/// BB2:
///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
/// ==>
///
/// BB2:
///   %x.extract.shift.1 = lshr i64 %arg1, 32
///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
///
/// CodeGen will recognize the pattern in BB2 and generate BitExtract
/// instruction.
/// Return true if any changes are made.
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
                                const TargetLowering &TLI,
                                const DataLayout &DL) {
  BasicBlock *DefBB = ShiftI->getParent();

  /// Only insert instructions in each block once.
  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;

  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));

  bool MadeChange = false;
  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
       UI != E;) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);
    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(User))
      continue;

    if (!isExtractBitsCandidateUse(User))
      continue;

    BasicBlock *UserBB = User->getParent();

    if (UserBB == DefBB) {
      // If the shift and truncate instruction are in the same BB. The use of
      // the truncate(TruncUse) may still introduce another truncate if not
      // legal. In this case, we would like to sink both shift and truncate
      // instruction to the BB of TruncUse.
      // for example:
      // BB1:
      // i64 shift.result = lshr i64 opnd, imm
      // trunc.result = trunc shift.result to i16
      //
      // BB2:
      //   ----> We will have an implicit truncate here if the architecture does
      //   not have i16 compare.
      // cmp i16 trunc.result, opnd2
      //
      if (isa<TruncInst>(User) && shiftIsLegal
          // If the type of the truncate is legal, no truncate will be
          // introduced in other basic blocks.
          &&
          (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
        MadeChange =
            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);

      continue;
    }
    // If we have already inserted a shift into this block, use it.
    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];

    if (!InsertedShift) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());

      if (ShiftI->getOpcode() == Instruction::AShr)
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      else
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());

      MadeChange = true;
    }

    // Replace a use of the shift with a use of the new shift.
    TheUse = InsertedShift;
  }

  // If we removed all uses, or there are none, nuke the shift.
  if (ShiftI->use_empty()) {
    salvageDebugInfo(*ShiftI);
    ShiftI->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

/// If counting leading or trailing zeros is an expensive operation and a zero
/// input is defined, add a check for zero to avoid calling the intrinsic.
///
/// We want to transform:
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
///
/// into:
///   entry:
///     %cmpz = icmp eq i64 %A, 0
///     br i1 %cmpz, label %cond.end, label %cond.false
///   cond.false:
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
///     br label %cond.end
///   cond.end:
///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
///
/// If the transform is performed, return true and set ModifiedDT to true.
static bool despeculateCountZeros(IntrinsicInst *CountZeros,
                                  const TargetLowering *TLI,
                                  const DataLayout *DL,
                                  bool &ModifiedDT) {
  if (!TLI || !DL)
    return false;

  // If a zero input is undefined, it doesn't make sense to despeculate that.
  if (match(CountZeros->getOperand(1), m_One()))
    return false;

  // If it's cheap to speculate, there's nothing to do.
  auto IntrinsicID = CountZeros->getIntrinsicID();
  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
    return false;

  // Only handle legal scalar cases. Anything else requires too much work.
  Type *Ty = CountZeros->getType();
  unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
    return false;

  // The intrinsic will be sunk behind a compare against zero and branch.
  BasicBlock *StartBlock = CountZeros->getParent();
  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");

  // Create another block after the count zero intrinsic. A PHI will be added
  // in this block to select the result of the intrinsic or the bit-width
  // constant if the input to the intrinsic is zero.
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");

  // Set up a builder to create a compare, conditional branch, and PHI.
  IRBuilder<> Builder(CountZeros->getContext());
  Builder.SetInsertPoint(StartBlock->getTerminator());
  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());

  // Replace the unconditional branch that was created by the first split with
  // a compare against zero and a conditional branch.
  Value *Zero = Constant::getNullValue(Ty);
  Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
  Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
  StartBlock->getTerminator()->eraseFromParent();

  // Create a PHI in the end block to select either the output of the intrinsic
  // or the bit width of the operand.
  Builder.SetInsertPoint(&EndBlock->front());
  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
  CountZeros->replaceAllUsesWith(PN);
  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
  PN->addIncoming(BitWidth, StartBlock);
  PN->addIncoming(CountZeros, CallBlock);

  // We are explicitly handling the zero case, so we can set the intrinsic's
  // undefined zero argument to 'true'. This will also prevent reprocessing the
  // intrinsic; we only despeculate when a zero input is defined.
  CountZeros->setArgOperand(1, Builder.getTrue());
  ModifiedDT = true;
  return true;
}

bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
  BasicBlock *BB = CI->getParent();

  // Lower inline assembly if we can.
  // If we found an inline asm expession, and if the target knows how to
  // lower it to normal LLVM code, do so now.
  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
    if (TLI->ExpandInlineAsm(CI)) {
      // Avoid invalidating the iterator.
      CurInstIterator = BB->begin();
      // Avoid processing instructions out of order, which could cause
      // reuse before a value is defined.
      SunkAddrs.clear();
      return true;
    }
    // Sink address computing for memory operands into the block.
    if (optimizeInlineAsmInst(CI))
      return true;
  }

  // Align the pointer arguments to this call if the target thinks it's a good
  // idea
  unsigned MinSize, PrefAlign;
  if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
    for (auto &Arg : CI->arg_operands()) {
      // We want to align both objects whose address is used directly and
      // objects whose address is used in casts and GEPs, though it only makes
      // sense for GEPs if the offset is a multiple of the desired alignment and
      // if size - offset meets the size threshold.
      if (!Arg->getType()->isPointerTy())
        continue;
      APInt Offset(DL->getIndexSizeInBits(
                       cast<PointerType>(Arg->getType())->getAddressSpace()),
                   0);
      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
      uint64_t Offset2 = Offset.getLimitedValue();
      if ((Offset2 & (PrefAlign-1)) != 0)
        continue;
      AllocaInst *AI;
      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
        AI->setAlignment(MaybeAlign(PrefAlign));
      // Global variables can only be aligned if they are defined in this
      // object (i.e. they are uniquely initialized in this object), and
      // over-aligning global variables that have an explicit section is
      // forbidden.
      GlobalVariable *GV;
      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
          GV->getPointerAlignment(*DL) < PrefAlign &&
          DL->getTypeAllocSize(GV->getValueType()) >=
              MinSize + Offset2)
        GV->setAlignment(MaybeAlign(PrefAlign));
    }
    // If this is a memcpy (or similar) then we may be able to improve the
    // alignment
    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
      unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
      if (DestAlign > MI->getDestAlignment())
        MI->setDestAlignment(DestAlign);
      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
        unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
        if (SrcAlign > MTI->getSourceAlignment())
          MTI->setSourceAlignment(SrcAlign);
      }
    }
  }

  // If we have a cold call site, try to sink addressing computation into the
  // cold block.  This interacts with our handling for loads and stores to
  // ensure that we can fold all uses of a potential addressing computation
  // into their uses.  TODO: generalize this to work over profiling data
  if (!OptSize && CI->hasFnAttr(Attribute::Cold))
    for (auto &Arg : CI->arg_operands()) {
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned AS = Arg->getType()->getPointerAddressSpace();
      return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
    }

  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
  if (II) {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::experimental_widenable_condition: {
      // Give up on future widening oppurtunties so that we can fold away dead
      // paths and merge blocks before going into block-local instruction
      // selection.   
      if (II->use_empty()) {
        II->eraseFromParent();
        return true;
      }
      Constant *RetVal = ConstantInt::getTrue(II->getContext());
      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
        replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
      });
      return true;
    }
    case Intrinsic::objectsize:
      llvm_unreachable("llvm.objectsize.* should have been lowered already");
    case Intrinsic::is_constant:
      llvm_unreachable("llvm.is.constant.* should have been lowered already");
    case Intrinsic::aarch64_stlxr:
    case Intrinsic::aarch64_stxr: {
      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
      if (!ExtVal || !ExtVal->hasOneUse() ||
          ExtVal->getParent() == CI->getParent())
        return false;
      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
      ExtVal->moveBefore(CI);
      // Mark this instruction as "inserted by CGP", so that other
      // optimizations don't touch it.
      InsertedInsts.insert(ExtVal);
      return true;
    }

    case Intrinsic::launder_invariant_group:
    case Intrinsic::strip_invariant_group: {
      Value *ArgVal = II->getArgOperand(0);
      auto it = LargeOffsetGEPMap.find(II);
      if (it != LargeOffsetGEPMap.end()) {
          // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
          // Make sure not to have to deal with iterator invalidation
          // after possibly adding ArgVal to LargeOffsetGEPMap.
          auto GEPs = std::move(it->second);
          LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
          LargeOffsetGEPMap.erase(II);
      }

      II->replaceAllUsesWith(ArgVal);
      II->eraseFromParent();
      return true;
    }
    case Intrinsic::cttz:
    case Intrinsic::ctlz:
      // If counting zeros is expensive, try to avoid it.
      return despeculateCountZeros(II, TLI, DL, ModifiedDT);
    }

    if (TLI) {
      SmallVector<Value*, 2> PtrOps;
      Type *AccessTy;
      if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
        while (!PtrOps.empty()) {
          Value *PtrVal = PtrOps.pop_back_val();
          unsigned AS = PtrVal->getType()->getPointerAddressSpace();
          if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
            return true;
        }
    }
  }

  // From here on out we're working with named functions.
  if (!CI->getCalledFunction()) return false;

  // Lower all default uses of _chk calls.  This is very similar
  // to what InstCombineCalls does, but here we are only lowering calls
  // to fortified library functions (e.g. __memcpy_chk) that have the default
  // "don't know" as the objectsize.  Anything else should be left alone.
  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
  if (Value *V = Simplifier.optimizeCall(CI)) {
    CI->replaceAllUsesWith(V);
    CI->eraseFromParent();
    return true;
  }

  return false;
}

/// Look for opportunities to duplicate return instructions to the predecessor
/// to enable tail call optimizations. The case it is currently looking for is:
/// @code
/// bb0:
///   %tmp0 = tail call i32 @f0()
///   br label %return
/// bb1:
///   %tmp1 = tail call i32 @f1()
///   br label %return
/// bb2:
///   %tmp2 = tail call i32 @f2()
///   br label %return
/// return:
///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
///   ret i32 %retval
/// @endcode
///
/// =>
///
/// @code
/// bb0:
///   %tmp0 = tail call i32 @f0()
///   ret i32 %tmp0
/// bb1:
///   %tmp1 = tail call i32 @f1()
///   ret i32 %tmp1
/// bb2:
///   %tmp2 = tail call i32 @f2()
///   ret i32 %tmp2
/// @endcode
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
  if (!TLI)
    return false;

  ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
  if (!RetI)
    return false;

  PHINode *PN = nullptr;
  BitCastInst *BCI = nullptr;
  Value *V = RetI->getReturnValue();
  if (V) {
    BCI = dyn_cast<BitCastInst>(V);
    if (BCI)
      V = BCI->getOperand(0);

    PN = dyn_cast<PHINode>(V);
    if (!PN)
      return false;
  }

  if (PN && PN->getParent() != BB)
    return false;

  // Make sure there are no instructions between the PHI and return, or that the
  // return is the first instruction in the block.
  if (PN) {
    BasicBlock::iterator BI = BB->begin();
    // Skip over debug and the bitcast.
    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
    if (&*BI != RetI)
      return false;
  } else {
    BasicBlock::iterator BI = BB->begin();
    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    if (&*BI != RetI)
      return false;
  }

  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
  /// call.
  const Function *F = BB->getParent();
  SmallVector<BasicBlock*, 4> TailCallBBs;
  if (PN) {
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
      // Look through bitcasts.
      Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
      CallInst *CI = dyn_cast<CallInst>(IncomingVal);
      BasicBlock *PredBB = PN->getIncomingBlock(I);
      // Make sure the phi value is indeed produced by the tail call.
      if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
          TLI->mayBeEmittedAsTailCall(CI) &&
          attributesPermitTailCall(F, CI, RetI, *TLI))
        TailCallBBs.push_back(PredBB);
    }
  } else {
    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
      if (!VisitedBBs.insert(*PI).second)
        continue;

      BasicBlock::InstListType &InstList = (*PI)->getInstList();
      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
      if (RI == RE)
        continue;

      CallInst *CI = dyn_cast<CallInst>(&*RI);
      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
          attributesPermitTailCall(F, CI, RetI, *TLI))
        TailCallBBs.push_back(*PI);
    }
  }

  bool Changed = false;
  for (auto const &TailCallBB : TailCallBBs) {
    // Make sure the call instruction is followed by an unconditional branch to
    // the return block.
    BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
      continue;

    // Duplicate the return into TailCallBB.
    (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
    ModifiedDT = Changed = true;
    ++NumRetsDup;
  }

  // If we eliminated all predecessors of the block, delete the block now.
  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
    BB->eraseFromParent();

  return Changed;
}

//===----------------------------------------------------------------------===//
// Memory Optimization
//===----------------------------------------------------------------------===//

namespace {

/// This is an extended version of TargetLowering::AddrMode
/// which holds actual Value*'s for register values.
struct ExtAddrMode : public TargetLowering::AddrMode {
  Value *BaseReg = nullptr;
  Value *ScaledReg = nullptr;
  Value *OriginalValue = nullptr;
  bool InBounds = true;

  enum FieldName {
    NoField        = 0x00,
    BaseRegField   = 0x01,
    BaseGVField    = 0x02,
    BaseOffsField  = 0x04,
    ScaledRegField = 0x08,
    ScaleField     = 0x10,
    MultipleFields = 0xff
  };


  ExtAddrMode() = default;

  void print(raw_ostream &OS) const;
  void dump() const;

  FieldName compare(const ExtAddrMode &other) {
    // First check that the types are the same on each field, as differing types
    // is something we can't cope with later on.
    if (BaseReg && other.BaseReg &&
        BaseReg->getType() != other.BaseReg->getType())
      return MultipleFields;
    if (BaseGV && other.BaseGV &&
        BaseGV->getType() != other.BaseGV->getType())
      return MultipleFields;
    if (ScaledReg && other.ScaledReg &&
        ScaledReg->getType() != other.ScaledReg->getType())
      return MultipleFields;

    // Conservatively reject 'inbounds' mismatches.
    if (InBounds != other.InBounds)
      return MultipleFields;

    // Check each field to see if it differs.
    unsigned Result = NoField;
    if (BaseReg != other.BaseReg)
      Result |= BaseRegField;
    if (BaseGV != other.BaseGV)
      Result |= BaseGVField;
    if (BaseOffs != other.BaseOffs)
      Result |= BaseOffsField;
    if (ScaledReg != other.ScaledReg)
      Result |= ScaledRegField;
    // Don't count 0 as being a different scale, because that actually means
    // unscaled (which will already be counted by having no ScaledReg).
    if (Scale && other.Scale && Scale != other.Scale)
      Result |= ScaleField;

    if (countPopulation(Result) > 1)
      return MultipleFields;
    else
      return static_cast<FieldName>(Result);
  }

  // An AddrMode is trivial if it involves no calculation i.e. it is just a base
  // with no offset.
  bool isTrivial() {
    // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
    // trivial if at most one of these terms is nonzero, except that BaseGV and
    // BaseReg both being zero actually means a null pointer value, which we
    // consider to be 'non-zero' here.
    return !BaseOffs && !Scale && !(BaseGV && BaseReg);
  }

  Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
    switch (Field) {
    default:
      return nullptr;
    case BaseRegField:
      return BaseReg;
    case BaseGVField:
      return BaseGV;
    case ScaledRegField:
      return ScaledReg;
    case BaseOffsField:
      return ConstantInt::get(IntPtrTy, BaseOffs);
    }
  }

  void SetCombinedField(FieldName Field, Value *V,
                        const SmallVectorImpl<ExtAddrMode> &AddrModes) {
    switch (Field) {
    default:
      llvm_unreachable("Unhandled fields are expected to be rejected earlier");
      break;
    case ExtAddrMode::BaseRegField:
      BaseReg = V;
      break;
    case ExtAddrMode::BaseGVField:
      // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
      // in the BaseReg field.
      assert(BaseReg == nullptr);
      BaseReg = V;
      BaseGV = nullptr;
      break;
    case ExtAddrMode::ScaledRegField:
      ScaledReg = V;
      // If we have a mix of scaled and unscaled addrmodes then we want scale
      // to be the scale and not zero.
      if (!Scale)
        for (const ExtAddrMode &AM : AddrModes)
          if (AM.Scale) {
            Scale = AM.Scale;
            break;
          }
      break;
    case ExtAddrMode::BaseOffsField:
      // The offset is no longer a constant, so it goes in ScaledReg with a
      // scale of 1.
      assert(ScaledReg == nullptr);
      ScaledReg = V;
      Scale = 1;
      BaseOffs = 0;
      break;
    }
  }
};

} // end anonymous namespace

#ifndef NDEBUG
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
  AM.print(OS);
  return OS;
}
#endif

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ExtAddrMode::print(raw_ostream &OS) const {
  bool NeedPlus = false;
  OS << "[";
  if (InBounds)
    OS << "inbounds ";
  if (BaseGV) {
    OS << (NeedPlus ? " + " : "")
       << "GV:";
    BaseGV->printAsOperand(OS, /*PrintType=*/false);
    NeedPlus = true;
  }

  if (BaseOffs) {
    OS << (NeedPlus ? " + " : "")
       << BaseOffs;
    NeedPlus = true;
  }

  if (BaseReg) {
    OS << (NeedPlus ? " + " : "")
       << "Base:";
    BaseReg->printAsOperand(OS, /*PrintType=*/false);
    NeedPlus = true;
  }
  if (Scale) {
    OS << (NeedPlus ? " + " : "")
       << Scale << "*";
    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
  }

  OS << ']';
}

LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

namespace {

/// This class provides transaction based operation on the IR.
/// Every change made through this class is recorded in the internal state and
/// can be undone (rollback) until commit is called.
class TypePromotionTransaction {
  /// This represents the common interface of the individual transaction.
  /// Each class implements the logic for doing one specific modification on
  /// the IR via the TypePromotionTransaction.
  class TypePromotionAction {
  protected:
    /// The Instruction modified.
    Instruction *Inst;

  public:
    /// Constructor of the action.
    /// The constructor performs the related action on the IR.
    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}

    virtual ~TypePromotionAction() = default;

    /// Undo the modification done by this action.
    /// When this method is called, the IR must be in the same state as it was
    /// before this action was applied.
    /// \pre Undoing the action works if and only if the IR is in the exact same
    /// state as it was directly after this action was applied.
    virtual void undo() = 0;

    /// Advocate every change made by this action.
    /// When the results on the IR of the action are to be kept, it is important
    /// to call this function, otherwise hidden information may be kept forever.
    virtual void commit() {
      // Nothing to be done, this action is not doing anything.
    }
  };

  /// Utility to remember the position of an instruction.
  class InsertionHandler {
    /// Position of an instruction.
    /// Either an instruction:
    /// - Is the first in a basic block: BB is used.
    /// - Has a previous instruction: PrevInst is used.
    union {
      Instruction *PrevInst;
      BasicBlock *BB;
    } Point;

    /// Remember whether or not the instruction had a previous instruction.
    bool HasPrevInstruction;

  public:
    /// Record the position of \p Inst.
    InsertionHandler(Instruction *Inst) {
      BasicBlock::iterator It = Inst->getIterator();
      HasPrevInstruction = (It != (Inst->getParent()->begin()));
      if (HasPrevInstruction)
        Point.PrevInst = &*--It;
      else
        Point.BB = Inst->getParent();
    }

    /// Insert \p Inst at the recorded position.
    void insert(Instruction *Inst) {
      if (HasPrevInstruction) {
        if (Inst->getParent())
          Inst->removeFromParent();
        Inst->insertAfter(Point.PrevInst);
      } else {
        Instruction *Position = &*Point.BB->getFirstInsertionPt();
        if (Inst->getParent())
          Inst->moveBefore(Position);
        else
          Inst->insertBefore(Position);
      }
    }
  };

  /// Move an instruction before another.
  class InstructionMoveBefore : public TypePromotionAction {
    /// Original position of the instruction.
    InsertionHandler Position;

  public:
    /// Move \p Inst before \p Before.
    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
        : TypePromotionAction(Inst), Position(Inst) {
      LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
                        << "\n");
      Inst->moveBefore(Before);
    }

    /// Move the instruction back to its original position.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
      Position.insert(Inst);
    }
  };

  /// Set the operand of an instruction with a new value.
  class OperandSetter : public TypePromotionAction {
    /// Original operand of the instruction.
    Value *Origin;

    /// Index of the modified instruction.
    unsigned Idx;

  public:
    /// Set \p Idx operand of \p Inst with \p NewVal.
    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
        : TypePromotionAction(Inst), Idx(Idx) {
      LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
                        << "for:" << *Inst << "\n"
                        << "with:" << *NewVal << "\n");
      Origin = Inst->getOperand(Idx);
      Inst->setOperand(Idx, NewVal);
    }

    /// Restore the original value of the instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
                        << "for: " << *Inst << "\n"
                        << "with: " << *Origin << "\n");
      Inst->setOperand(Idx, Origin);
    }
  };

  /// Hide the operands of an instruction.
  /// Do as if this instruction was not using any of its operands.
  class OperandsHider : public TypePromotionAction {
    /// The list of original operands.
    SmallVector<Value *, 4> OriginalValues;

  public:
    /// Remove \p Inst from the uses of the operands of \p Inst.
    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
      LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
      unsigned NumOpnds = Inst->getNumOperands();
      OriginalValues.reserve(NumOpnds);
      for (unsigned It = 0; It < NumOpnds; ++It) {
        // Save the current operand.
        Value *Val = Inst->getOperand(It);
        OriginalValues.push_back(Val);
        // Set a dummy one.
        // We could use OperandSetter here, but that would imply an overhead
        // that we are not willing to pay.
        Inst->setOperand(It, UndefValue::get(Val->getType()));
      }
    }

    /// Restore the original list of uses.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
        Inst->setOperand(It, OriginalValues[It]);
    }
  };

  /// Build a truncate instruction.
  class TruncBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a truncate instruction of \p Opnd producing a \p Ty
    /// result.
    /// trunc Opnd to Ty.
    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
      IRBuilder<> Builder(Opnd);
      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Build a sign extension instruction.
  class SExtBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a sign extension instruction of \p Opnd producing a \p Ty
    /// result.
    /// sext Opnd to Ty.
    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
        : TypePromotionAction(InsertPt) {
      IRBuilder<> Builder(InsertPt);
      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Build a zero extension instruction.
  class ZExtBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a zero extension instruction of \p Opnd producing a \p Ty
    /// result.
    /// zext Opnd to Ty.
    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
        : TypePromotionAction(InsertPt) {
      IRBuilder<> Builder(InsertPt);
      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Mutate an instruction to another type.
  class TypeMutator : public TypePromotionAction {
    /// Record the original type.
    Type *OrigTy;

  public:
    /// Mutate the type of \p Inst into \p NewTy.
    TypeMutator(Instruction *Inst, Type *NewTy)
        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
      LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
                        << "\n");
      Inst->mutateType(NewTy);
    }

    /// Mutate the instruction back to its original type.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
                        << "\n");
      Inst->mutateType(OrigTy);
    }
  };

  /// Replace the uses of an instruction by another instruction.
  class UsesReplacer : public TypePromotionAction {
    /// Helper structure to keep track of the replaced uses.
    struct InstructionAndIdx {
      /// The instruction using the instruction.
      Instruction *Inst;

      /// The index where this instruction is used for Inst.
      unsigned Idx;

      InstructionAndIdx(Instruction *Inst, unsigned Idx)
          : Inst(Inst), Idx(Idx) {}
    };

    /// Keep track of the original uses (pair Instruction, Index).
    SmallVector<InstructionAndIdx, 4> OriginalUses;
    /// Keep track of the debug users.
    SmallVector<DbgValueInst *, 1> DbgValues;

    using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;

  public:
    /// Replace all the use of \p Inst by \p New.
    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
      LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
                        << "\n");
      // Record the original uses.
      for (Use &U : Inst->uses()) {
        Instruction *UserI = cast<Instruction>(U.getUser());
        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
      }
      // Record the debug uses separately. They are not in the instruction's
      // use list, but they are replaced by RAUW.
      findDbgValues(DbgValues, Inst);

      // Now, we can replace the uses.
      Inst->replaceAllUsesWith(New);
    }

    /// Reassign the original uses of Inst to Inst.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
      for (use_iterator UseIt = OriginalUses.begin(),
                        EndIt = OriginalUses.end();
           UseIt != EndIt; ++UseIt) {
        UseIt->Inst->setOperand(UseIt->Idx, Inst);
      }
      // RAUW has replaced all original uses with references to the new value,
      // including the debug uses. Since we are undoing the replacements,
      // the original debug uses must also be reinstated to maintain the
      // correctness and utility of debug value instructions.
      for (auto *DVI: DbgValues) {
        LLVMContext &Ctx = Inst->getType()->getContext();
        auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
        DVI->setOperand(0, MV);
      }
    }
  };

  /// Remove an instruction from the IR.
  class InstructionRemover : public TypePromotionAction {
    /// Original position of the instruction.
    InsertionHandler Inserter;

    /// Helper structure to hide all the link to the instruction. In other
    /// words, this helps to do as if the instruction was removed.
    OperandsHider Hider;

    /// Keep track of the uses replaced, if any.
    UsesReplacer *Replacer = nullptr;

    /// Keep track of instructions removed.
    SetOfInstrs &RemovedInsts;

  public:
    /// Remove all reference of \p Inst and optionally replace all its
    /// uses with New.
    /// \p RemovedInsts Keep track of the instructions removed by this Action.
    /// \pre If !Inst->use_empty(), then New != nullptr
    InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
                       Value *New = nullptr)
        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
          RemovedInsts(RemovedInsts) {
      if (New)
        Replacer = new UsesReplacer(Inst, New);
      LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
      RemovedInsts.insert(Inst);
      /// The instructions removed here will be freed after completing
      /// optimizeBlock() for all blocks as we need to keep track of the
      /// removed instructions during promotion.
      Inst->removeFromParent();
    }

    ~InstructionRemover() override { delete Replacer; }

    /// Resurrect the instruction and reassign it to the proper uses if
    /// new value was provided when build this action.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
      Inserter.insert(Inst);
      if (Replacer)
        Replacer->undo();
      Hider.undo();
      RemovedInsts.erase(Inst);
    }
  };

public:
  /// Restoration point.
  /// The restoration point is a pointer to an action instead of an iterator
  /// because the iterator may be invalidated but not the pointer.
  using ConstRestorationPt = const TypePromotionAction *;

  TypePromotionTransaction(SetOfInstrs &RemovedInsts)
      : RemovedInsts(RemovedInsts) {}

  /// Advocate every changes made in that transaction.
  void commit();

  /// Undo all the changes made after the given point.
  void rollback(ConstRestorationPt Point);

  /// Get the current restoration point.
  ConstRestorationPt getRestorationPoint() const;

  /// \name API for IR modification with state keeping to support rollback.
  /// @{
  /// Same as Instruction::setOperand.
  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);

  /// Same as Instruction::eraseFromParent.
  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);

  /// Same as Value::replaceAllUsesWith.
  void replaceAllUsesWith(Instruction *Inst, Value *New);

  /// Same as Value::mutateType.
  void mutateType(Instruction *Inst, Type *NewTy);

  /// Same as IRBuilder::createTrunc.
  Value *createTrunc(Instruction *Opnd, Type *Ty);

  /// Same as IRBuilder::createSExt.
  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);

  /// Same as IRBuilder::createZExt.
  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);

  /// Same as Instruction::moveBefore.
  void moveBefore(Instruction *Inst, Instruction *Before);
  /// @}

private:
  /// The ordered list of actions made so far.
  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;

  using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;

  SetOfInstrs &RemovedInsts;
};

} // end anonymous namespace

void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
                                          Value *NewVal) {
  Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
      Inst, Idx, NewVal));
}

void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
                                                Value *NewVal) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::InstructionRemover>(
          Inst, RemovedInsts, NewVal));
}

void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
                                                  Value *New) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
}

void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
}

Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
                                             Type *Ty) {
  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

Value *TypePromotionTransaction::createSExt(Instruction *Inst,
                                            Value *Opnd, Type *Ty) {
  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

Value *TypePromotionTransaction::createZExt(Instruction *Inst,
                                            Value *Opnd, Type *Ty) {
  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

void TypePromotionTransaction::moveBefore(Instruction *Inst,
                                          Instruction *Before) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
          Inst, Before));
}

TypePromotionTransaction::ConstRestorationPt
TypePromotionTransaction::getRestorationPoint() const {
  return !Actions.empty() ? Actions.back().get() : nullptr;
}

void TypePromotionTransaction::commit() {
  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
       ++It)
    (*It)->commit();
  Actions.clear();
}

void TypePromotionTransaction::rollback(
    TypePromotionTransaction::ConstRestorationPt Point) {
  while (!Actions.empty() && Point != Actions.back().get()) {
    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
    Curr->undo();
  }
}

namespace {

/// A helper class for matching addressing modes.
///
/// This encapsulates the logic for matching the target-legal addressing modes.
class AddressingModeMatcher {
  SmallVectorImpl<Instruction*> &AddrModeInsts;
  const TargetLowering &TLI;
  const TargetRegisterInfo &TRI;
  const DataLayout &DL;

  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
  /// the memory instruction that we're computing this address for.
  Type *AccessTy;
  unsigned AddrSpace;
  Instruction *MemoryInst;

  /// This is the addressing mode that we're building up. This is
  /// part of the return value of this addressing mode matching stuff.
  ExtAddrMode &AddrMode;

  /// The instructions inserted by other CodeGenPrepare optimizations.
  const SetOfInstrs &InsertedInsts;

  /// A map from the instructions to their type before promotion.
  InstrToOrigTy &PromotedInsts;

  /// The ongoing transaction where every action should be registered.
  TypePromotionTransaction &TPT;

  // A GEP which has too large offset to be folded into the addressing mode.
  std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;

  /// This is set to true when we should not do profitability checks.
  /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
  bool IgnoreProfitability;

  AddressingModeMatcher(
      SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
      const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
      ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
      InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
      std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
      : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
        DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
        MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
        PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
    IgnoreProfitability = false;
  }

public:
  /// Find the maximal addressing mode that a load/store of V can fold,
  /// give an access type of AccessTy.  This returns a list of involved
  /// instructions in AddrModeInsts.
  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
  /// optimizations.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p The ongoing transaction where every action should be registered.
  static ExtAddrMode
  Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
        SmallVectorImpl<Instruction *> &AddrModeInsts,
        const TargetLowering &TLI, const TargetRegisterInfo &TRI,
        const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
        TypePromotionTransaction &TPT,
        std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
    ExtAddrMode Result;

    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
                                         MemoryInst, Result, InsertedInsts,
                                         PromotedInsts, TPT, LargeOffsetGEP)
                       .matchAddr(V, 0);
    (void)Success; assert(Success && "Couldn't select *anything*?");
    return Result;
  }

private:
  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
  bool matchAddr(Value *Addr, unsigned Depth);
  bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
                          bool *MovedAway = nullptr);
  bool isProfitableToFoldIntoAddressingMode(Instruction *I,
                                            ExtAddrMode &AMBefore,
                                            ExtAddrMode &AMAfter);
  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
                             Value *PromotedOperand) const;
};

class PhiNodeSet;

/// An iterator for PhiNodeSet.
class PhiNodeSetIterator {
  PhiNodeSet * const Set;
  size_t CurrentIndex = 0;

public:
  /// The constructor. Start should point to either a valid element, or be equal
  /// to the size of the underlying SmallVector of the PhiNodeSet.
  PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
  PHINode * operator*() const;
  PhiNodeSetIterator& operator++();
  bool operator==(const PhiNodeSetIterator &RHS) const;
  bool operator!=(const PhiNodeSetIterator &RHS) const;
};

/// Keeps a set of PHINodes.
///
/// This is a minimal set implementation for a specific use case:
/// It is very fast when there are very few elements, but also provides good
/// performance when there are many. It is similar to SmallPtrSet, but also
/// provides iteration by insertion order, which is deterministic and stable
/// across runs. It is also similar to SmallSetVector, but provides removing
/// elements in O(1) time. This is achieved by not actually removing the element
/// from the underlying vector, so comes at the cost of using more memory, but
/// that is fine, since PhiNodeSets are used as short lived objects.
class PhiNodeSet {
  friend class PhiNodeSetIterator;

  using MapType = SmallDenseMap<PHINode *, size_t, 32>;
  using iterator =  PhiNodeSetIterator;

  /// Keeps the elements in the order of their insertion in the underlying
  /// vector. To achieve constant time removal, it never deletes any element.
  SmallVector<PHINode *, 32> NodeList;

  /// Keeps the elements in the underlying set implementation. This (and not the
  /// NodeList defined above) is the source of truth on whether an element
  /// is actually in the collection.
  MapType NodeMap;

  /// Points to the first valid (not deleted) element when the set is not empty
  /// and the value is not zero. Equals to the size of the underlying vector
  /// when the set is empty. When the value is 0, as in the beginning, the
  /// first element may or may not be valid.
  size_t FirstValidElement = 0;

public:
  /// Inserts a new element to the collection.
  /// \returns true if the element is actually added, i.e. was not in the
  /// collection before the operation.
  bool insert(PHINode *Ptr) {
    if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
      NodeList.push_back(Ptr);
      return true;
    }
    return false;
  }

  /// Removes the element from the collection.
  /// \returns whether the element is actually removed, i.e. was in the
  /// collection before the operation.
  bool erase(PHINode *Ptr) {
    auto it = NodeMap.find(Ptr);
    if (it != NodeMap.end()) {
      NodeMap.erase(Ptr);
      SkipRemovedElements(FirstValidElement);
      return true;
    }
    return false;
  }

  /// Removes all elements and clears the collection.
  void clear() {
    NodeMap.clear();
    NodeList.clear();
    FirstValidElement = 0;
  }

  /// \returns an iterator that will iterate the elements in the order of
  /// insertion.
  iterator begin() {
    if (FirstValidElement == 0)
      SkipRemovedElements(FirstValidElement);
    return PhiNodeSetIterator(this, FirstValidElement);
  }

  /// \returns an iterator that points to the end of the collection.
  iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }

  /// Returns the number of elements in the collection.
  size_t size() const {
    return NodeMap.size();
  }

  /// \returns 1 if the given element is in the collection, and 0 if otherwise.
  size_t count(PHINode *Ptr) const {
    return NodeMap.count(Ptr);
  }

private:
  /// Updates the CurrentIndex so that it will point to a valid element.
  ///
  /// If the element of NodeList at CurrentIndex is valid, it does not
  /// change it. If there are no more valid elements, it updates CurrentIndex
  /// to point to the end of the NodeList.
  void SkipRemovedElements(size_t &CurrentIndex) {
    while (CurrentIndex < NodeList.size()) {
      auto it = NodeMap.find(NodeList[CurrentIndex]);
      // If the element has been deleted and added again later, NodeMap will
      // point to a different index, so CurrentIndex will still be invalid.
      if (it != NodeMap.end() && it->second == CurrentIndex)
        break;
      ++CurrentIndex;
    }
  }
};

PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
    : Set(Set), CurrentIndex(Start) {}

PHINode * PhiNodeSetIterator::operator*() const {
  assert(CurrentIndex < Set->NodeList.size() &&
         "PhiNodeSet access out of range");
  return Set->NodeList[CurrentIndex];
}

PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
  assert(CurrentIndex < Set->NodeList.size() &&
         "PhiNodeSet access out of range");
  ++CurrentIndex;
  Set->SkipRemovedElements(CurrentIndex);
  return *this;
}

bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
  return CurrentIndex == RHS.CurrentIndex;
}

bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
  return !((*this) == RHS);
}

/// Keep track of simplification of Phi nodes.
/// Accept the set of all phi nodes and erase phi node from this set
/// if it is simplified.
class SimplificationTracker {
  DenseMap<Value *, Value *> Storage;
  const SimplifyQuery &SQ;
  // Tracks newly created Phi nodes. The elements are iterated by insertion
  // order.
  PhiNodeSet AllPhiNodes;
  // Tracks newly created Select nodes.
  SmallPtrSet<SelectInst *, 32> AllSelectNodes;

public:
  SimplificationTracker(const SimplifyQuery &sq)
      : SQ(sq) {}

  Value *Get(Value *V) {
    do {
      auto SV = Storage.find(V);
      if (SV == Storage.end())
        return V;
      V = SV->second;
    } while (true);
  }

  Value *Simplify(Value *Val) {
    SmallVector<Value *, 32> WorkList;
    SmallPtrSet<Value *, 32> Visited;
    WorkList.push_back(Val);
    while (!WorkList.empty()) {
      auto P = WorkList.pop_back_val();
      if (!Visited.insert(P).second)
        continue;
      if (auto *PI = dyn_cast<Instruction>(P))
        if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
          for (auto *U : PI->users())
            WorkList.push_back(cast<Value>(U));
          Put(PI, V);
          PI->replaceAllUsesWith(V);
          if (auto *PHI = dyn_cast<PHINode>(PI))
            AllPhiNodes.erase(PHI);
          if (auto *Select = dyn_cast<SelectInst>(PI))
            AllSelectNodes.erase(Select);
          PI->eraseFromParent();
        }
    }
    return Get(Val);
  }

  void Put(Value *From, Value *To) {
    Storage.insert({ From, To });
  }

  void ReplacePhi(PHINode *From, PHINode *To) {
    Value* OldReplacement = Get(From);
    while (OldReplacement != From) {
      From = To;
      To = dyn_cast<PHINode>(OldReplacement);
      OldReplacement = Get(From);
    }
    assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
    Put(From, To);
    From->replaceAllUsesWith(To);
    AllPhiNodes.erase(From);
    From->eraseFromParent();
  }

  PhiNodeSet& newPhiNodes() { return AllPhiNodes; }

  void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }

  void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }

  unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }

  unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }

  void destroyNewNodes(Type *CommonType) {
    // For safe erasing, replace the uses with dummy value first.
    auto Dummy = UndefValue::get(CommonType);
    for (auto I : AllPhiNodes) {
      I->replaceAllUsesWith(Dummy);
      I->eraseFromParent();
    }
    AllPhiNodes.clear();
    for (auto I : AllSelectNodes) {
      I->replaceAllUsesWith(Dummy);
      I->eraseFromParent();
    }
    AllSelectNodes.clear();
  }
};

/// A helper class for combining addressing modes.
class AddressingModeCombiner {
  typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
  typedef std::pair<PHINode *, PHINode *> PHIPair;

private:
  /// The addressing modes we've collected.
  SmallVector<ExtAddrMode, 16> AddrModes;

  /// The field in which the AddrModes differ, when we have more than one.
  ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;

  /// Are the AddrModes that we have all just equal to their original values?
  bool AllAddrModesTrivial = true;

  /// Common Type for all different fields in addressing modes.
  Type *CommonType;

  /// SimplifyQuery for simplifyInstruction utility.
  const SimplifyQuery &SQ;

  /// Original Address.
  Value *Original;

public:
  AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
      : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}

  /// Get the combined AddrMode
  const ExtAddrMode &getAddrMode() const {
    return AddrModes[0];
  }

  /// Add a new AddrMode if it's compatible with the AddrModes we already
  /// have.
  /// \return True iff we succeeded in doing so.
  bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
    // Take note of if we have any non-trivial AddrModes, as we need to detect
    // when all AddrModes are trivial as then we would introduce a phi or select
    // which just duplicates what's already there.
    AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();

    // If this is the first addrmode then everything is fine.
    if (AddrModes.empty()) {
      AddrModes.emplace_back(NewAddrMode);
      return true;
    }

    // Figure out how different this is from the other address modes, which we
    // can do just by comparing against the first one given that we only care
    // about the cumulative difference.
    ExtAddrMode::FieldName ThisDifferentField =
      AddrModes[0].compare(NewAddrMode);
    if (DifferentField == ExtAddrMode::NoField)
      DifferentField = ThisDifferentField;
    else if (DifferentField != ThisDifferentField)
      DifferentField = ExtAddrMode::MultipleFields;

    // If NewAddrMode differs in more than one dimension we cannot handle it.
    bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;

    // If Scale Field is different then we reject.
    CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;

    // We also must reject the case when base offset is different and
    // scale reg is not null, we cannot handle this case due to merge of
    // different offsets will be used as ScaleReg.
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
                              !NewAddrMode.ScaledReg);

    // We also must reject the case when GV is different and BaseReg installed
    // due to we want to use base reg as a merge of GV values.
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
                              !NewAddrMode.HasBaseReg);

    // Even if NewAddMode is the same we still need to collect it due to
    // original value is different. And later we will need all original values
    // as anchors during finding the common Phi node.
    if (CanHandle)
      AddrModes.emplace_back(NewAddrMode);
    else
      AddrModes.clear();

    return CanHandle;
  }

  /// Combine the addressing modes we've collected into a single
  /// addressing mode.
  /// \return True iff we successfully combined them or we only had one so
  /// didn't need to combine them anyway.
  bool combineAddrModes() {
    // If we have no AddrModes then they can't be combined.
    if (AddrModes.size() == 0)
      return false;

    // A single AddrMode can trivially be combined.
    if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
      return true;

    // If the AddrModes we collected are all just equal to the value they are
    // derived from then combining them wouldn't do anything useful.
    if (AllAddrModesTrivial)
      return false;

    if (!addrModeCombiningAllowed())
      return false;

    // Build a map between <original value, basic block where we saw it> to
    // value of base register.
    // Bail out if there is no common type.
    FoldAddrToValueMapping Map;
    if (!initializeMap(Map))
      return false;

    Value *CommonValue = findCommon(Map);
    if (CommonValue)
      AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
    return CommonValue != nullptr;
  }

private:
  /// Initialize Map with anchor values. For address seen
  /// we set the value of different field saw in this address.
  /// At the same time we find a common type for different field we will
  /// use to create new Phi/Select nodes. Keep it in CommonType field.
  /// Return false if there is no common type found.
  bool initializeMap(FoldAddrToValueMapping &Map) {
    // Keep track of keys where the value is null. We will need to replace it
    // with constant null when we know the common type.
    SmallVector<Value *, 2> NullValue;
    Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
    for (auto &AM : AddrModes) {
      Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
      if (DV) {
        auto *Type = DV->getType();
        if (CommonType && CommonType != Type)
          return false;
        CommonType = Type;
        Map[AM.OriginalValue] = DV;
      } else {
        NullValue.push_back(AM.OriginalValue);
      }
    }
    assert(CommonType && "At least one non-null value must be!");
    for (auto *V : NullValue)
      Map[V] = Constant::getNullValue(CommonType);
    return true;
  }

  /// We have mapping between value A and other value B where B was a field in
  /// addressing mode represented by A. Also we have an original value C
  /// representing an address we start with. Traversing from C through phi and
  /// selects we ended up with A's in a map. This utility function tries to find
  /// a value V which is a field in addressing mode C and traversing through phi
  /// nodes and selects we will end up in corresponded values B in a map.
  /// The utility will create a new Phi/Selects if needed.
  // The simple example looks as follows:
  // BB1:
  //   p1 = b1 + 40
  //   br cond BB2, BB3
  // BB2:
  //   p2 = b2 + 40
  //   br BB3
  // BB3:
  //   p = phi [p1, BB1], [p2, BB2]
  //   v = load p
  // Map is
  //   p1 -> b1
  //   p2 -> b2
  // Request is
  //   p -> ?
  // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
  Value *findCommon(FoldAddrToValueMapping &Map) {
    // Tracks the simplification of newly created phi nodes. The reason we use
    // this mapping is because we will add new created Phi nodes in AddrToBase.
    // Simplification of Phi nodes is recursive, so some Phi node may
    // be simplified after we added it to AddrToBase. In reality this
    // simplification is possible only if original phi/selects were not
    // simplified yet.
    // Using this mapping we can find the current value in AddrToBase.
    SimplificationTracker ST(SQ);

    // First step, DFS to create PHI nodes for all intermediate blocks.
    // Also fill traverse order for the second step.
    SmallVector<Value *, 32> TraverseOrder;
    InsertPlaceholders(Map, TraverseOrder, ST);

    // Second Step, fill new nodes by merged values and simplify if possible.
    FillPlaceholders(Map, TraverseOrder, ST);

    if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
      ST.destroyNewNodes(CommonType);
      return nullptr;
    }

    // Now we'd like to match New Phi nodes to existed ones.
    unsigned PhiNotMatchedCount = 0;
    if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
      ST.destroyNewNodes(CommonType);
      return nullptr;
    }

    auto *Result = ST.Get(Map.find(Original)->second);
    if (Result) {
      NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
      NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
    }
    return Result;
  }

  /// Try to match PHI node to Candidate.
  /// Matcher tracks the matched Phi nodes.
  bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
                    SmallSetVector<PHIPair, 8> &Matcher,
                    PhiNodeSet &PhiNodesToMatch) {
    SmallVector<PHIPair, 8> WorkList;
    Matcher.insert({ PHI, Candidate });
    SmallSet<PHINode *, 8> MatchedPHIs;
    MatchedPHIs.insert(PHI);
    WorkList.push_back({ PHI, Candidate });
    SmallSet<PHIPair, 8> Visited;
    while (!WorkList.empty()) {
      auto Item = WorkList.pop_back_val();
      if (!Visited.insert(Item).second)
        continue;
      // We iterate over all incoming values to Phi to compare them.
      // If values are different and both of them Phi and the first one is a
      // Phi we added (subject to match) and both of them is in the same basic
      // block then we can match our pair if values match. So we state that
      // these values match and add it to work list to verify that.
      for (auto B : Item.first->blocks()) {
        Value *FirstValue = Item.first->getIncomingValueForBlock(B);
        Value *SecondValue = Item.second->getIncomingValueForBlock(B);
        if (FirstValue == SecondValue)
          continue;

        PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
        PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);

        // One of them is not Phi or
        // The first one is not Phi node from the set we'd like to match or
        // Phi nodes from different basic blocks then
        // we will not be able to match.
        if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
            FirstPhi->getParent() != SecondPhi->getParent())
          return false;

        // If we already matched them then continue.
        if (Matcher.count({ FirstPhi, SecondPhi }))
          continue;
        // So the values are different and does not match. So we need them to
        // match. (But we register no more than one match per PHI node, so that
        // we won't later try to replace them twice.)
        if (MatchedPHIs.insert(FirstPhi).second)
          Matcher.insert({ FirstPhi, SecondPhi });
        // But me must check it.
        WorkList.push_back({ FirstPhi, SecondPhi });
      }
    }
    return true;
  }

  /// For the given set of PHI nodes (in the SimplificationTracker) try
  /// to find their equivalents.
  /// Returns false if this matching fails and creation of new Phi is disabled.
  bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
                   unsigned &PhiNotMatchedCount) {
    // Matched and PhiNodesToMatch iterate their elements in a deterministic
    // order, so the replacements (ReplacePhi) are also done in a deterministic
    // order.
    SmallSetVector<PHIPair, 8> Matched;
    SmallPtrSet<PHINode *, 8> WillNotMatch;
    PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
    while (PhiNodesToMatch.size()) {
      PHINode *PHI = *PhiNodesToMatch.begin();

      // Add us, if no Phi nodes in the basic block we do not match.
      WillNotMatch.clear();
      WillNotMatch.insert(PHI);

      // Traverse all Phis until we found equivalent or fail to do that.
      bool IsMatched = false;
      for (auto &P : PHI->getParent()->phis()) {
        if (&P == PHI)
          continue;
        if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
          break;
        // If it does not match, collect all Phi nodes from matcher.
        // if we end up with no match, them all these Phi nodes will not match
        // later.
        for (auto M : Matched)
          WillNotMatch.insert(M.first);
        Matched.clear();
      }
      if (IsMatched) {
        // Replace all matched values and erase them.
        for (auto MV : Matched)
          ST.ReplacePhi(MV.first, MV.second);
        Matched.clear();
        continue;
      }
      // If we are not allowed to create new nodes then bail out.
      if (!AllowNewPhiNodes)
        return false;
      // Just remove all seen values in matcher. They will not match anything.
      PhiNotMatchedCount += WillNotMatch.size();
      for (auto *P : WillNotMatch)
        PhiNodesToMatch.erase(P);
    }
    return true;
  }
  /// Fill the placeholders with values from predecessors and simplify them.
  void FillPlaceholders(FoldAddrToValueMapping &Map,
                        SmallVectorImpl<Value *> &TraverseOrder,
                        SimplificationTracker &ST) {
    while (!TraverseOrder.empty()) {
      Value *Current = TraverseOrder.pop_back_val();
      assert(Map.find(Current) != Map.end() && "No node to fill!!!");
      Value *V = Map[Current];

      if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
        // CurrentValue also must be Select.
        auto *CurrentSelect = cast<SelectInst>(Current);
        auto *TrueValue = CurrentSelect->getTrueValue();
        assert(Map.find(TrueValue) != Map.end() && "No True Value!");
        Select->setTrueValue(ST.Get(Map[TrueValue]));
        auto *FalseValue = CurrentSelect->getFalseValue();
        assert(Map.find(FalseValue) != Map.end() && "No False Value!");
        Select->setFalseValue(ST.Get(Map[FalseValue]));
      } else {
        // Must be a Phi node then.
        auto *PHI = cast<PHINode>(V);
        // Fill the Phi node with values from predecessors.
        for (auto B : predecessors(PHI->getParent())) {
          Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
          assert(Map.find(PV) != Map.end() && "No predecessor Value!");
          PHI->addIncoming(ST.Get(Map[PV]), B);
        }
      }
      Map[Current] = ST.Simplify(V);
    }
  }

  /// Starting from original value recursively iterates over def-use chain up to
  /// known ending values represented in a map. For each traversed phi/select
  /// inserts a placeholder Phi or Select.
  /// Reports all new created Phi/Select nodes by adding them to set.
  /// Also reports and order in what values have been traversed.
  void InsertPlaceholders(FoldAddrToValueMapping &Map,
                          SmallVectorImpl<Value *> &TraverseOrder,
                          SimplificationTracker &ST) {
    SmallVector<Value *, 32> Worklist;
    assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
           "Address must be a Phi or Select node");
    auto *Dummy = UndefValue::get(CommonType);
    Worklist.push_back(Original);
    while (!Worklist.empty()) {
      Value *Current = Worklist.pop_back_val();
      // if it is already visited or it is an ending value then skip it.
      if (Map.find(Current) != Map.end())
        continue;
      TraverseOrder.push_back(Current);

      // CurrentValue must be a Phi node or select. All others must be covered
      // by anchors.
      if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
        // Is it OK to get metadata from OrigSelect?!
        // Create a Select placeholder with dummy value.
        SelectInst *Select = SelectInst::Create(
            CurrentSelect->getCondition(), Dummy, Dummy,
            CurrentSelect->getName(), CurrentSelect, CurrentSelect);
        Map[Current] = Select;
        ST.insertNewSelect(Select);
        // We are interested in True and False values.
        Worklist.push_back(CurrentSelect->getTrueValue());
        Worklist.push_back(CurrentSelect->getFalseValue());
      } else {
        // It must be a Phi node then.
        PHINode *CurrentPhi = cast<PHINode>(Current);
        unsigned PredCount = CurrentPhi->getNumIncomingValues();
        PHINode *PHI =
            PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
        Map[Current] = PHI;
        ST.insertNewPhi(PHI);
        for (Value *P : CurrentPhi->incoming_values())
          Worklist.push_back(P);
      }
    }
  }

  bool addrModeCombiningAllowed() {
    if (DisableComplexAddrModes)
      return false;
    switch (DifferentField) {
    default:
      return false;
    case ExtAddrMode::BaseRegField:
      return AddrSinkCombineBaseReg;
    case ExtAddrMode::BaseGVField:
      return AddrSinkCombineBaseGV;
    case ExtAddrMode::BaseOffsField:
      return AddrSinkCombineBaseOffs;
    case ExtAddrMode::ScaledRegField:
      return AddrSinkCombineScaledReg;
    }
  }
};
} // end anonymous namespace

/// Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
                                             unsigned Depth) {
  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
  // mode.  Just process that directly.
  if (Scale == 1)
    return matchAddr(ScaleReg, Depth);

  // If the scale is 0, it takes nothing to add this.
  if (Scale == 0)
    return true;

  // If we already have a scale of this value, we can add to it, otherwise, we
  // need an available scale field.
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
    return false;

  ExtAddrMode TestAddrMode = AddrMode;

  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
  // [A+B + A*7] -> [B+A*8].
  TestAddrMode.Scale += Scale;
  TestAddrMode.ScaledReg = ScaleReg;

  // If the new address isn't legal, bail out.
  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
    return false;

  // It was legal, so commit it.
  AddrMode = TestAddrMode;

  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
  // X*Scale + C*Scale to addr mode.
  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
    TestAddrMode.InBounds = false;
    TestAddrMode.ScaledReg = AddLHS;
    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;

    // If this addressing mode is legal, commit it and remember that we folded
    // this instruction.
    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
      AddrMode = TestAddrMode;
      return true;
    }
  }

  // Otherwise, not (x+c)*scale, just return what we have.
  return true;
}

/// This is a little filter, which returns true if an addressing computation
/// involving I might be folded into a load/store accessing it.
/// This doesn't need to be perfect, but needs to accept at least
/// the set of instructions that MatchOperationAddr can.
static bool MightBeFoldableInst(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
    // Don't touch identity bitcasts.
    if (I->getType() == I->getOperand(0)->getType())
      return false;
    return I->getType()->isIntOrPtrTy();
  case Instruction::PtrToInt:
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
    return true;
  case Instruction::IntToPtr:
    // We know the input is intptr_t, so this is foldable.
    return true;
  case Instruction::Add:
    return true;
  case Instruction::Mul:
  case Instruction::Shl:
    // Can only handle X*C and X << C.
    return isa<ConstantInt>(I->getOperand(1));
  case Instruction::GetElementPtr:
    return true;
  default:
    return false;
  }
}

/// Check whether or not \p Val is a legal instruction for \p TLI.
/// \note \p Val is assumed to be the product of some type promotion.
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
/// to be legal, as the non-promoted value would have had the same state.
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
                                       const DataLayout &DL, Value *Val) {
  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
  if (!PromotedInst)
    return false;
  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
  // If the ISDOpcode is undefined, it was undefined before the promotion.
  if (!ISDOpcode)
    return true;
  // Otherwise, check if the promoted instruction is legal or not.
  return TLI.isOperationLegalOrCustom(
      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
}

namespace {

/// Hepler class to perform type promotion.
class TypePromotionHelper {
  /// Utility function to add a promoted instruction \p ExtOpnd to
  /// \p PromotedInsts and record the type of extension we have seen.
  static void addPromotedInst(InstrToOrigTy &PromotedInsts,
                              Instruction *ExtOpnd,
                              bool IsSExt) {
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
    InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
    if (It != PromotedInsts.end()) {
      // If the new extension is same as original, the information in
      // PromotedInsts[ExtOpnd] is still correct.
      if (It->second.getInt() == ExtTy)
        return;

      // Now the new extension is different from old extension, we make
      // the type information invalid by setting extension type to
      // BothExtension.
      ExtTy = BothExtension;
    }
    PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
  }

  /// Utility function to query the original type of instruction \p Opnd
  /// with a matched extension type. If the extension doesn't match, we
  /// cannot use the information we had on the original type.
  /// BothExtension doesn't match any extension type.
  static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
                                 Instruction *Opnd,
                                 bool IsSExt) {
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
    InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
    if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
      return It->second.getPointer();
    return nullptr;
  }

  /// Utility function to check whether or not a sign or zero extension
  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
  /// either using the operands of \p Inst or promoting \p Inst.
  /// The type of the extension is defined by \p IsSExt.
  /// In other words, check if:
  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
  /// #1 Promotion applies:
  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
  /// #2 Operand reuses:
  /// ext opnd1 to ConsideredExtType.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
                            const InstrToOrigTy &PromotedInsts, bool IsSExt);

  /// Utility function to determine if \p OpIdx should be promoted when
  /// promoting \p Inst.
  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
    return !(isa<SelectInst>(Inst) && OpIdx == 0);
  }

  /// Utility function to promote the operand of \p Ext when this
  /// operand is a promotable trunc or sext or zext.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p CreatedInstsCost[out] contains the cost of all instructions
  /// created to promote the operand of Ext.
  /// Newly added extensions are inserted in \p Exts.
  /// Newly added truncates are inserted in \p Truncs.
  /// Should never be called directly.
  /// \return The promoted value which is used instead of Ext.
  static Value *promoteOperandForTruncAndAnyExt(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);

  /// Utility function to promote the operand of \p Ext when this
  /// operand is promotable and is not a supported trunc or sext.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p CreatedInstsCost[out] contains the cost of all the instructions
  /// created to promote the operand of Ext.
  /// Newly added extensions are inserted in \p Exts.
  /// Newly added truncates are inserted in \p Truncs.
  /// Should never be called directly.
  /// \return The promoted value which is used instead of Ext.
  static Value *promoteOperandForOther(Instruction *Ext,
                                       TypePromotionTransaction &TPT,
                                       InstrToOrigTy &PromotedInsts,
                                       unsigned &CreatedInstsCost,
                                       SmallVectorImpl<Instruction *> *Exts,
                                       SmallVectorImpl<Instruction *> *Truncs,
                                       const TargetLowering &TLI, bool IsSExt);

  /// \see promoteOperandForOther.
  static Value *signExtendOperandForOther(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
                                  Exts, Truncs, TLI, true);
  }

  /// \see promoteOperandForOther.
  static Value *zeroExtendOperandForOther(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
                                  Exts, Truncs, TLI, false);
  }

public:
  /// Type for the utility function that promotes the operand of Ext.
  using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
                            InstrToOrigTy &PromotedInsts,
                            unsigned &CreatedInstsCost,
                            SmallVectorImpl<Instruction *> *Exts,
                            SmallVectorImpl<Instruction *> *Truncs,
                            const TargetLowering &TLI);

  /// Given a sign/zero extend instruction \p Ext, return the appropriate
  /// action to promote the operand of \p Ext instead of using Ext.
  /// \return NULL if no promotable action is possible with the current
  /// sign extension.
  /// \p InsertedInsts keeps track of all the instructions inserted by the
  /// other CodeGenPrepare optimizations. This information is important
  /// because we do not want to promote these instructions as CodeGenPrepare
  /// will reinsert them later. Thus creating an infinite loop: create/remove.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
                          const TargetLowering &TLI,
                          const InstrToOrigTy &PromotedInsts);
};

} // end anonymous namespace

bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
                                        Type *ConsideredExtType,
                                        const InstrToOrigTy &PromotedInsts,
                                        bool IsSExt) {
  // The promotion helper does not know how to deal with vector types yet.
  // To be able to fix that, we would need to fix the places where we
  // statically extend, e.g., constants and such.
  if (Inst->getType()->isVectorTy())
    return false;

  // We can always get through zext.
  if (isa<ZExtInst>(Inst))
    return true;

  // sext(sext) is ok too.
  if (IsSExt && isa<SExtInst>(Inst))
    return true;

  // We can get through binary operator, if it is legal. In other words, the
  // binary operator must have a nuw or nsw flag.
  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
       (IsSExt && BinOp->hasNoSignedWrap())))
    return true;

  // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
  if ((Inst->getOpcode() == Instruction::And ||
       Inst->getOpcode() == Instruction::Or))
    return true;

  // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
  if (Inst->getOpcode() == Instruction::Xor) {
    const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
    // Make sure it is not a NOT.
    if (Cst && !Cst->getValue().isAllOnesValue())
      return true;
  }

  // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
  // It may change a poisoned value into a regular value, like
  //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
  //          poisoned value                    regular value
  // It should be OK since undef covers valid value.
  if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
    return true;

  // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
  // It may change a poisoned value into a regular value, like
  //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
  //          poisoned value                    regular value
  // It should be OK since undef covers valid value.
  if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
    const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
    if (ExtInst->hasOneUse()) {
      const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
      if (AndInst && AndInst->getOpcode() == Instruction::And) {
        const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
        if (Cst &&
            Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
          return true;
      }
    }
  }

  // Check if we can do the following simplification.
  // ext(trunc(opnd)) --> ext(opnd)
  if (!isa<TruncInst>(Inst))
    return false;

  Value *OpndVal = Inst->getOperand(0);
  // Check if we can use this operand in the extension.
  // If the type is larger than the result type of the extension, we cannot.
  if (!OpndVal->getType()->isIntegerTy() ||
      OpndVal->getType()->getIntegerBitWidth() >
          ConsideredExtType->getIntegerBitWidth())
    return false;

  // If the operand of the truncate is not an instruction, we will not have
  // any information on the dropped bits.
  // (Actually we could for constant but it is not worth the extra logic).
  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
  if (!Opnd)
    return false;

  // Check if the source of the type is narrow enough.
  // I.e., check that trunc just drops extended bits of the same kind of
  // the extension.
  // #1 get the type of the operand and check the kind of the extended bits.
  const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
  if (OpndType)
    ;
  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
    OpndType = Opnd->getOperand(0)->getType();
  else
    return false;

  // #2 check that the truncate just drops extended bits.
  return Inst->getType()->getIntegerBitWidth() >=
         OpndType->getIntegerBitWidth();
}

TypePromotionHelper::Action TypePromotionHelper::getAction(
    Instruction *Ext, const SetOfInstrs &InsertedInsts,
    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
         "Unexpected instruction type");
  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
  Type *ExtTy = Ext->getType();
  bool IsSExt = isa<SExtInst>(Ext);
  // If the operand of the extension is not an instruction, we cannot
  // get through.
  // If it, check we can get through.
  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
    return nullptr;

  // Do not promote if the operand has been added by codegenprepare.
  // Otherwise, it means we are undoing an optimization that is likely to be
  // redone, thus causing potential infinite loop.
  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
    return nullptr;

  // SExt or Trunc instructions.
  // Return the related handler.
  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
      isa<ZExtInst>(ExtOpnd))
    return promoteOperandForTruncAndAnyExt;

  // Regular instruction.
  // Abort early if we will have to insert non-free instructions.
  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
    return nullptr;
  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
}

Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
    Instruction *SExt, TypePromotionTransaction &TPT,
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
    SmallVectorImpl<Instruction *> *Exts,
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
  // By construction, the operand of SExt is an instruction. Otherwise we cannot
  // get through it and this method should not be called.
  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
  Value *ExtVal = SExt;
  bool HasMergedNonFreeExt = false;
  if (isa<ZExtInst>(SExtOpnd)) {
    // Replace s|zext(zext(opnd))
    // => zext(opnd).
    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
    Value *ZExt =
        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
    TPT.replaceAllUsesWith(SExt, ZExt);
    TPT.eraseInstruction(SExt);
    ExtVal = ZExt;
  } else {
    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
    // => z|sext(opnd).
    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
  }
  CreatedInstsCost = 0;

  // Remove dead code.
  if (SExtOpnd->use_empty())
    TPT.eraseInstruction(SExtOpnd);

  // Check if the extension is still needed.
  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
    if (ExtInst) {
      if (Exts)
        Exts->push_back(ExtInst);
      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
    }
    return ExtVal;
  }

  // At this point we have: ext ty opnd to ty.
  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
  Value *NextVal = ExtInst->getOperand(0);
  TPT.eraseInstruction(ExtInst, NextVal);
  return NextVal;
}

Value *TypePromotionHelper::promoteOperandForOther(
    Instruction *Ext, TypePromotionTransaction &TPT,
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
    SmallVectorImpl<Instruction *> *Exts,
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
    bool IsSExt) {
  // By construction, the operand of Ext is an instruction. Otherwise we cannot
  // get through it and this method should not be called.
  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
  CreatedInstsCost = 0;
  if (!ExtOpnd->hasOneUse()) {
    // ExtOpnd will be promoted.
    // All its uses, but Ext, will need to use a truncated value of the
    // promoted version.
    // Create the truncate now.
    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
      // Insert it just after the definition.
      ITrunc->moveAfter(ExtOpnd);
      if (Truncs)
        Truncs->push_back(ITrunc);
    }

    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
    // Restore the operand of Ext (which has been replaced by the previous call
    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
    TPT.setOperand(Ext, 0, ExtOpnd);
  }

  // Get through the Instruction:
  // 1. Update its type.
  // 2. Replace the uses of Ext by Inst.
  // 3. Extend each operand that needs to be extended.

  // Remember the original type of the instruction before promotion.
  // This is useful to know that the high bits are sign extended bits.
  addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
  // Step #1.
  TPT.mutateType(ExtOpnd, Ext->getType());
  // Step #2.
  TPT.replaceAllUsesWith(Ext, ExtOpnd);
  // Step #3.
  Instruction *ExtForOpnd = Ext;

  LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
       ++OpIdx) {
    LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
        !shouldExtOperand(ExtOpnd, OpIdx)) {
      LLVM_DEBUG(dbgs() << "No need to propagate\n");
      continue;
    }
    // Check if we can statically extend the operand.
    Value *Opnd = ExtOpnd->getOperand(OpIdx);
    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
      LLVM_DEBUG(dbgs() << "Statically extend\n");
      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
                            : Cst->getValue().zext(BitWidth);
      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
      continue;
    }
    // UndefValue are typed, so we have to statically sign extend them.
    if (isa<UndefValue>(Opnd)) {
      LLVM_DEBUG(dbgs() << "Statically extend\n");
      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
      continue;
    }

    // Otherwise we have to explicitly sign extend the operand.
    // Check if Ext was reused to extend an operand.
    if (!ExtForOpnd) {
      // If yes, create a new one.
      LLVM_DEBUG(dbgs() << "More operands to ext\n");
      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
        : TPT.createZExt(Ext, Opnd, Ext->getType());
      if (!isa<Instruction>(ValForExtOpnd)) {
        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
        continue;
      }
      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
    }
    if (Exts)
      Exts->push_back(ExtForOpnd);
    TPT.setOperand(ExtForOpnd, 0, Opnd);

    // Move the sign extension before the insertion point.
    TPT.moveBefore(ExtForOpnd, ExtOpnd);
    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
    // If more sext are required, new instructions will have to be created.
    ExtForOpnd = nullptr;
  }
  if (ExtForOpnd == Ext) {
    LLVM_DEBUG(dbgs() << "Extension is useless now\n");
    TPT.eraseInstruction(Ext);
  }
  return ExtOpnd;
}

/// Check whether or not promoting an instruction to a wider type is profitable.
/// \p NewCost gives the cost of extension instructions created by the
/// promotion.
/// \p OldCost gives the cost of extension instructions before the promotion
/// plus the number of instructions that have been
/// matched in the addressing mode the promotion.
/// \p PromotedOperand is the value that has been promoted.
/// \return True if the promotion is profitable, false otherwise.
bool AddressingModeMatcher::isPromotionProfitable(
    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
  LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
                    << '\n');
  // The cost of the new extensions is greater than the cost of the
  // old extension plus what we folded.
  // This is not profitable.
  if (NewCost > OldCost)
    return false;
  if (NewCost < OldCost)
    return true;
  // The promotion is neutral but it may help folding the sign extension in
  // loads for instance.
  // Check that we did not create an illegal instruction.
  return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
}

/// Given an instruction or constant expr, see if we can fold the operation
/// into the addressing mode. If so, update the addressing mode and return
/// true, otherwise return false without modifying AddrMode.
/// If \p MovedAway is not NULL, it contains the information of whether or
/// not AddrInst has to be folded into the addressing mode on success.
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
/// because it has been moved away.
/// Thus AddrInst must not be added in the matched instructions.
/// This state can happen when AddrInst is a sext, since it may be moved away.
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
/// not be referenced anymore.
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
                                               unsigned Depth,
                                               bool *MovedAway) {
  // Avoid exponential behavior on extremely deep expression trees.
  if (Depth >= 5) return false;

  // By default, all matched instructions stay in place.
  if (MovedAway)
    *MovedAway = false;

  switch (Opcode) {
  case Instruction::PtrToInt:
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
    return matchAddr(AddrInst->getOperand(0), Depth);
  case Instruction::IntToPtr: {
    auto AS = AddrInst->getType()->getPointerAddressSpace();
    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
    // This inttoptr is a no-op if the integer type is pointer sized.
    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  }
  case Instruction::BitCast:
    // BitCast is always a noop, and we can handle it as long as it is
    // int->int or pointer->pointer (we don't want int<->fp or something).
    if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
        // Don't touch identity bitcasts.  These were probably put here by LSR,
        // and we don't want to mess around with them.  Assume it knows what it
        // is doing.
        AddrInst->getOperand(0)->getType() != AddrInst->getType())
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  case Instruction::AddrSpaceCast: {
    unsigned SrcAS
      = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
    if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  }
  case Instruction::Add: {
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();
    // Start a transaction at this point.
    // The LHS may match but not the RHS.
    // Therefore, we need a higher level restoration point to undo partially
    // matched operation.
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();

    AddrMode.InBounds = false;
    if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
        matchAddr(AddrInst->getOperand(0), Depth+1))
      return true;

    // Restore the old addr mode info.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    TPT.rollback(LastKnownGood);

    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
    if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
        matchAddr(AddrInst->getOperand(1), Depth+1))
      return true;

    // Otherwise we definitely can't merge the ADD in.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    TPT.rollback(LastKnownGood);
    break;
  }
  //case Instruction::Or:
  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
  //break;
  case Instruction::Mul:
  case Instruction::Shl: {
    // Can only handle X*C and X << C.
    AddrMode.InBounds = false;
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
    if (!RHS || RHS->getBitWidth() > 64)
      return false;
    int64_t Scale = RHS->getSExtValue();
    if (Opcode == Instruction::Shl)
      Scale = 1LL << Scale;

    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
  }
  case Instruction::GetElementPtr: {
    // Scan the GEP.  We check it if it contains constant offsets and at most
    // one variable offset.
    int VariableOperand = -1;
    unsigned VariableScale = 0;

    int64_t ConstantOffset = 0;
    gep_type_iterator GTI = gep_type_begin(AddrInst);
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        const StructLayout *SL = DL.getStructLayout(STy);
        unsigned Idx =
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
        ConstantOffset += SL->getElementOffset(Idx);
      } else {
        uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
          const APInt &CVal = CI->getValue();
          if (CVal.getMinSignedBits() <= 64) {
            ConstantOffset += CVal.getSExtValue() * TypeSize;
            continue;
          }
        }
        if (TypeSize) {  // Scales of zero don't do anything.
          // We only allow one variable index at the moment.
          if (VariableOperand != -1)
            return false;

          // Remember the variable index.
          VariableOperand = i;
          VariableScale = TypeSize;
        }
      }
    }

    // A common case is for the GEP to only do a constant offset.  In this case,
    // just add it to the disp field and check validity.
    if (VariableOperand == -1) {
      AddrMode.BaseOffs += ConstantOffset;
      if (ConstantOffset == 0 ||
          TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
        // Check to see if we can fold the base pointer in too.
        if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
          if (!cast<GEPOperator>(AddrInst)->isInBounds())
            AddrMode.InBounds = false;
          return true;
        }
      } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
                 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
                 ConstantOffset > 0) {
        // Record GEPs with non-zero offsets as candidates for splitting in the
        // event that the offset cannot fit into the r+i addressing mode.
        // Simple and common case that only one GEP is used in calculating the
        // address for the memory access.
        Value *Base = AddrInst->getOperand(0);
        auto *BaseI = dyn_cast<Instruction>(Base);
        auto *GEP = cast<GetElementPtrInst>(AddrInst);
        if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
            (BaseI && !isa<CastInst>(BaseI) &&
             !isa<GetElementPtrInst>(BaseI))) {
          // Make sure the parent block allows inserting non-PHI instructions
          // before the terminator.
          BasicBlock *Parent =
              BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
          if (!Parent->getTerminator()->isEHPad())
            LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
        }
      }
      AddrMode.BaseOffs -= ConstantOffset;
      return false;
    }

    // Save the valid addressing mode in case we can't match.
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    // See if the scale and offset amount is valid for this target.
    AddrMode.BaseOffs += ConstantOffset;
    if (!cast<GEPOperator>(AddrInst)->isInBounds())
      AddrMode.InBounds = false;

    // Match the base operand of the GEP.
    if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
      // If it couldn't be matched, just stuff the value in a register.
      if (AddrMode.HasBaseReg) {
        AddrMode = BackupAddrMode;
        AddrModeInsts.resize(OldSize);
        return false;
      }
      AddrMode.HasBaseReg = true;
      AddrMode.BaseReg = AddrInst->getOperand(0);
    }

    // Match the remaining variable portion of the GEP.
    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
                          Depth)) {
      // If it couldn't be matched, try stuffing the base into a register
      // instead of matching it, and retrying the match of the scale.
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      if (AddrMode.HasBaseReg)
        return false;
      AddrMode.HasBaseReg = true;
      AddrMode.BaseReg = AddrInst->getOperand(0);
      AddrMode.BaseOffs += ConstantOffset;
      if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
                            VariableScale, Depth)) {
        // If even that didn't work, bail.
        AddrMode = BackupAddrMode;
        AddrModeInsts.resize(OldSize);
        return false;
      }
    }

    return true;
  }
  case Instruction::SExt:
  case Instruction::ZExt: {
    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
    if (!Ext)
      return false;

    // Try to move this ext out of the way of the addressing mode.
    // Ask for a method for doing so.
    TypePromotionHelper::Action TPH =
        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
    if (!TPH)
      return false;

    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    unsigned CreatedInstsCost = 0;
    unsigned ExtCost = !TLI.isExtFree(Ext);
    Value *PromotedOperand =
        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
    // SExt has been moved away.
    // Thus either it will be rematched later in the recursive calls or it is
    // gone. Anyway, we must not fold it into the addressing mode at this point.
    // E.g.,
    // op = add opnd, 1
    // idx = ext op
    // addr = gep base, idx
    // is now:
    // promotedOpnd = ext opnd            <- no match here
    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
    // addr = gep base, op                <- match
    if (MovedAway)
      *MovedAway = true;

    assert(PromotedOperand &&
           "TypePromotionHelper should have filtered out those cases");

    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    if (!matchAddr(PromotedOperand, Depth) ||
        // The total of the new cost is equal to the cost of the created
        // instructions.
        // The total of the old cost is equal to the cost of the extension plus
        // what we have saved in the addressing mode.
        !isPromotionProfitable(CreatedInstsCost,
                               ExtCost + (AddrModeInsts.size() - OldSize),
                               PromotedOperand)) {
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
      TPT.rollback(LastKnownGood);
      return false;
    }
    return true;
  }
  }
  return false;
}

/// If we can, try to add the value of 'Addr' into the current addressing mode.
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
/// for the target.
///
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
  // Start a transaction at this point that we will rollback if the matching
  // fails.
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
    // Fold in immediates if legal for the target.
    AddrMode.BaseOffs += CI->getSExtValue();
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
      return true;
    AddrMode.BaseOffs -= CI->getSExtValue();
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
    // If this is a global variable, try to fold it into the addressing mode.
    if (!AddrMode.BaseGV) {
      AddrMode.BaseGV = GV;
      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
        return true;
      AddrMode.BaseGV = nullptr;
    }
  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    // Check to see if it is possible to fold this operation.
    bool MovedAway = false;
    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
      // This instruction may have been moved away. If so, there is nothing
      // to check here.
      if (MovedAway)
        return true;
      // Okay, it's possible to fold this.  Check to see if it is actually
      // *profitable* to do so.  We use a simple cost model to avoid increasing
      // register pressure too much.
      if (I->hasOneUse() ||
          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
        AddrModeInsts.push_back(I);
        return true;
      }

      // It isn't profitable to do this, roll back.
      //cerr << "NOT FOLDING: " << *I;
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      TPT.rollback(LastKnownGood);
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
    if (matchOperationAddr(CE, CE->getOpcode(), Depth))
      return true;
    TPT.rollback(LastKnownGood);
  } else if (isa<ConstantPointerNull>(Addr)) {
    // Null pointer gets folded without affecting the addressing mode.
    return true;
  }

  // Worse case, the target should support [reg] addressing modes. :)
  if (!AddrMode.HasBaseReg) {
    AddrMode.HasBaseReg = true;
    AddrMode.BaseReg = Addr;
    // Still check for legality in case the target supports [imm] but not [i+r].
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
      return true;
    AddrMode.HasBaseReg = false;
    AddrMode.BaseReg = nullptr;
  }

  // If the base register is already taken, see if we can do [r+r].
  if (AddrMode.Scale == 0) {
    AddrMode.Scale = 1;
    AddrMode.ScaledReg = Addr;
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
      return true;
    AddrMode.Scale = 0;
    AddrMode.ScaledReg = nullptr;
  }
  // Couldn't match.
  TPT.rollback(LastKnownGood);
  return false;
}

/// Check to see if all uses of OpVal by the specified inline asm call are due
/// to memory operands. If so, return true, otherwise return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
                                    const TargetLowering &TLI,
                                    const TargetRegisterInfo &TRI) {
  const Function *F = CI->getFunction();
  TargetLowering::AsmOperandInfoVector TargetConstraints =
      TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
                            ImmutableCallSite(CI));

  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];

    // Compute the constraint code and ConstraintType to use.
    TLI.ComputeConstraintToUse(OpInfo, SDValue());

    // If this asm operand is our Value*, and if it isn't an indirect memory
    // operand, we can't fold it!
    if (OpInfo.CallOperandVal == OpVal &&
        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
         !OpInfo.isIndirect))
      return false;
  }

  return true;
}

// Max number of memory uses to look at before aborting the search to conserve
// compile time.
static constexpr int MaxMemoryUsesToScan = 20;

/// Recursively walk all the uses of I until we find a memory use.
/// If we find an obviously non-foldable instruction, return true.
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(
    Instruction *I,
    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
    const TargetRegisterInfo &TRI, int SeenInsts = 0) {
  // If we already considered this instruction, we're done.
  if (!ConsideredInsts.insert(I).second)
    return false;

  // If this is an obviously unfoldable instruction, bail out.
  if (!MightBeFoldableInst(I))
    return true;

  const bool OptSize = I->getFunction()->hasOptSize();

  // Loop over all the uses, recursively processing them.
  for (Use &U : I->uses()) {
    // Conservatively return true if we're seeing a large number or a deep chain
    // of users. This avoids excessive compilation times in pathological cases.
    if (SeenInsts++ >= MaxMemoryUsesToScan)
      return true;

    Instruction *UserI = cast<Instruction>(U.getUser());
    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
      continue;
    }

    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != StoreInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(SI, opNo));
      continue;
    }

    if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != AtomicRMWInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(RMW, opNo));
      continue;
    }

    if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(CmpX, opNo));
      continue;
    }

    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
      // If this is a cold call, we can sink the addressing calculation into
      // the cold path.  See optimizeCallInst
      if (!OptSize && CI->hasFnAttr(Attribute::Cold))
        continue;

      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
      if (!IA) return true;

      // If this is a memory operand, we're cool, otherwise bail out.
      if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
        return true;
      continue;
    }

    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
                          SeenInsts))
      return true;
  }

  return false;
}

/// Return true if Val is already known to be live at the use site that we're
/// folding it into. If so, there is no cost to include it in the addressing
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
/// instruction already.
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
                                                   Value *KnownLive2) {
  // If Val is either of the known-live values, we know it is live!
  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
    return true;

  // All values other than instructions and arguments (e.g. constants) are live.
  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;

  // If Val is a constant sized alloca in the entry block, it is live, this is
  // true because it is just a reference to the stack/frame pointer, which is
  // live for the whole function.
  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
    if (AI->isStaticAlloca())
      return true;

  // Check to see if this value is already used in the memory instruction's
  // block.  If so, it's already live into the block at the very least, so we
  // can reasonably fold it.
  return Val->isUsedInBasicBlock(MemoryInst->getParent());
}

/// It is possible for the addressing mode of the machine to fold the specified
/// instruction into a load or store that ultimately uses it.
/// However, the specified instruction has multiple uses.
/// Given this, it may actually increase register pressure to fold it
/// into the load. For example, consider this code:
///
///     X = ...
///     Y = X+1
///     use(Y)   -> nonload/store
///     Z = Y+1
///     load Z
///
/// In this case, Y has multiple uses, and can be folded into the load of Z
/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
/// number of computations either.
///
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case.  This would make Y die earlier.
bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
                                     ExtAddrMode &AMAfter) {
  if (IgnoreProfitability) return true;

  // AMBefore is the addressing mode before this instruction was folded into it,
  // and AMAfter is the addressing mode after the instruction was folded.  Get
  // the set of registers referenced by AMAfter and subtract out those
  // referenced by AMBefore: this is the set of values which folding in this
  // address extends the lifetime of.
  //
  // Note that there are only two potential values being referenced here,
  // BaseReg and ScaleReg (global addresses are always available, as are any
  // folded immediates).
  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;

  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
  // lifetime wasn't extended by adding this instruction.
  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
    BaseReg = nullptr;
  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
    ScaledReg = nullptr;

  // If folding this instruction (and it's subexprs) didn't extend any live
  // ranges, we're ok with it.
  if (!BaseReg && !ScaledReg)
    return true;

  // If all uses of this instruction can have the address mode sunk into them,
  // we can remove the addressing mode and effectively trade one live register
  // for another (at worst.)  In this context, folding an addressing mode into
  // the use is just a particularly nice way of sinking it.
  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
  SmallPtrSet<Instruction*, 16> ConsideredInsts;
  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
    return false;  // Has a non-memory, non-foldable use!

  // Now that we know that all uses of this instruction are part of a chain of
  // computation involving only operations that could theoretically be folded
  // into a memory use, loop over each of these memory operation uses and see
  // if they could  *actually* fold the instruction.  The assumption is that
  // addressing modes are cheap and that duplicating the computation involved
  // many times is worthwhile, even on a fastpath. For sinking candidates
  // (i.e. cold call sites), this serves as a way to prevent excessive code
  // growth since most architectures have some reasonable small and fast way to
  // compute an effective address.  (i.e LEA on x86)
  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
    Instruction *User = MemoryUses[i].first;
    unsigned OpNo = MemoryUses[i].second;

    // Get the access type of this use.  If the use isn't a pointer, we don't
    // know what it accesses.
    Value *Address = User->getOperand(OpNo);
    PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
    if (!AddrTy)
      return false;
    Type *AddressAccessTy = AddrTy->getElementType();
    unsigned AS = AddrTy->getAddressSpace();

    // Do a match against the root of this address, ignoring profitability. This
    // will tell us if the addressing mode for the memory operation will
    // *actually* cover the shared instruction.
    ExtAddrMode Result;
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
                                                                      0);
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    AddressingModeMatcher Matcher(
        MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
    Matcher.IgnoreProfitability = true;
    bool Success = Matcher.matchAddr(Address, 0);
    (void)Success; assert(Success && "Couldn't select *anything*?");

    // The match was to check the profitability, the changes made are not
    // part of the original matcher. Therefore, they should be dropped
    // otherwise the original matcher will not present the right state.
    TPT.rollback(LastKnownGood);

    // If the match didn't cover I, then it won't be shared by it.
    if (!is_contained(MatchedAddrModeInsts, I))
      return false;

    MatchedAddrModeInsts.clear();
  }

  return true;
}

/// Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() != BB;
  return false;
}

/// Sink addressing mode computation immediate before MemoryInst if doing so
/// can be done without increasing register pressure.  The need for the
/// register pressure constraint means this can end up being an all or nothing
/// decision for all uses of the same addressing computation.
///
/// Load and Store Instructions often have addressing modes that can do
/// significant amounts of computation. As such, instruction selection will try
/// to get the load or store to do as much computation as possible for the
/// program. The problem is that isel can only see within a single block. As
/// such, we sink as much legal addressing mode work into the block as possible.
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands.  It's also used to sink addressing computations feeding into cold
/// call sites into their (cold) basic block.
///
/// The motivation for handling sinking into cold blocks is that doing so can
/// both enable other address mode sinking (by satisfying the register pressure
/// constraint above), and reduce register pressure globally (by removing the
/// addressing mode computation from the fast path entirely.).
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
                                        Type *AccessTy, unsigned AddrSpace) {
  Value *Repl = Addr;

  // Try to collapse single-value PHI nodes.  This is necessary to undo
  // unprofitable PRE transformations.
  SmallVector<Value*, 8> worklist;
  SmallPtrSet<Value*, 16> Visited;
  worklist.push_back(Addr);

  // Use a worklist to iteratively look through PHI and select nodes, and
  // ensure that the addressing mode obtained from the non-PHI/select roots of
  // the graph are compatible.
  bool PhiOrSelectSeen = false;
  SmallVector<Instruction*, 16> AddrModeInsts;
  const SimplifyQuery SQ(*DL, TLInfo);
  AddressingModeCombiner AddrModes(SQ, Addr);
  TypePromotionTransaction TPT(RemovedInsts);
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  while (!worklist.empty()) {
    Value *V = worklist.back();
    worklist.pop_back();

    // We allow traversing cyclic Phi nodes.
    // In case of success after this loop we ensure that traversing through
    // Phi nodes ends up with all cases to compute address of the form
    //    BaseGV + Base + Scale * Index + Offset
    // where Scale and Offset are constans and BaseGV, Base and Index
    // are exactly the same Values in all cases.
    // It means that BaseGV, Scale and Offset dominate our memory instruction
    // and have the same value as they had in address computation represented
    // as Phi. So we can safely sink address computation to memory instruction.
    if (!Visited.insert(V).second)
      continue;

    // For a PHI node, push all of its incoming values.
    if (PHINode *P = dyn_cast<PHINode>(V)) {
      for (Value *IncValue : P->incoming_values())
        worklist.push_back(IncValue);
      PhiOrSelectSeen = true;
      continue;
    }
    // Similar for select.
    if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
      worklist.push_back(SI->getFalseValue());
      worklist.push_back(SI->getTrueValue());
      PhiOrSelectSeen = true;
      continue;
    }

    // For non-PHIs, determine the addressing mode being computed.  Note that
    // the result may differ depending on what other uses our candidate
    // addressing instructions might have.
    AddrModeInsts.clear();
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
                                                                      0);
    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
        V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);

    GetElementPtrInst *GEP = LargeOffsetGEP.first;
    if (GEP && !NewGEPBases.count(GEP)) {
      // If splitting the underlying data structure can reduce the offset of a
      // GEP, collect the GEP.  Skip the GEPs that are the new bases of
      // previously split data structures.
      LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
      if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
        LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
    }

    NewAddrMode.OriginalValue = V;
    if (!AddrModes.addNewAddrMode(NewAddrMode))
      break;
  }

  // Try to combine the AddrModes we've collected. If we couldn't collect any,
  // or we have multiple but either couldn't combine them or combining them
  // wouldn't do anything useful, bail out now.
  if (!AddrModes.combineAddrModes()) {
    TPT.rollback(LastKnownGood);
    return false;
  }
  TPT.commit();

  // Get the combined AddrMode (or the only AddrMode, if we only had one).
  ExtAddrMode AddrMode = AddrModes.getAddrMode();

  // If all the instructions matched are already in this BB, don't do anything.
  // If we saw a Phi node then it is not local definitely, and if we saw a select
  // then we want to push the address calculation past it even if it's already
  // in this BB.
  if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
        return IsNonLocalValue(V, MemoryInst->getParent());
                  })) {
    LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
                      << "\n");
    return false;
  }

  // Insert this computation right after this user.  Since our caller is
  // scanning from the top of the BB to the bottom, reuse of the expr are
  // guaranteed to happen later.
  IRBuilder<> Builder(MemoryInst);

  // Now that we determined the addressing expression we want to use and know
  // that we have to sink it into this block.  Check to see if we have already
  // done this for some other load/store instr in this block.  If so, reuse
  // the computation.  Before attempting reuse, check if the address is valid
  // as it may have been erased.

  WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];

  Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
  if (SunkAddr) {
    LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    if (SunkAddr->getType() != Addr->getType())
      SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
                                   TM && SubtargetInfo->addrSinkUsingGEPs())) {
    // By default, we use the GEP-based method when AA is used later. This
    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
    Value *ResultPtr = nullptr, *ResultIndex = nullptr;

    // First, find the pointer.
    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
      ResultPtr = AddrMode.BaseReg;
      AddrMode.BaseReg = nullptr;
    }

    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
      // We can't add more than one pointer together, nor can we scale a
      // pointer (both of which seem meaningless).
      if (ResultPtr || AddrMode.Scale != 1)
        return false;

      ResultPtr = AddrMode.ScaledReg;
      AddrMode.Scale = 0;
    }

    // It is only safe to sign extend the BaseReg if we know that the math
    // required to create it did not overflow before we extend it. Since
    // the original IR value was tossed in favor of a constant back when
    // the AddrMode was created we need to bail out gracefully if widths
    // do not match instead of extending it.
    //
    // (See below for code to add the scale.)
    if (AddrMode.Scale) {
      Type *ScaledRegTy = AddrMode.ScaledReg->getType();
      if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
          cast<IntegerType>(ScaledRegTy)->getBitWidth())
        return false;
    }

    if (AddrMode.BaseGV) {
      if (ResultPtr)
        return false;

      ResultPtr = AddrMode.BaseGV;
    }

    // If the real base value actually came from an inttoptr, then the matcher
    // will look through it and provide only the integer value. In that case,
    // use it here.
    if (!DL->isNonIntegralPointerType(Addr->getType())) {
      if (!ResultPtr && AddrMode.BaseReg) {
        ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
                                           "sunkaddr");
        AddrMode.BaseReg = nullptr;
      } else if (!ResultPtr && AddrMode.Scale == 1) {
        ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
                                           "sunkaddr");
        AddrMode.Scale = 0;
      }
    }

    if (!ResultPtr &&
        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
      SunkAddr = Constant::getNullValue(Addr->getType());
    } else if (!ResultPtr) {
      return false;
    } else {
      Type *I8PtrTy =
          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
      Type *I8Ty = Builder.getInt8Ty();

      // Start with the base register. Do this first so that subsequent address
      // matching finds it last, which will prevent it from trying to match it
      // as the scaled value in case it happens to be a mul. That would be
      // problematic if we've sunk a different mul for the scale, because then
      // we'd end up sinking both muls.
      if (AddrMode.BaseReg) {
        Value *V = AddrMode.BaseReg;
        if (V->getType() != IntPtrTy)
          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");

        ResultIndex = V;
      }

      // Add the scale value.
      if (AddrMode.Scale) {
        Value *V = AddrMode.ScaledReg;
        if (V->getType() == IntPtrTy) {
          // done.
        } else {
          assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
                 cast<IntegerType>(V->getType())->getBitWidth() &&
                 "We can't transform if ScaledReg is too narrow");
          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
        }

        if (AddrMode.Scale != 1)
          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
                                "sunkaddr");
        if (ResultIndex)
          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
        else
          ResultIndex = V;
      }

      // Add in the Base Offset if present.
      if (AddrMode.BaseOffs) {
        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
        if (ResultIndex) {
          // We need to add this separately from the scale above to help with
          // SDAG consecutive load/store merging.
          if (ResultPtr->getType() != I8PtrTy)
            ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
          ResultPtr =
              AddrMode.InBounds
                  ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
                                              "sunkaddr")
                  : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
        }

        ResultIndex = V;
      }

      if (!ResultIndex) {
        SunkAddr = ResultPtr;
      } else {
        if (ResultPtr->getType() != I8PtrTy)
          ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
        SunkAddr =
            AddrMode.InBounds
                ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
                                            "sunkaddr")
                : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
      }

      if (SunkAddr->getType() != Addr->getType())
        SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
    }
  } else {
    // We'd require a ptrtoint/inttoptr down the line, which we can't do for
    // non-integral pointers, so in that case bail out now.
    Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
    Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
    PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
    PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
    if (DL->isNonIntegralPointerType(Addr->getType()) ||
        (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
        (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
        (AddrMode.BaseGV &&
         DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
      return false;

    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
    Value *Result = nullptr;

    // Start with the base register. Do this first so that subsequent address
    // matching finds it last, which will prevent it from trying to match it
    // as the scaled value in case it happens to be a mul. That would be
    // problematic if we've sunk a different mul for the scale, because then
    // we'd end up sinking both muls.
    if (AddrMode.BaseReg) {
      Value *V = AddrMode.BaseReg;
      if (V->getType()->isPointerTy())
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
      if (V->getType() != IntPtrTy)
        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
      Result = V;
    }

    // Add the scale value.
    if (AddrMode.Scale) {
      Value *V = AddrMode.ScaledReg;
      if (V->getType() == IntPtrTy) {
        // done.
      } else if (V->getType()->isPointerTy()) {
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
                 cast<IntegerType>(V->getType())->getBitWidth()) {
        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
      } else {
        // It is only safe to sign extend the BaseReg if we know that the math
        // required to create it did not overflow before we extend it. Since
        // the original IR value was tossed in favor of a constant back when
        // the AddrMode was created we need to bail out gracefully if widths
        // do not match instead of extending it.
        Instruction *I = dyn_cast_or_null<Instruction>(Result);
        if (I && (Result != AddrMode.BaseReg))
          I->eraseFromParent();
        return false;
      }
      if (AddrMode.Scale != 1)
        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
                              "sunkaddr");
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    // Add in the BaseGV if present.
    if (AddrMode.BaseGV) {
      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    // Add in the Base Offset if present.
    if (AddrMode.BaseOffs) {
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    if (!Result)
      SunkAddr = Constant::getNullValue(Addr->getType());
    else
      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
  }

  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
  // Store the newly computed address into the cache. In the case we reused a
  // value, this should be idempotent.
  SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);

  // If we have no uses, recursively delete the value and all dead instructions
  // using it.
  if (Repl->use_empty()) {
    // This can cause recursive deletion, which can invalidate our iterator.
    // Use a WeakTrackingVH to hold onto it in case this happens.
    Value *CurValue = &*CurInstIterator;
    WeakTrackingVH IterHandle(CurValue);
    BasicBlock *BB = CurInstIterator->getParent();

    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);

    if (IterHandle != CurValue) {
      // If the iterator instruction was recursively deleted, start over at the
      // start of the block.
      CurInstIterator = BB->begin();
      SunkAddrs.clear();
    }
  }
  ++NumMemoryInsts;
  return true;
}

/// If there are any memory operands, use OptimizeMemoryInst to sink their
/// address computing into the block when possible / profitable.
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
  bool MadeChange = false;

  const TargetRegisterInfo *TRI =
      TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
  TargetLowering::AsmOperandInfoVector TargetConstraints =
      TLI->ParseConstraints(*DL, TRI, CS);
  unsigned ArgNo = 0;
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];

    // Compute the constraint code and ConstraintType to use.
    TLI->ComputeConstraintToUse(OpInfo, SDValue());

    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
        OpInfo.isIndirect) {
      Value *OpVal = CS->getArgOperand(ArgNo++);
      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
    } else if (OpInfo.Type == InlineAsm::isInput)
      ArgNo++;
  }

  return MadeChange;
}

/// Check if all the uses of \p Val are equivalent (or free) zero or
/// sign extensions.
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
  assert(!Val->use_empty() && "Input must have at least one use");
  const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
  bool IsSExt = isa<SExtInst>(FirstUser);
  Type *ExtTy = FirstUser->getType();
  for (const User *U : Val->users()) {
    const Instruction *UI = cast<Instruction>(U);
    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
      return false;
    Type *CurTy = UI->getType();
    // Same input and output types: Same instruction after CSE.
    if (CurTy == ExtTy)
      continue;

    // If IsSExt is true, we are in this situation:
    // a = Val
    // b = sext ty1 a to ty2
    // c = sext ty1 a to ty3
    // Assuming ty2 is shorter than ty3, this could be turned into:
    // a = Val
    // b = sext ty1 a to ty2
    // c = sext ty2 b to ty3
    // However, the last sext is not free.
    if (IsSExt)
      return false;

    // This is a ZExt, maybe this is free to extend from one type to another.
    // In that case, we would not account for a different use.
    Type *NarrowTy;
    Type *LargeTy;
    if (ExtTy->getScalarType()->getIntegerBitWidth() >
        CurTy->getScalarType()->getIntegerBitWidth()) {
      NarrowTy = CurTy;
      LargeTy = ExtTy;
    } else {
      NarrowTy = ExtTy;
      LargeTy = CurTy;
    }

    if (!TLI.isZExtFree(NarrowTy, LargeTy))
      return false;
  }
  // All uses are the same or can be derived from one another for free.
  return true;
}

/// Try to speculatively promote extensions in \p Exts and continue
/// promoting through newly promoted operands recursively as far as doing so is
/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
/// When some promotion happened, \p TPT contains the proper state to revert
/// them.
///
/// \return true if some promotion happened, false otherwise.
bool CodeGenPrepare::tryToPromoteExts(
    TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
    SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
    unsigned CreatedInstsCost) {
  bool Promoted = false;

  // Iterate over all the extensions to try to promote them.
  for (auto I : Exts) {
    // Early check if we directly have ext(load).
    if (isa<LoadInst>(I->getOperand(0))) {
      ProfitablyMovedExts.push_back(I);
      continue;
    }

    // Check whether or not we want to do any promotion.  The reason we have
    // this check inside the for loop is to catch the case where an extension
    // is directly fed by a load because in such case the extension can be moved
    // up without any promotion on its operands.
    if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
      return false;

    // Get the action to perform the promotion.
    TypePromotionHelper::Action TPH =
        TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
    // Check if we can promote.
    if (!TPH) {
      // Save the current extension as we cannot move up through its operand.
      ProfitablyMovedExts.push_back(I);
      continue;
    }

    // Save the current state.
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    SmallVector<Instruction *, 4> NewExts;
    unsigned NewCreatedInstsCost = 0;
    unsigned ExtCost = !TLI->isExtFree(I);
    // Promote.
    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
                             &NewExts, nullptr, *TLI);
    assert(PromotedVal &&
           "TypePromotionHelper should have filtered out those cases");

    // We would be able to merge only one extension in a load.
    // Therefore, if we have more than 1 new extension we heuristically
    // cut this search path, because it means we degrade the code quality.
    // With exactly 2, the transformation is neutral, because we will merge
    // one extension but leave one. However, we optimistically keep going,
    // because the new extension may be removed too.
    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
    // FIXME: It would be possible to propagate a negative value instead of
    // conservatively ceiling it to 0.
    TotalCreatedInstsCost =
        std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
    if (!StressExtLdPromotion &&
        (TotalCreatedInstsCost > 1 ||
         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
      // This promotion is not profitable, rollback to the previous state, and
      // save the current extension in ProfitablyMovedExts as the latest
      // speculative promotion turned out to be unprofitable.
      TPT.rollback(LastKnownGood);
      ProfitablyMovedExts.push_back(I);
      continue;
    }
    // Continue promoting NewExts as far as doing so is profitable.
    SmallVector<Instruction *, 2> NewlyMovedExts;
    (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
    bool NewPromoted = false;
    for (auto ExtInst : NewlyMovedExts) {
      Instruction *MovedExt = cast<Instruction>(ExtInst);
      Value *ExtOperand = MovedExt->getOperand(0);
      // If we have reached to a load, we need this extra profitability check
      // as it could potentially be merged into an ext(load).
      if (isa<LoadInst>(ExtOperand) &&
          !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
            (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
        continue;

      ProfitablyMovedExts.push_back(MovedExt);
      NewPromoted = true;
    }

    // If none of speculative promotions for NewExts is profitable, rollback
    // and save the current extension (I) as the last profitable extension.
    if (!NewPromoted) {
      TPT.rollback(LastKnownGood);
      ProfitablyMovedExts.push_back(I);
      continue;
    }
    // The promotion is profitable.
    Promoted = true;
  }
  return Promoted;
}

/// Merging redundant sexts when one is dominating the other.
bool CodeGenPrepare::mergeSExts(Function &F) {
  bool Changed = false;
  for (auto &Entry : ValToSExtendedUses) {
    SExts &Insts = Entry.second;
    SExts CurPts;
    for (Instruction *Inst : Insts) {
      if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
          Inst->getOperand(0) != Entry.first)
        continue;
      bool inserted = false;
      for (auto &Pt : CurPts) {
        if (getDT(F).dominates(Inst, Pt)) {
          Pt->replaceAllUsesWith(Inst);
          RemovedInsts.insert(Pt);
          Pt->removeFromParent();
          Pt = Inst;
          inserted = true;
          Changed = true;
          break;
        }
        if (!getDT(F).dominates(Pt, Inst))
          // Give up if we need to merge in a common dominator as the
          // experiments show it is not profitable.
          continue;
        Inst->replaceAllUsesWith(Pt);
        RemovedInsts.insert(Inst);
        Inst->removeFromParent();
        inserted = true;
        Changed = true;
        break;
      }
      if (!inserted)
        CurPts.push_back(Inst);
    }
  }
  return Changed;
}

// Spliting large data structures so that the GEPs accessing them can have
// smaller offsets so that they can be sunk to the same blocks as their users.
// For example, a large struct starting from %base is splitted into two parts
// where the second part starts from %new_base.
//
// Before:
// BB0:
//   %base     =
//
// BB1:
//   %gep0     = gep %base, off0
//   %gep1     = gep %base, off1
//   %gep2     = gep %base, off2
//
// BB2:
//   %load1    = load %gep0
//   %load2    = load %gep1
//   %load3    = load %gep2
//
// After:
// BB0:
//   %base     =
//   %new_base = gep %base, off0
//
// BB1:
//   %new_gep0 = %new_base
//   %new_gep1 = gep %new_base, off1 - off0
//   %new_gep2 = gep %new_base, off2 - off0
//
// BB2:
//   %load1    = load i32, i32* %new_gep0
//   %load2    = load i32, i32* %new_gep1
//   %load3    = load i32, i32* %new_gep2
//
// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
// their offsets are smaller enough to fit into the addressing mode.
bool CodeGenPrepare::splitLargeGEPOffsets() {
  bool Changed = false;
  for (auto &Entry : LargeOffsetGEPMap) {
    Value *OldBase = Entry.first;
    SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
        &LargeOffsetGEPs = Entry.second;
    auto compareGEPOffset =
        [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
            const std::pair<GetElementPtrInst *, int64_t> &RHS) {
          if (LHS.first == RHS.first)
            return false;
          if (LHS.second != RHS.second)
            return LHS.second < RHS.second;
          return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
        };
    // Sorting all the GEPs of the same data structures based on the offsets.
    llvm::sort(LargeOffsetGEPs, compareGEPOffset);
    LargeOffsetGEPs.erase(
        std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
        LargeOffsetGEPs.end());
    // Skip if all the GEPs have the same offsets.
    if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
      continue;
    GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
    int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
    Value *NewBaseGEP = nullptr;

    auto LargeOffsetGEP = LargeOffsetGEPs.begin();
    while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
      GetElementPtrInst *GEP = LargeOffsetGEP->first;
      int64_t Offset = LargeOffsetGEP->second;
      if (Offset != BaseOffset) {
        TargetLowering::AddrMode AddrMode;
        AddrMode.BaseOffs = Offset - BaseOffset;
        // The result type of the GEP might not be the type of the memory
        // access.
        if (!TLI->isLegalAddressingMode(*DL, AddrMode,
                                        GEP->getResultElementType(),
                                        GEP->getAddressSpace())) {
          // We need to create a new base if the offset to the current base is
          // too large to fit into the addressing mode. So, a very large struct
          // may be splitted into several parts.
          BaseGEP = GEP;
          BaseOffset = Offset;
          NewBaseGEP = nullptr;
        }
      }

      // Generate a new GEP to replace the current one.
      LLVMContext &Ctx = GEP->getContext();
      Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
      Type *I8PtrTy =
          Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
      Type *I8Ty = Type::getInt8Ty(Ctx);

      if (!NewBaseGEP) {
        // Create a new base if we don't have one yet.  Find the insertion
        // pointer for the new base first.
        BasicBlock::iterator NewBaseInsertPt;
        BasicBlock *NewBaseInsertBB;
        if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
          // If the base of the struct is an instruction, the new base will be
          // inserted close to it.
          NewBaseInsertBB = BaseI->getParent();
          if (isa<PHINode>(BaseI))
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
          else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
            NewBaseInsertBB =
                SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
          } else
            NewBaseInsertPt = std::next(BaseI->getIterator());
        } else {
          // If the current base is an argument or global value, the new base
          // will be inserted to the entry block.
          NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
        }
        IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
        // Create a new base.
        Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
        NewBaseGEP = OldBase;
        if (NewBaseGEP->getType() != I8PtrTy)
          NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
        NewBaseGEP =
            NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
        NewGEPBases.insert(NewBaseGEP);
      }

      IRBuilder<> Builder(GEP);
      Value *NewGEP = NewBaseGEP;
      if (Offset == BaseOffset) {
        if (GEP->getType() != I8PtrTy)
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
      } else {
        // Calculate the new offset for the new GEP.
        Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
        NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);

        if (GEP->getType() != I8PtrTy)
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
      }
      GEP->replaceAllUsesWith(NewGEP);
      LargeOffsetGEPID.erase(GEP);
      LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
      GEP->eraseFromParent();
      Changed = true;
    }
  }
  return Changed;
}

/// Return true, if an ext(load) can be formed from an extension in
/// \p MovedExts.
bool CodeGenPrepare::canFormExtLd(
    const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
    Instruction *&Inst, bool HasPromoted) {
  for (auto *MovedExtInst : MovedExts) {
    if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
      LI = cast<LoadInst>(MovedExtInst->getOperand(0));
      Inst = MovedExtInst;
      break;
    }
  }
  if (!LI)
    return false;

  // If they're already in the same block, there's nothing to do.
  // Make the cheap checks first if we did not promote.
  // If we promoted, we need to check if it is indeed profitable.
  if (!HasPromoted && LI->getParent() == Inst->getParent())
    return false;

  return TLI->isExtLoad(LI, Inst, *DL);
}

/// Move a zext or sext fed by a load into the same basic block as the load,
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
/// extend into the load.
///
/// E.g.,
/// \code
/// %ld = load i32* %addr
/// %add = add nuw i32 %ld, 4
/// %zext = zext i32 %add to i64
// \endcode
/// =>
/// \code
/// %ld = load i32* %addr
/// %zext = zext i32 %ld to i64
/// %add = add nuw i64 %zext, 4
/// \encode
/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
/// allow us to match zext(load i32*) to i64.
///
/// Also, try to promote the computations used to obtain a sign extended
/// value used into memory accesses.
/// E.g.,
/// \code
/// a = add nsw i32 b, 3
/// d = sext i32 a to i64
/// e = getelementptr ..., i64 d
/// \endcode
/// =>
/// \code
/// f = sext i32 b to i64
/// a = add nsw i64 f, 3
/// e = getelementptr ..., i64 a
/// \endcode
///
/// \p Inst[in/out] the extension may be modified during the process if some
/// promotions apply.
bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
  // ExtLoad formation and address type promotion infrastructure requires TLI to
  // be effective.
  if (!TLI)
    return false;

  bool AllowPromotionWithoutCommonHeader = false;
  /// See if it is an interesting sext operations for the address type
  /// promotion before trying to promote it, e.g., the ones with the right
  /// type and used in memory accesses.
  bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
      *Inst, AllowPromotionWithoutCommonHeader);
  TypePromotionTransaction TPT(RemovedInsts);
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  SmallVector<Instruction *, 1> Exts;
  SmallVector<Instruction *, 2> SpeculativelyMovedExts;
  Exts.push_back(Inst);

  bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);

  // Look for a load being extended.
  LoadInst *LI = nullptr;
  Instruction *ExtFedByLoad;

  // Try to promote a chain of computation if it allows to form an extended
  // load.
  if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
    assert(LI && ExtFedByLoad && "Expect a valid load and extension");
    TPT.commit();
    // Move the extend into the same block as the load
    ExtFedByLoad->moveAfter(LI);
    // CGP does not check if the zext would be speculatively executed when moved
    // to the same basic block as the load. Preserving its original location
    // would pessimize the debugging experience, as well as negatively impact
    // the quality of sample pgo. We don't want to use "line 0" as that has a
    // size cost in the line-table section and logically the zext can be seen as
    // part of the load. Therefore we conservatively reuse the same debug
    // location for the load and the zext.
    ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
    ++NumExtsMoved;
    Inst = ExtFedByLoad;
    return true;
  }

  // Continue promoting SExts if known as considerable depending on targets.
  if (ATPConsiderable &&
      performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
                                  HasPromoted, TPT, SpeculativelyMovedExts))
    return true;

  TPT.rollback(LastKnownGood);
  return false;
}

// Perform address type promotion if doing so is profitable.
// If AllowPromotionWithoutCommonHeader == false, we should find other sext
// instructions that sign extended the same initial value. However, if
// AllowPromotionWithoutCommonHeader == true, we expect promoting the
// extension is just profitable.
bool CodeGenPrepare::performAddressTypePromotion(
    Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
    bool HasPromoted, TypePromotionTransaction &TPT,
    SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
  bool Promoted = false;
  SmallPtrSet<Instruction *, 1> UnhandledExts;
  bool AllSeenFirst = true;
  for (auto I : SpeculativelyMovedExts) {
    Value *HeadOfChain = I->getOperand(0);
    DenseMap<Value *, Instruction *>::iterator AlreadySeen =
        SeenChainsForSExt.find(HeadOfChain);
    // If there is an unhandled SExt which has the same header, try to promote
    // it as well.
    if (AlreadySeen != SeenChainsForSExt.end()) {
      if (AlreadySeen->second != nullptr)
        UnhandledExts.insert(AlreadySeen->second);
      AllSeenFirst = false;
    }
  }

  if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
                        SpeculativelyMovedExts.size() == 1)) {
    TPT.commit();
    if (HasPromoted)
      Promoted = true;
    for (auto I : SpeculativelyMovedExts) {
      Value *HeadOfChain = I->getOperand(0);
      SeenChainsForSExt[HeadOfChain] = nullptr;
      ValToSExtendedUses[HeadOfChain].push_back(I);
    }
    // Update Inst as promotion happen.
    Inst = SpeculativelyMovedExts.pop_back_val();
  } else {
    // This is the first chain visited from the header, keep the current chain
    // as unhandled. Defer to promote this until we encounter another SExt
    // chain derived from the same header.
    for (auto I : SpeculativelyMovedExts) {
      Value *HeadOfChain = I->getOperand(0);
      SeenChainsForSExt[HeadOfChain] = Inst;
    }
    return false;
  }

  if (!AllSeenFirst && !UnhandledExts.empty())
    for (auto VisitedSExt : UnhandledExts) {
      if (RemovedInsts.count(VisitedSExt))
        continue;
      TypePromotionTransaction TPT(RemovedInsts);
      SmallVector<Instruction *, 1> Exts;
      SmallVector<Instruction *, 2> Chains;
      Exts.push_back(VisitedSExt);
      bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
      TPT.commit();
      if (HasPromoted)
        Promoted = true;
      for (auto I : Chains) {
        Value *HeadOfChain = I->getOperand(0);
        // Mark this as handled.
        SeenChainsForSExt[HeadOfChain] = nullptr;
        ValToSExtendedUses[HeadOfChain].push_back(I);
      }
    }
  return Promoted;
}

bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
  BasicBlock *DefBB = I->getParent();

  // If the result of a {s|z}ext and its source are both live out, rewrite all
  // other uses of the source with result of extension.
  Value *Src = I->getOperand(0);
  if (Src->hasOneUse())
    return false;

  // Only do this xform if truncating is free.
  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
    return false;

  // Only safe to perform the optimization if the source is also defined in
  // this block.
  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
    return false;

  bool DefIsLiveOut = false;
  for (User *U : I->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Figure out which BB this ext is used in.
    BasicBlock *UserBB = UI->getParent();
    if (UserBB == DefBB) continue;
    DefIsLiveOut = true;
    break;
  }
  if (!DefIsLiveOut)
    return false;

  // Make sure none of the uses are PHI nodes.
  for (User *U : Src->users()) {
    Instruction *UI = cast<Instruction>(U);
    BasicBlock *UserBB = UI->getParent();
    if (UserBB == DefBB) continue;
    // Be conservative. We don't want this xform to end up introducing
    // reloads just before load / store instructions.
    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
      return false;
  }

  // InsertedTruncs - Only insert one trunc in each block once.
  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;

  bool MadeChange = false;
  for (Use &U : Src->uses()) {
    Instruction *User = cast<Instruction>(U.getUser());

    // Figure out which BB this ext is used in.
    BasicBlock *UserBB = User->getParent();
    if (UserBB == DefBB) continue;

    // Both src and def are live in this block. Rewrite the use.
    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];

    if (!InsertedTrunc) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
      InsertedInsts.insert(InsertedTrunc);
    }

    // Replace a use of the {s|z}ext source with a use of the result.
    U = InsertedTrunc;
    ++NumExtUses;
    MadeChange = true;
  }

  return MadeChange;
}

// Find loads whose uses only use some of the loaded value's bits.  Add an "and"
// just after the load if the target can fold this into one extload instruction,
// with the hope of eliminating some of the other later "and" instructions using
// the loaded value.  "and"s that are made trivially redundant by the insertion
// of the new "and" are removed by this function, while others (e.g. those whose
// path from the load goes through a phi) are left for isel to potentially
// remove.
//
// For example:
//
// b0:
//   x = load i32
//   ...
// b1:
//   y = and x, 0xff
//   z = use y
//
// becomes:
//
// b0:
//   x = load i32
//   x' = and x, 0xff
//   ...
// b1:
//   z = use x'
//
// whereas:
//
// b0:
//   x1 = load i32
//   ...
// b1:
//   x2 = load i32
//   ...
// b2:
//   x = phi x1, x2
//   y = and x, 0xff
//
// becomes (after a call to optimizeLoadExt for each load):
//
// b0:
//   x1 = load i32
//   x1' = and x1, 0xff
//   ...
// b1:
//   x2 = load i32
//   x2' = and x2, 0xff
//   ...
// b2:
//   x = phi x1', x2'
//   y = and x, 0xff
bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
  if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
    return false;

  // Skip loads we've already transformed.
  if (Load->hasOneUse() &&
      InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
    return false;

  // Look at all uses of Load, looking through phis, to determine how many bits
  // of the loaded value are needed.
  SmallVector<Instruction *, 8> WorkList;
  SmallPtrSet<Instruction *, 16> Visited;
  SmallVector<Instruction *, 8> AndsToMaybeRemove;
  for (auto *U : Load->users())
    WorkList.push_back(cast<Instruction>(U));

  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
  unsigned BitWidth = LoadResultVT.getSizeInBits();
  APInt DemandBits(BitWidth, 0);
  APInt WidestAndBits(BitWidth, 0);

  while (!WorkList.empty()) {
    Instruction *I = WorkList.back();
    WorkList.pop_back();

    // Break use-def graph loops.
    if (!Visited.insert(I).second)
      continue;

    // For a PHI node, push all of its users.
    if (auto *Phi = dyn_cast<PHINode>(I)) {
      for (auto *U : Phi->users())
        WorkList.push_back(cast<Instruction>(U));
      continue;
    }

    switch (I->getOpcode()) {
    case Instruction::And: {
      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
      if (!AndC)
        return false;
      APInt AndBits = AndC->getValue();
      DemandBits |= AndBits;
      // Keep track of the widest and mask we see.
      if (AndBits.ugt(WidestAndBits))
        WidestAndBits = AndBits;
      if (AndBits == WidestAndBits && I->getOperand(0) == Load)
        AndsToMaybeRemove.push_back(I);
      break;
    }

    case Instruction::Shl: {
      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
      if (!ShlC)
        return false;
      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
      DemandBits.setLowBits(BitWidth - ShiftAmt);
      break;
    }

    case Instruction::Trunc: {
      EVT TruncVT = TLI->getValueType(*DL, I->getType());
      unsigned TruncBitWidth = TruncVT.getSizeInBits();
      DemandBits.setLowBits(TruncBitWidth);
      break;
    }

    default:
      return false;
    }
  }

  uint32_t ActiveBits = DemandBits.getActiveBits();
  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
  // (and (load x) 1) is not matched as a single instruction, rather as a LDR
  // followed by an AND.
  // TODO: Look into removing this restriction by fixing backends to either
  // return false for isLoadExtLegal for i1 or have them select this pattern to
  // a single instruction.
  //
  // Also avoid hoisting if we didn't see any ands with the exact DemandBits
  // mask, since these are the only ands that will be removed by isel.
  if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
      WidestAndBits != DemandBits)
    return false;

  LLVMContext &Ctx = Load->getType()->getContext();
  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
  EVT TruncVT = TLI->getValueType(*DL, TruncTy);

  // Reject cases that won't be matched as extloads.
  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
    return false;

  IRBuilder<> Builder(Load->getNextNode());
  auto *NewAnd = cast<Instruction>(
      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
  // Mark this instruction as "inserted by CGP", so that other
  // optimizations don't touch it.
  InsertedInsts.insert(NewAnd);

  // Replace all uses of load with new and (except for the use of load in the
  // new and itself).
  Load->replaceAllUsesWith(NewAnd);
  NewAnd->setOperand(0, Load);

  // Remove any and instructions that are now redundant.
  for (auto *And : AndsToMaybeRemove)
    // Check that the and mask is the same as the one we decided to put on the
    // new and.
    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
      And->replaceAllUsesWith(NewAnd);
      if (&*CurInstIterator == And)
        CurInstIterator = std::next(And->getIterator());
      And->eraseFromParent();
      ++NumAndUses;
    }

  ++NumAndsAdded;
  return true;
}

/// Check if V (an operand of a select instruction) is an expensive instruction
/// that is only used once.
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
  auto *I = dyn_cast<Instruction>(V);
  // If it's safe to speculatively execute, then it should not have side
  // effects; therefore, it's safe to sink and possibly *not* execute.
  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
         TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
}

/// Returns true if a SelectInst should be turned into an explicit branch.
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
                                                const TargetLowering *TLI,
                                                SelectInst *SI) {
  // If even a predictable select is cheap, then a branch can't be cheaper.
  if (!TLI->isPredictableSelectExpensive())
    return false;

  // FIXME: This should use the same heuristics as IfConversion to determine
  // whether a select is better represented as a branch.

  // If metadata tells us that the select condition is obviously predictable,
  // then we want to replace the select with a branch.
  uint64_t TrueWeight, FalseWeight;
  if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
    uint64_t Max = std::max(TrueWeight, FalseWeight);
    uint64_t Sum = TrueWeight + FalseWeight;
    if (Sum != 0) {
      auto Probability = BranchProbability::getBranchProbability(Max, Sum);
      if (Probability > TLI->getPredictableBranchThreshold())
        return true;
    }
  }

  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());

  // If a branch is predictable, an out-of-order CPU can avoid blocking on its
  // comparison condition. If the compare has more than one use, there's
  // probably another cmov or setcc around, so it's not worth emitting a branch.
  if (!Cmp || !Cmp->hasOneUse())
    return false;

  // If either operand of the select is expensive and only needed on one side
  // of the select, we should form a branch.
  if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
      sinkSelectOperand(TTI, SI->getFalseValue()))
    return true;

  return false;
}

/// If \p isTrue is true, return the true value of \p SI, otherwise return
/// false value of \p SI. If the true/false value of \p SI is defined by any
/// select instructions in \p Selects, look through the defining select
/// instruction until the true/false value is not defined in \p Selects.
static Value *getTrueOrFalseValue(
    SelectInst *SI, bool isTrue,
    const SmallPtrSet<const Instruction *, 2> &Selects) {
  Value *V = nullptr;

  for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
       DefSI = dyn_cast<SelectInst>(V)) {
    assert(DefSI->getCondition() == SI->getCondition() &&
           "The condition of DefSI does not match with SI");
    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
  }

  assert(V && "Failed to get select true/false value");
  return V;
}

bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
  assert(Shift->isShift() && "Expected a shift");

  // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
  // general vector shifts, and (3) the shift amount is a select-of-splatted
  // values, hoist the shifts before the select:
  //   shift Op0, (select Cond, TVal, FVal) -->
  //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
  //
  // This is inverting a generic IR transform when we know that the cost of a
  // general vector shift is more than the cost of 2 shift-by-scalars.
  // We can't do this effectively in SDAG because we may not be able to
  // determine if the select operands are splats from within a basic block.
  Type *Ty = Shift->getType();
  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
    return false;
  Value *Cond, *TVal, *FVal;
  if (!match(Shift->getOperand(1),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return false;
  if (!isSplatValue(TVal) || !isSplatValue(FVal))
    return false;

  IRBuilder<> Builder(Shift);
  BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
  Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
  Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
  Shift->replaceAllUsesWith(NewSel);
  Shift->eraseFromParent();
  return true;
}

/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
  // If branch conversion isn't desirable, exit early.
  if (DisableSelectToBranch || OptSize || !TLI)
    return false;

  // Find all consecutive select instructions that share the same condition.
  SmallVector<SelectInst *, 2> ASI;
  ASI.push_back(SI);
  for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
       It != SI->getParent()->end(); ++It) {
    SelectInst *I = dyn_cast<SelectInst>(&*It);
    if (I && SI->getCondition() == I->getCondition()) {
      ASI.push_back(I);
    } else {
      break;
    }
  }

  SelectInst *LastSI = ASI.back();
  // Increment the current iterator to skip all the rest of select instructions
  // because they will be either "not lowered" or "all lowered" to branch.
  CurInstIterator = std::next(LastSI->getIterator());

  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);

  // Can we convert the 'select' to CF ?
  if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
    return false;

  TargetLowering::SelectSupportKind SelectKind;
  if (VectorCond)
    SelectKind = TargetLowering::VectorMaskSelect;
  else if (SI->getType()->isVectorTy())
    SelectKind = TargetLowering::ScalarCondVectorVal;
  else
    SelectKind = TargetLowering::ScalarValSelect;

  if (TLI->isSelectSupported(SelectKind) &&
      !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
    return false;

  // The DominatorTree needs to be rebuilt by any consumers after this
  // transformation. We simply reset here rather than setting the ModifiedDT
  // flag to avoid restarting the function walk in runOnFunction for each
  // select optimized.
  DT.reset();

  // Transform a sequence like this:
  //    start:
  //       %cmp = cmp uge i32 %a, %b
  //       %sel = select i1 %cmp, i32 %c, i32 %d
  //
  // Into:
  //    start:
  //       %cmp = cmp uge i32 %a, %b
  //       br i1 %cmp, label %select.true, label %select.false
  //    select.true:
  //       br label %select.end
  //    select.false:
  //       br label %select.end
  //    select.end:
  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
  //
  // In addition, we may sink instructions that produce %c or %d from
  // the entry block into the destination(s) of the new branch.
  // If the true or false blocks do not contain a sunken instruction, that
  // block and its branch may be optimized away. In that case, one side of the
  // first branch will point directly to select.end, and the corresponding PHI
  // predecessor block will be the start block.

  // First, we split the block containing the select into 2 blocks.
  BasicBlock *StartBlock = SI->getParent();
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
  BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");

  // Delete the unconditional branch that was just created by the split.
  StartBlock->getTerminator()->eraseFromParent();

  // These are the new basic blocks for the conditional branch.
  // At least one will become an actual new basic block.
  BasicBlock *TrueBlock = nullptr;
  BasicBlock *FalseBlock = nullptr;
  BranchInst *TrueBranch = nullptr;
  BranchInst *FalseBranch = nullptr;

  // Sink expensive instructions into the conditional blocks to avoid executing
  // them speculatively.
  for (SelectInst *SI : ASI) {
    if (sinkSelectOperand(TTI, SI->getTrueValue())) {
      if (TrueBlock == nullptr) {
        TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
                                       EndBlock->getParent(), EndBlock);
        TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
        TrueBranch->setDebugLoc(SI->getDebugLoc());
      }
      auto *TrueInst = cast<Instruction>(SI->getTrueValue());
      TrueInst->moveBefore(TrueBranch);
    }
    if (sinkSelectOperand(TTI, SI->getFalseValue())) {
      if (FalseBlock == nullptr) {
        FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
                                        EndBlock->getParent(), EndBlock);
        FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
        FalseBranch->setDebugLoc(SI->getDebugLoc());
      }
      auto *FalseInst = cast<Instruction>(SI->getFalseValue());
      FalseInst->moveBefore(FalseBranch);
    }
  }

  // If there was nothing to sink, then arbitrarily choose the 'false' side
  // for a new input value to the PHI.
  if (TrueBlock == FalseBlock) {
    assert(TrueBlock == nullptr &&
           "Unexpected basic block transform while optimizing select");

    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
                                    EndBlock->getParent(), EndBlock);
    auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
    FalseBranch->setDebugLoc(SI->getDebugLoc());
  }

  // Insert the real conditional branch based on the original condition.
  // If we did not create a new block for one of the 'true' or 'false' paths
  // of the condition, it means that side of the branch goes to the end block
  // directly and the path originates from the start block from the point of
  // view of the new PHI.
  BasicBlock *TT, *FT;
  if (TrueBlock == nullptr) {
    TT = EndBlock;
    FT = FalseBlock;
    TrueBlock = StartBlock;
  } else if (FalseBlock == nullptr) {
    TT = TrueBlock;
    FT = EndBlock;
    FalseBlock = StartBlock;
  } else {
    TT = TrueBlock;
    FT = FalseBlock;
  }
  IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);

  SmallPtrSet<const Instruction *, 2> INS;
  INS.insert(ASI.begin(), ASI.end());
  // Use reverse iterator because later select may use the value of the
  // earlier select, and we need to propagate value through earlier select
  // to get the PHI operand.
  for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
    SelectInst *SI = *It;
    // The select itself is replaced with a PHI Node.
    PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
    PN->takeName(SI);
    PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
    PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
    PN->setDebugLoc(SI->getDebugLoc());

    SI->replaceAllUsesWith(PN);
    SI->eraseFromParent();
    INS.erase(SI);
    ++NumSelectsExpanded;
  }

  // Instruct OptimizeBlock to skip to the next block.
  CurInstIterator = StartBlock->end();
  return true;
}

static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
  SmallVector<int, 16> Mask(SVI->getShuffleMask());
  int SplatElem = -1;
  for (unsigned i = 0; i < Mask.size(); ++i) {
    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
      return false;
    SplatElem = Mask[i];
  }

  return true;
}

/// Some targets have expensive vector shifts if the lanes aren't all the same
/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
/// it's often worth sinking a shufflevector splat down to its use so that
/// codegen can spot all lanes are identical.
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
  BasicBlock *DefBB = SVI->getParent();

  // Only do this xform if variable vector shifts are particularly expensive.
  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
    return false;

  // We only expect better codegen by sinking a shuffle if we can recognise a
  // constant splat.
  if (!isBroadcastShuffle(SVI))
    return false;

  // InsertedShuffles - Only insert a shuffle in each block once.
  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;

  bool MadeChange = false;
  for (User *U : SVI->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Figure out which BB this ext is used in.
    BasicBlock *UserBB = UI->getParent();
    if (UserBB == DefBB) continue;

    // For now only apply this when the splat is used by a shift instruction.
    if (!UI->isShift()) continue;

    // Everything checks out, sink the shuffle if the user's block doesn't
    // already have a copy.
    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];

    if (!InsertedShuffle) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedShuffle =
          new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
                                SVI->getOperand(2), "", &*InsertPt);
      InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
    }

    UI->replaceUsesOfWith(SVI, InsertedShuffle);
    MadeChange = true;
  }

  // If we removed all uses, nuke the shuffle.
  if (SVI->use_empty()) {
    SVI->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
  // If the operands of I can be folded into a target instruction together with
  // I, duplicate and sink them.
  SmallVector<Use *, 4> OpsToSink;
  if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
    return false;

  // OpsToSink can contain multiple uses in a use chain (e.g.
  // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
  // uses must come first, so we process the ops in reverse order so as to not
  // create invalid IR.
  BasicBlock *TargetBB = I->getParent();
  bool Changed = false;
  SmallVector<Use *, 4> ToReplace;
  for (Use *U : reverse(OpsToSink)) {
    auto *UI = cast<Instruction>(U->get());
    if (UI->getParent() == TargetBB || isa<PHINode>(UI))
      continue;
    ToReplace.push_back(U);
  }

  SetVector<Instruction *> MaybeDead;
  DenseMap<Instruction *, Instruction *> NewInstructions;
  Instruction *InsertPoint = I;
  for (Use *U : ToReplace) {
    auto *UI = cast<Instruction>(U->get());
    Instruction *NI = UI->clone();
    NewInstructions[UI] = NI;
    MaybeDead.insert(UI);
    LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
    NI->insertBefore(InsertPoint);
    InsertPoint = NI;
    InsertedInsts.insert(NI);

    // Update the use for the new instruction, making sure that we update the
    // sunk instruction uses, if it is part of a chain that has already been
    // sunk.
    Instruction *OldI = cast<Instruction>(U->getUser());
    if (NewInstructions.count(OldI))
      NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
    else
      U->set(NI);
    Changed = true;
  }

  // Remove instructions that are dead after sinking.
  for (auto *I : MaybeDead) {
    if (!I->hasNUsesOrMore(1)) {
      LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
      I->eraseFromParent();
    }
  }

  return Changed;
}

bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
  if (!TLI || !DL)
    return false;

  Value *Cond = SI->getCondition();
  Type *OldType = Cond->getType();
  LLVMContext &Context = Cond->getContext();
  MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
  unsigned RegWidth = RegType.getSizeInBits();

  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
    return false;

  // If the register width is greater than the type width, expand the condition
  // of the switch instruction and each case constant to the width of the
  // register. By widening the type of the switch condition, subsequent
  // comparisons (for case comparisons) will not need to be extended to the
  // preferred register width, so we will potentially eliminate N-1 extends,
  // where N is the number of cases in the switch.
  auto *NewType = Type::getIntNTy(Context, RegWidth);

  // Zero-extend the switch condition and case constants unless the switch
  // condition is a function argument that is already being sign-extended.
  // In that case, we can avoid an unnecessary mask/extension by sign-extending
  // everything instead.
  Instruction::CastOps ExtType = Instruction::ZExt;
  if (auto *Arg = dyn_cast<Argument>(Cond))
    if (Arg->hasSExtAttr())
      ExtType = Instruction::SExt;

  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
  ExtInst->insertBefore(SI);
  ExtInst->setDebugLoc(SI->getDebugLoc());
  SI->setCondition(ExtInst);
  for (auto Case : SI->cases()) {
    APInt NarrowConst = Case.getCaseValue()->getValue();
    APInt WideConst = (ExtType == Instruction::ZExt) ?
                      NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
    Case.setValue(ConstantInt::get(Context, WideConst));
  }

  return true;
}


namespace {

/// Helper class to promote a scalar operation to a vector one.
/// This class is used to move downward extractelement transition.
/// E.g.,
/// a = vector_op <2 x i32>
/// b = extractelement <2 x i32> a, i32 0
/// c = scalar_op b
/// store c
///
/// =>
/// a = vector_op <2 x i32>
/// c = vector_op a (equivalent to scalar_op on the related lane)
/// * d = extractelement <2 x i32> c, i32 0
/// * store d
/// Assuming both extractelement and store can be combine, we get rid of the
/// transition.
class VectorPromoteHelper {
  /// DataLayout associated with the current module.
  const DataLayout &DL;

  /// Used to perform some checks on the legality of vector operations.
  const TargetLowering &TLI;

  /// Used to estimated the cost of the promoted chain.
  const TargetTransformInfo &TTI;

  /// The transition being moved downwards.
  Instruction *Transition;

  /// The sequence of instructions to be promoted.
  SmallVector<Instruction *, 4> InstsToBePromoted;

  /// Cost of combining a store and an extract.
  unsigned StoreExtractCombineCost;

  /// Instruction that will be combined with the transition.
  Instruction *CombineInst = nullptr;

  /// The instruction that represents the current end of the transition.
  /// Since we are faking the promotion until we reach the end of the chain
  /// of computation, we need a way to get the current end of the transition.
  Instruction *getEndOfTransition() const {
    if (InstsToBePromoted.empty())
      return Transition;
    return InstsToBePromoted.back();
  }

  /// Return the index of the original value in the transition.
  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
  /// c, is at index 0.
  unsigned getTransitionOriginalValueIdx() const {
    assert(isa<ExtractElementInst>(Transition) &&
           "Other kind of transitions are not supported yet");
    return 0;
  }

  /// Return the index of the index in the transition.
  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
  /// is at index 1.
  unsigned getTransitionIdx() const {
    assert(isa<ExtractElementInst>(Transition) &&
           "Other kind of transitions are not supported yet");
    return 1;
  }

  /// Get the type of the transition.
  /// This is the type of the original value.
  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
  /// transition is <2 x i32>.
  Type *getTransitionType() const {
    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
  }

  /// Promote \p ToBePromoted by moving \p Def downward through.
  /// I.e., we have the following sequence:
  /// Def = Transition <ty1> a to <ty2>
  /// b = ToBePromoted <ty2> Def, ...
  /// =>
  /// b = ToBePromoted <ty1> a, ...
  /// Def = Transition <ty1> ToBePromoted to <ty2>
  void promoteImpl(Instruction *ToBePromoted);

  /// Check whether or not it is profitable to promote all the
  /// instructions enqueued to be promoted.
  bool isProfitableToPromote() {
    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
    unsigned Index = isa<ConstantInt>(ValIdx)
                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
                         : -1;
    Type *PromotedType = getTransitionType();

    StoreInst *ST = cast<StoreInst>(CombineInst);
    unsigned AS = ST->getPointerAddressSpace();
    unsigned Align = ST->getAlignment();
    // Check if this store is supported.
    if (!TLI.allowsMisalignedMemoryAccesses(
            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
            Align)) {
      // If this is not supported, there is no way we can combine
      // the extract with the store.
      return false;
    }

    // The scalar chain of computation has to pay for the transition
    // scalar to vector.
    // The vector chain has to account for the combining cost.
    uint64_t ScalarCost =
        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
    uint64_t VectorCost = StoreExtractCombineCost;
    for (const auto &Inst : InstsToBePromoted) {
      // Compute the cost.
      // By construction, all instructions being promoted are arithmetic ones.
      // Moreover, one argument is a constant that can be viewed as a splat
      // constant.
      Value *Arg0 = Inst->getOperand(0);
      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
                            isa<ConstantFP>(Arg0);
      TargetTransformInfo::OperandValueKind Arg0OVK =
          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
                         : TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Arg1OVK =
          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
                          : TargetTransformInfo::OK_AnyValue;
      ScalarCost += TTI.getArithmeticInstrCost(
          Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
                                               Arg0OVK, Arg1OVK);
    }
    LLVM_DEBUG(
        dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
               << ScalarCost << "\nVector: " << VectorCost << '\n');
    return ScalarCost > VectorCost;
  }

  /// Generate a constant vector with \p Val with the same
  /// number of elements as the transition.
  /// \p UseSplat defines whether or not \p Val should be replicated
  /// across the whole vector.
  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
  /// otherwise we generate a vector with as many undef as possible:
  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
  /// used at the index of the extract.
  Value *getConstantVector(Constant *Val, bool UseSplat) const {
    unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
    if (!UseSplat) {
      // If we cannot determine where the constant must be, we have to
      // use a splat constant.
      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
        ExtractIdx = CstVal->getSExtValue();
      else
        UseSplat = true;
    }

    unsigned End = getTransitionType()->getVectorNumElements();
    if (UseSplat)
      return ConstantVector::getSplat(End, Val);

    SmallVector<Constant *, 4> ConstVec;
    UndefValue *UndefVal = UndefValue::get(Val->getType());
    for (unsigned Idx = 0; Idx != End; ++Idx) {
      if (Idx == ExtractIdx)
        ConstVec.push_back(Val);
      else
        ConstVec.push_back(UndefVal);
    }
    return ConstantVector::get(ConstVec);
  }

  /// Check if promoting to a vector type an operand at \p OperandIdx
  /// in \p Use can trigger undefined behavior.
  static bool canCauseUndefinedBehavior(const Instruction *Use,
                                        unsigned OperandIdx) {
    // This is not safe to introduce undef when the operand is on
    // the right hand side of a division-like instruction.
    if (OperandIdx != 1)
      return false;
    switch (Use->getOpcode()) {
    default:
      return false;
    case Instruction::SDiv:
    case Instruction::UDiv:
    case Instruction::SRem:
    case Instruction::URem:
      return true;
    case Instruction::FDiv:
    case Instruction::FRem:
      return !Use->hasNoNaNs();
    }
    llvm_unreachable(nullptr);
  }

public:
  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
                      const TargetTransformInfo &TTI, Instruction *Transition,
                      unsigned CombineCost)
      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
        StoreExtractCombineCost(CombineCost) {
    assert(Transition && "Do not know how to promote null");
  }

  /// Check if we can promote \p ToBePromoted to \p Type.
  bool canPromote(const Instruction *ToBePromoted) const {
    // We could support CastInst too.
    return isa<BinaryOperator>(ToBePromoted);
  }

  /// Check if it is profitable to promote \p ToBePromoted
  /// by moving downward the transition through.
  bool shouldPromote(const Instruction *ToBePromoted) const {
    // Promote only if all the operands can be statically expanded.
    // Indeed, we do not want to introduce any new kind of transitions.
    for (const Use &U : ToBePromoted->operands()) {
      const Value *Val = U.get();
      if (Val == getEndOfTransition()) {
        // If the use is a division and the transition is on the rhs,
        // we cannot promote the operation, otherwise we may create a
        // division by zero.
        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
          return false;
        continue;
      }
      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
          !isa<ConstantFP>(Val))
        return false;
    }
    // Check that the resulting operation is legal.
    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
    if (!ISDOpcode)
      return false;
    return StressStoreExtract ||
           TLI.isOperationLegalOrCustom(
               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
  }

  /// Check whether or not \p Use can be combined
  /// with the transition.
  /// I.e., is it possible to do Use(Transition) => AnotherUse?
  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }

  /// Record \p ToBePromoted as part of the chain to be promoted.
  void enqueueForPromotion(Instruction *ToBePromoted) {
    InstsToBePromoted.push_back(ToBePromoted);
  }

  /// Set the instruction that will be combined with the transition.
  void recordCombineInstruction(Instruction *ToBeCombined) {
    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
    CombineInst = ToBeCombined;
  }

  /// Promote all the instructions enqueued for promotion if it is
  /// is profitable.
  /// \return True if the promotion happened, false otherwise.
  bool promote() {
    // Check if there is something to promote.
    // Right now, if we do not have anything to combine with,
    // we assume the promotion is not profitable.
    if (InstsToBePromoted.empty() || !CombineInst)
      return false;

    // Check cost.
    if (!StressStoreExtract && !isProfitableToPromote())
      return false;

    // Promote.
    for (auto &ToBePromoted : InstsToBePromoted)
      promoteImpl(ToBePromoted);
    InstsToBePromoted.clear();
    return true;
  }
};

} // end anonymous namespace

void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
  // At this point, we know that all the operands of ToBePromoted but Def
  // can be statically promoted.
  // For Def, we need to use its parameter in ToBePromoted:
  // b = ToBePromoted ty1 a
  // Def = Transition ty1 b to ty2
  // Move the transition down.
  // 1. Replace all uses of the promoted operation by the transition.
  // = ... b => = ... Def.
  assert(ToBePromoted->getType() == Transition->getType() &&
         "The type of the result of the transition does not match "
         "the final type");
  ToBePromoted->replaceAllUsesWith(Transition);
  // 2. Update the type of the uses.
  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
  Type *TransitionTy = getTransitionType();
  ToBePromoted->mutateType(TransitionTy);
  // 3. Update all the operands of the promoted operation with promoted
  // operands.
  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
  for (Use &U : ToBePromoted->operands()) {
    Value *Val = U.get();
    Value *NewVal = nullptr;
    if (Val == Transition)
      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
             isa<ConstantFP>(Val)) {
      // Use a splat constant if it is not safe to use undef.
      NewVal = getConstantVector(
          cast<Constant>(Val),
          isa<UndefValue>(Val) ||
              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
    } else
      llvm_unreachable("Did you modified shouldPromote and forgot to update "
                       "this?");
    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
  }
  Transition->moveAfter(ToBePromoted);
  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
}

/// Some targets can do store(extractelement) with one instruction.
/// Try to push the extractelement towards the stores when the target
/// has this feature and this is profitable.
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
  unsigned CombineCost = std::numeric_limits<unsigned>::max();
  if (DisableStoreExtract || !TLI ||
      (!StressStoreExtract &&
       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
                                       Inst->getOperand(1), CombineCost)))
    return false;

  // At this point we know that Inst is a vector to scalar transition.
  // Try to move it down the def-use chain, until:
  // - We can combine the transition with its single use
  //   => we got rid of the transition.
  // - We escape the current basic block
  //   => we would need to check that we are moving it at a cheaper place and
  //      we do not do that for now.
  BasicBlock *Parent = Inst->getParent();
  LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
  // If the transition has more than one use, assume this is not going to be
  // beneficial.
  while (Inst->hasOneUse()) {
    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
    LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');

    if (ToBePromoted->getParent() != Parent) {
      LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
                        << ToBePromoted->getParent()->getName()
                        << ") than the transition (" << Parent->getName()
                        << ").\n");
      return false;
    }

    if (VPH.canCombine(ToBePromoted)) {
      LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
                        << "will be combined with: " << *ToBePromoted << '\n');
      VPH.recordCombineInstruction(ToBePromoted);
      bool Changed = VPH.promote();
      NumStoreExtractExposed += Changed;
      return Changed;
    }

    LLVM_DEBUG(dbgs() << "Try promoting.\n");
    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
      return false;

    LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");

    VPH.enqueueForPromotion(ToBePromoted);
    Inst = ToBePromoted;
  }
  return false;
}

/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficient to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
///   (store (or (zext (bitcast F to i32) to i64),
///              (shl (zext I to i64), 32)), addr)  -->
///   (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8},  i32 store --> two i16 stores.
/// For pair of {i8, i8},   i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
///   void goo(const std::pair<int, float> &);
///   hoo() {
///     ...
///     goo(std::make_pair(tmp, ftmp));
///     ...
///   }
///
/// Although we already have similar splitting in DAG Combine, we duplicate
/// it in CodeGenPrepare to catch the case in which pattern is across
/// multiple BBs. The logic in DAG Combine is kept to catch case generated
/// during code expansion.
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
                                const TargetLowering &TLI) {
  // Handle simple but common cases only.
  Type *StoreType = SI.getValueOperand()->getType();
  if (!DL.typeSizeEqualsStoreSize(StoreType) ||
      DL.getTypeSizeInBits(StoreType) == 0)
    return false;

  unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
  Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
  if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
    return false;

  // Don't split the store if it is volatile.
  if (SI.isVolatile())
    return false;

  // Match the following patterns:
  // (store (or (zext LValue to i64),
  //            (shl (zext HValue to i64), 32)), HalfValBitSize)
  //  or
  // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
  //            (zext LValue to i64),
  // Expect both operands of OR and the first operand of SHL have only
  // one use.
  Value *LValue, *HValue;
  if (!match(SI.getValueOperand(),
             m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
                    m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
                                   m_SpecificInt(HalfValBitSize))))))
    return false;

  // Check LValue and HValue are int with size less or equal than 32.
  if (!LValue->getType()->isIntegerTy() ||
      DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
      !HValue->getType()->isIntegerTy() ||
      DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
    return false;

  // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
  // as the input of target query.
  auto *LBC = dyn_cast<BitCastInst>(LValue);
  auto *HBC = dyn_cast<BitCastInst>(HValue);
  EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
                  : EVT::getEVT(LValue->getType());
  EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
                   : EVT::getEVT(HValue->getType());
  if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
    return false;

  // Start to split store.
  IRBuilder<> Builder(SI.getContext());
  Builder.SetInsertPoint(&SI);

  // If LValue/HValue is a bitcast in another BB, create a new one in current
  // BB so it may be merged with the splitted stores by dag combiner.
  if (LBC && LBC->getParent() != SI.getParent())
    LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
  if (HBC && HBC->getParent() != SI.getParent())
    HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());

  bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
  auto CreateSplitStore = [&](Value *V, bool Upper) {
    V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
    Value *Addr = Builder.CreateBitCast(
        SI.getOperand(1),
        SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
    if ((IsLE && Upper) || (!IsLE && !Upper))
      Addr = Builder.CreateGEP(
          SplitStoreType, Addr,
          ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
    Builder.CreateAlignedStore(
        V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
  };

  CreateSplitStore(LValue, false);
  CreateSplitStore(HValue, true);

  // Delete the old store.
  SI.eraseFromParent();
  return true;
}

// Return true if the GEP has two operands, the first operand is of a sequential
// type, and the second operand is a constant.
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
  gep_type_iterator I = gep_type_begin(*GEP);
  return GEP->getNumOperands() == 2 &&
      I.isSequential() &&
      isa<ConstantInt>(GEP->getOperand(1));
}

// Try unmerging GEPs to reduce liveness interference (register pressure) across
// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
// reducing liveness interference across those edges benefits global register
// allocation. Currently handles only certain cases.
//
// For example, unmerge %GEPI and %UGEPI as below.
//
// ---------- BEFORE ----------
// SrcBlock:
//   ...
//   %GEPIOp = ...
//   ...
//   %GEPI = gep %GEPIOp, Idx
//   ...
//   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
//   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
//   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
//   %UGEPI)
//
// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
// ...
//
// DstBi:
//   ...
//   %UGEPI = gep %GEPIOp, UIdx
// ...
// ---------------------------
//
// ---------- AFTER ----------
// SrcBlock:
//   ... (same as above)
//    (* %GEPI is still alive on the indirectbr edges)
//    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
//    unmerging)
// ...
//
// DstBi:
//   ...
//   %UGEPI = gep %GEPI, (UIdx-Idx)
//   ...
// ---------------------------
//
// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
// no longer alive on them.
//
// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
// not to disable further simplications and optimizations as a result of GEP
// merging.
//
// Note this unmerging may increase the length of the data flow critical path
// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
// between the register pressure and the length of data-flow critical
// path. Restricting this to the uncommon IndirectBr case would minimize the
// impact of potentially longer critical path, if any, and the impact on compile
// time.
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
                                             const TargetTransformInfo *TTI) {
  BasicBlock *SrcBlock = GEPI->getParent();
  // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
  // (non-IndirectBr) cases exit early here.
  if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
    return false;
  // Check that GEPI is a simple gep with a single constant index.
  if (!GEPSequentialConstIndexed(GEPI))
    return false;
  ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
  // Check that GEPI is a cheap one.
  if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
      > TargetTransformInfo::TCC_Basic)
    return false;
  Value *GEPIOp = GEPI->getOperand(0);
  // Check that GEPIOp is an instruction that's also defined in SrcBlock.
  if (!isa<Instruction>(GEPIOp))
    return false;
  auto *GEPIOpI = cast<Instruction>(GEPIOp);
  if (GEPIOpI->getParent() != SrcBlock)
    return false;
  // Check that GEP is used outside the block, meaning it's alive on the
  // IndirectBr edge(s).
  if (find_if(GEPI->users(), [&](User *Usr) {
        if (auto *I = dyn_cast<Instruction>(Usr)) {
          if (I->getParent() != SrcBlock) {
            return true;
          }
        }
        return false;
      }) == GEPI->users().end())
    return false;
  // The second elements of the GEP chains to be unmerged.
  std::vector<GetElementPtrInst *> UGEPIs;
  // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
  // on IndirectBr edges.
  for (User *Usr : GEPIOp->users()) {
    if (Usr == GEPI) continue;
    // Check if Usr is an Instruction. If not, give up.
    if (!isa<Instruction>(Usr))
      return false;
    auto *UI = cast<Instruction>(Usr);
    // Check if Usr in the same block as GEPIOp, which is fine, skip.
    if (UI->getParent() == SrcBlock)
      continue;
    // Check if Usr is a GEP. If not, give up.
    if (!isa<GetElementPtrInst>(Usr))
      return false;
    auto *UGEPI = cast<GetElementPtrInst>(Usr);
    // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
    // the pointer operand to it. If so, record it in the vector. If not, give
    // up.
    if (!GEPSequentialConstIndexed(UGEPI))
      return false;
    if (UGEPI->getOperand(0) != GEPIOp)
      return false;
    if (GEPIIdx->getType() !=
        cast<ConstantInt>(UGEPI->getOperand(1))->getType())
      return false;
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
        > TargetTransformInfo::TCC_Basic)
      return false;
    UGEPIs.push_back(UGEPI);
  }
  if (UGEPIs.size() == 0)
    return false;
  // Check the materializing cost of (Uidx-Idx).
  for (GetElementPtrInst *UGEPI : UGEPIs) {
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
    unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
    if (ImmCost > TargetTransformInfo::TCC_Basic)
      return false;
  }
  // Now unmerge between GEPI and UGEPIs.
  for (GetElementPtrInst *UGEPI : UGEPIs) {
    UGEPI->setOperand(0, GEPI);
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    Constant *NewUGEPIIdx =
        ConstantInt::get(GEPIIdx->getType(),
                         UGEPIIdx->getValue() - GEPIIdx->getValue());
    UGEPI->setOperand(1, NewUGEPIIdx);
    // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
    // inbounds to avoid UB.
    if (!GEPI->isInBounds()) {
      UGEPI->setIsInBounds(false);
    }
  }
  // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
  // alive on IndirectBr edges).
  assert(find_if(GEPIOp->users(), [&](User *Usr) {
        return cast<Instruction>(Usr)->getParent() != SrcBlock;
      }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
  return true;
}

bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
  // Bail out if we inserted the instruction to prevent optimizations from
  // stepping on each other's toes.
  if (InsertedInsts.count(I))
    return false;

  // TODO: Move into the switch on opcode below here.
  if (PHINode *P = dyn_cast<PHINode>(I)) {
    // It is possible for very late stage optimizations (such as SimplifyCFG)
    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
    // trivial PHI, go ahead and zap it here.
    if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
      LargeOffsetGEPMap.erase(P);
      P->replaceAllUsesWith(V);
      P->eraseFromParent();
      ++NumPHIsElim;
      return true;
    }
    return false;
  }

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    // If the source of the cast is a constant, then this should have
    // already been constant folded.  The only reason NOT to constant fold
    // it is if something (e.g. LSR) was careful to place the constant
    // evaluation in a block other than then one that uses it (e.g. to hoist
    // the address of globals out of a loop).  If this is the case, we don't
    // want to forward-subst the cast.
    if (isa<Constant>(CI->getOperand(0)))
      return false;

    if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
      return true;

    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
      /// Sink a zext or sext into its user blocks if the target type doesn't
      /// fit in one register
      if (TLI &&
          TLI->getTypeAction(CI->getContext(),
                             TLI->getValueType(*DL, CI->getType())) ==
              TargetLowering::TypeExpandInteger) {
        return SinkCast(CI);
      } else {
        bool MadeChange = optimizeExt(I);
        return MadeChange | optimizeExtUses(I);
      }
    }
    return false;
  }

  if (auto *Cmp = dyn_cast<CmpInst>(I))
    if (TLI && optimizeCmp(Cmp, ModifiedDT))
      return true;

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
    if (TLI) {
      bool Modified = optimizeLoadExt(LI);
      unsigned AS = LI->getPointerAddressSpace();
      Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
      return Modified;
    }
    return false;
  }

  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (TLI && splitMergedValStore(*SI, *DL, *TLI))
      return true;
    SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
    if (TLI) {
      unsigned AS = SI->getPointerAddressSpace();
      return optimizeMemoryInst(I, SI->getOperand(1),
                                SI->getOperand(0)->getType(), AS);
    }
    return false;
  }

  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
      unsigned AS = RMW->getPointerAddressSpace();
      return optimizeMemoryInst(I, RMW->getPointerOperand(),
                                RMW->getType(), AS);
  }

  if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
      unsigned AS = CmpX->getPointerAddressSpace();
      return optimizeMemoryInst(I, CmpX->getPointerOperand(),
                                CmpX->getCompareOperand()->getType(), AS);
  }

  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);

  if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
      EnableAndCmpSinking && TLI)
    return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);

  // TODO: Move this into the switch on opcode - it handles shifts already.
  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
                BinOp->getOpcode() == Instruction::LShr)) {
    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
    if (TLI && CI && TLI->hasExtractBitsInsn())
      if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
        return true;
  }

  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    if (GEPI->hasAllZeroIndices()) {
      /// The GEP operand must be a pointer, so must its result -> BitCast
      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
                                        GEPI->getName(), GEPI);
      NC->setDebugLoc(GEPI->getDebugLoc());
      GEPI->replaceAllUsesWith(NC);
      GEPI->eraseFromParent();
      ++NumGEPsElim;
      optimizeInst(NC, ModifiedDT);
      return true;
    }
    if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
      return true;
    }
    return false;
  }

  if (tryToSinkFreeOperands(I))
    return true;

  switch (I->getOpcode()) {
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return optimizeShiftInst(cast<BinaryOperator>(I));
  case Instruction::Call:
    return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
  case Instruction::Select:
    return optimizeSelectInst(cast<SelectInst>(I));
  case Instruction::ShuffleVector:
    return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
  case Instruction::Switch:
    return optimizeSwitchInst(cast<SwitchInst>(I));
  case Instruction::ExtractElement:
    return optimizeExtractElementInst(cast<ExtractElementInst>(I));
  }

  return false;
}

/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
static bool makeBitReverse(Instruction &I, const DataLayout &DL,
                           const TargetLowering &TLI) {
  if (!I.getType()->isIntegerTy() ||
      !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
                                    TLI.getValueType(DL, I.getType(), true)))
    return false;

  SmallVector<Instruction*, 4> Insts;
  if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
    return false;
  Instruction *LastInst = Insts.back();
  I.replaceAllUsesWith(LastInst);
  RecursivelyDeleteTriviallyDeadInstructions(&I);
  return true;
}

// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
  SunkAddrs.clear();
  bool MadeChange = false;

  CurInstIterator = BB.begin();
  while (CurInstIterator != BB.end()) {
    MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
    if (ModifiedDT)
      return true;
  }

  bool MadeBitReverse = true;
  while (TLI && MadeBitReverse) {
    MadeBitReverse = false;
    for (auto &I : reverse(BB)) {
      if (makeBitReverse(I, *DL, *TLI)) {
        MadeBitReverse = MadeChange = true;
        break;
      }
    }
  }
  MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);

  return MadeChange;
}

// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
bool CodeGenPrepare::placeDbgValues(Function &F) {
  bool MadeChange = false;
  for (BasicBlock &BB : F) {
    Instruction *PrevNonDbgInst = nullptr;
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
      Instruction *Insn = &*BI++;
      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
      // Leave dbg.values that refer to an alloca alone. These
      // intrinsics describe the address of a variable (= the alloca)
      // being taken.  They should not be moved next to the alloca
      // (and to the beginning of the scope), but rather stay close to
      // where said address is used.
      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
        PrevNonDbgInst = Insn;
        continue;
      }

      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
        // If VI is a phi in a block with an EHPad terminator, we can't insert
        // after it.
        if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
          continue;
        LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
                          << *DVI << ' ' << *VI);
        DVI->removeFromParent();
        if (isa<PHINode>(VI))
          DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
        else
          DVI->insertAfter(VI);
        MadeChange = true;
        ++NumDbgValueMoved;
      }
    }
  }
  return MadeChange;
}

/// Scale down both weights to fit into uint32_t.
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
  uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
  NewTrue = NewTrue / Scale;
  NewFalse = NewFalse / Scale;
}

/// Some targets prefer to split a conditional branch like:
/// \code
///   %0 = icmp ne i32 %a, 0
///   %1 = icmp ne i32 %b, 0
///   %or.cond = or i1 %0, %1
///   br i1 %or.cond, label %TrueBB, label %FalseBB
/// \endcode
/// into multiple branch instructions like:
/// \code
///   bb1:
///     %0 = icmp ne i32 %a, 0
///     br i1 %0, label %TrueBB, label %bb2
///   bb2:
///     %1 = icmp ne i32 %b, 0
///     br i1 %1, label %TrueBB, label %FalseBB
/// \endcode
/// This usually allows instruction selection to do even further optimizations
/// and combine the compare with the branch instruction. Currently this is
/// applied for targets which have "cheap" jump instructions.
///
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
///
bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
  if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
    return false;

  bool MadeChange = false;
  for (auto &BB : F) {
    // Does this BB end with the following?
    //   %cond1 = icmp|fcmp|binary instruction ...
    //   %cond2 = icmp|fcmp|binary instruction ...
    //   %cond.or = or|and i1 %cond1, cond2
    //   br i1 %cond.or label %dest1, label %dest2"
    BinaryOperator *LogicOp;
    BasicBlock *TBB, *FBB;
    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
      continue;

    auto *Br1 = cast<BranchInst>(BB.getTerminator());
    if (Br1->getMetadata(LLVMContext::MD_unpredictable))
      continue;

    unsigned Opc;
    Value *Cond1, *Cond2;
    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
                             m_OneUse(m_Value(Cond2)))))
      Opc = Instruction::And;
    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
                                 m_OneUse(m_Value(Cond2)))))
      Opc = Instruction::Or;
    else
      continue;

    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
      continue;

    LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());

    // Create a new BB.
    auto TmpBB =
        BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
                           BB.getParent(), BB.getNextNode());

    // Update original basic block by using the first condition directly by the
    // branch instruction and removing the no longer needed and/or instruction.
    Br1->setCondition(Cond1);
    LogicOp->eraseFromParent();

    // Depending on the condition we have to either replace the true or the
    // false successor of the original branch instruction.
    if (Opc == Instruction::And)
      Br1->setSuccessor(0, TmpBB);
    else
      Br1->setSuccessor(1, TmpBB);

    // Fill in the new basic block.
    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
    if (auto *I = dyn_cast<Instruction>(Cond2)) {
      I->removeFromParent();
      I->insertBefore(Br2);
    }

    // Update PHI nodes in both successors. The original BB needs to be
    // replaced in one successor's PHI nodes, because the branch comes now from
    // the newly generated BB (NewBB). In the other successor we need to add one
    // incoming edge to the PHI nodes, because both branch instructions target
    // now the same successor. Depending on the original branch condition
    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
    // we perform the correct update for the PHI nodes.
    // This doesn't change the successor order of the just created branch
    // instruction (or any other instruction).
    if (Opc == Instruction::Or)
      std::swap(TBB, FBB);

    // Replace the old BB with the new BB.
    TBB->replacePhiUsesWith(&BB, TmpBB);

    // Add another incoming edge form the new BB.
    for (PHINode &PN : FBB->phis()) {
      auto *Val = PN.getIncomingValueForBlock(&BB);
      PN.addIncoming(Val, TmpBB);
    }

    // Update the branch weights (from SelectionDAGBuilder::
    // FindMergedConditions).
    if (Opc == Instruction::Or) {
      // Codegen X | Y as:
      // BB1:
      //   jmp_if_X TBB
      //   jmp TmpBB
      // TmpBB:
      //   jmp_if_Y TBB
      //   jmp FBB
      //

      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
      // The requirement is that
      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
      //     = TrueProb for original BB.
      // Assuming the original weights are A and B, one choice is to set BB1's
      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
      // assumes that
      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
      // TmpBB, but the math is more complicated.
      uint64_t TrueWeight, FalseWeight;
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
        uint64_t NewTrueWeight = TrueWeight;
        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));

        NewTrueWeight = TrueWeight;
        NewFalseWeight = 2 * FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));
      }
    } else {
      // Codegen X & Y as:
      // BB1:
      //   jmp_if_X TmpBB
      //   jmp FBB
      // TmpBB:
      //   jmp_if_Y TBB
      //   jmp FBB
      //
      //  This requires creation of TmpBB after CurBB.

      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
      // The requirement is that
      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
      //     = FalseProb for original BB.
      // Assuming the original weights are A and B, one choice is to set BB1's
      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
      // assumes that
      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
      uint64_t TrueWeight, FalseWeight;
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
        uint64_t NewFalseWeight = FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));

        NewTrueWeight = 2 * TrueWeight;
        NewFalseWeight = FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));
      }
    }

    ModifiedDT = true;
    MadeChange = true;

    LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
               TmpBB->dump());
  }
  return MadeChange;
}